Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Synthesis of signals for de novo DNA methylation in Neurospora crassa.

Identifieur interne : 002295 ( PubMed/Checkpoint ); précédent : 002294; suivant : 002296

Synthesis of signals for de novo DNA methylation in Neurospora crassa.

Auteurs : Hisashi Tamaru [États-Unis] ; Eric U. Selker

Source :

RBID : pubmed:12640122

Descripteurs français

English descriptors

Abstract

Most 5-methylcytosine in Neurospora crassa occurs in A:T-rich sequences high in TpA dinucleotides, hallmarks of repeat-induced point mutation. To investigate how such sequences induce methylation, we developed a sensitive in vivo system. Tests of various 25- to 100-bp synthetic DNA sequences revealed that both T and A residues were required on a given strand to induce appreciable methylation. Segments composed of (TAAA)(n) or (TTAA)(n) were the most potent signals; 25-mers induced robust methylation at the special test site, and a 75-mer induced methylation elsewhere. G:C base pairs inhibited methylation, and cytosines 5' of ApT dinucleotides were particularly inhibitory. Weak signals could be strengthened by extending their lengths. A:T tracts as short as two were found to cooperate to induce methylation. Distamycin, which, like the AT-hook DNA binding motif found in proteins such as mammalian HMG-I, binds to the minor groove of A:T-rich sequences, suppressed DNA methylation and gene silencing. We also found a correlation between the strength of methylation signals and their binding to an AT-hook protein (HMG-I) and to activities in a Neurospora extract. We propose that de novo DNA methylation in Neurospora cells is triggered by cooperative recognition of the minor groove of multiple short A:T tracts. Similarities between sequences subjected to repeat-induced point mutation in Neurospora crassa and A:T-rich repeated sequences in heterochromatin in other organisms suggest that related mechanisms control silent chromatin in fungi, plants, and animals.

DOI: 10.1128/mcb.23.7.2379-2394.2003
PubMed: 12640122


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:12640122

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Synthesis of signals for de novo DNA methylation in Neurospora crassa.</title>
<author>
<name sortKey="Tamaru, Hisashi" sort="Tamaru, Hisashi" uniqKey="Tamaru H" first="Hisashi" last="Tamaru">Hisashi Tamaru</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology and Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology and Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229</wicri:regionArea>
<wicri:noRegion>Oregon 97403-1229</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Selker, Eric U" sort="Selker, Eric U" uniqKey="Selker E" first="Eric U" last="Selker">Eric U. Selker</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2003">2003</date>
<idno type="RBID">pubmed:12640122</idno>
<idno type="pmid">12640122</idno>
<idno type="doi">10.1128/mcb.23.7.2379-2394.2003</idno>
<idno type="wicri:Area/PubMed/Corpus">002466</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002466</idno>
<idno type="wicri:Area/PubMed/Curation">002466</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002466</idno>
<idno type="wicri:Area/PubMed/Checkpoint">002295</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">002295</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Synthesis of signals for de novo DNA methylation in Neurospora crassa.</title>
<author>
<name sortKey="Tamaru, Hisashi" sort="Tamaru, Hisashi" uniqKey="Tamaru H" first="Hisashi" last="Tamaru">Hisashi Tamaru</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology and Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology and Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229</wicri:regionArea>
<wicri:noRegion>Oregon 97403-1229</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Selker, Eric U" sort="Selker, Eric U" uniqKey="Selker E" first="Eric U" last="Selker">Eric U. Selker</name>
</author>
</analytic>
<series>
<title level="j">Molecular and cellular biology</title>
<idno type="ISSN">0270-7306</idno>
<imprint>
<date when="2003" type="published">2003</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>AT Rich Sequence (physiology)</term>
<term>AT-Hook Motifs (physiology)</term>
<term>Base Pairing (physiology)</term>
<term>Base Sequence</term>
<term>Biological Assay</term>
<term>Cytosine (metabolism)</term>
<term>DNA Methylation</term>
<term>DNA, Fungal (genetics)</term>
<term>DNA, Fungal (metabolism)</term>
<term>DNA, Recombinant (physiology)</term>
<term>Electrophoretic Mobility Shift Assay</term>
<term>HMGB1 Protein (metabolism)</term>
<term>Molecular Sequence Data</term>
<term>Neurospora crassa</term>
<term>Point Mutation</term>
<term>Repetitive Sequences, Nucleic Acid (physiology)</term>
<term>Signal Transduction (physiology)</term>
<term>Structure-Activity Relationship</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN fongique (génétique)</term>
<term>ADN fongique (métabolisme)</term>
<term>ADN recombiné (physiologie)</term>
<term>Appariement de bases (physiologie)</term>
<term>Cytosine (métabolisme)</term>
<term>Données de séquences moléculaires</term>
<term>Dosage biologique</term>
<term>Motifs AT-hook (physiologie)</term>
<term>Mutation ponctuelle</term>
<term>Méthylation de l'ADN</term>
<term>Neurospora crassa</term>
<term>Protéine HMGB1 (métabolisme)</term>
<term>Relation structure-activité</term>
<term>Séquence nucléotidique</term>
<term>Séquence riche en AT (physiologie)</term>
<term>Séquences répétées d'acides nucléiques (physiologie)</term>
<term>Test de retard de migration électrophorétique</term>
<term>Transduction du signal (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Fungal</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cytosine</term>
<term>DNA, Fungal</term>
<term>HMGB1 Protein</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN fongique</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ADN fongique</term>
<term>Cytosine</term>
<term>Protéine HMGB1</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>ADN recombiné</term>
<term>Appariement de bases</term>
<term>Motifs AT-hook</term>
<term>Séquence riche en AT</term>
<term>Séquences répétées d'acides nucléiques</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>AT Rich Sequence</term>
<term>AT-Hook Motifs</term>
<term>Base Pairing</term>
<term>DNA, Recombinant</term>
<term>Repetitive Sequences, Nucleic Acid</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Sequence</term>
<term>Biological Assay</term>
<term>DNA Methylation</term>
<term>Electrophoretic Mobility Shift Assay</term>
<term>Molecular Sequence Data</term>
<term>Neurospora crassa</term>
<term>Point Mutation</term>
<term>Structure-Activity Relationship</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Données de séquences moléculaires</term>
<term>Dosage biologique</term>
<term>Mutation ponctuelle</term>
<term>Méthylation de l'ADN</term>
<term>Neurospora crassa</term>
<term>Relation structure-activité</term>
<term>Séquence nucléotidique</term>
<term>Test de retard de migration électrophorétique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Most 5-methylcytosine in Neurospora crassa occurs in A:T-rich sequences high in TpA dinucleotides, hallmarks of repeat-induced point mutation. To investigate how such sequences induce methylation, we developed a sensitive in vivo system. Tests of various 25- to 100-bp synthetic DNA sequences revealed that both T and A residues were required on a given strand to induce appreciable methylation. Segments composed of (TAAA)(n) or (TTAA)(n) were the most potent signals; 25-mers induced robust methylation at the special test site, and a 75-mer induced methylation elsewhere. G:C base pairs inhibited methylation, and cytosines 5' of ApT dinucleotides were particularly inhibitory. Weak signals could be strengthened by extending their lengths. A:T tracts as short as two were found to cooperate to induce methylation. Distamycin, which, like the AT-hook DNA binding motif found in proteins such as mammalian HMG-I, binds to the minor groove of A:T-rich sequences, suppressed DNA methylation and gene silencing. We also found a correlation between the strength of methylation signals and their binding to an AT-hook protein (HMG-I) and to activities in a Neurospora extract. We propose that de novo DNA methylation in Neurospora cells is triggered by cooperative recognition of the minor groove of multiple short A:T tracts. Similarities between sequences subjected to repeat-induced point mutation in Neurospora crassa and A:T-rich repeated sequences in heterochromatin in other organisms suggest that related mechanisms control silent chromatin in fungi, plants, and animals.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">12640122</PMID>
<DateCompleted>
<Year>2003</Year>
<Month>04</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>05</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0270-7306</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>23</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2003</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Molecular and cellular biology</Title>
<ISOAbbreviation>Mol. Cell. Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Synthesis of signals for de novo DNA methylation in Neurospora crassa.</ArticleTitle>
<Pagination>
<MedlinePgn>2379-94</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Most 5-methylcytosine in Neurospora crassa occurs in A:T-rich sequences high in TpA dinucleotides, hallmarks of repeat-induced point mutation. To investigate how such sequences induce methylation, we developed a sensitive in vivo system. Tests of various 25- to 100-bp synthetic DNA sequences revealed that both T and A residues were required on a given strand to induce appreciable methylation. Segments composed of (TAAA)(n) or (TTAA)(n) were the most potent signals; 25-mers induced robust methylation at the special test site, and a 75-mer induced methylation elsewhere. G:C base pairs inhibited methylation, and cytosines 5' of ApT dinucleotides were particularly inhibitory. Weak signals could be strengthened by extending their lengths. A:T tracts as short as two were found to cooperate to induce methylation. Distamycin, which, like the AT-hook DNA binding motif found in proteins such as mammalian HMG-I, binds to the minor groove of A:T-rich sequences, suppressed DNA methylation and gene silencing. We also found a correlation between the strength of methylation signals and their binding to an AT-hook protein (HMG-I) and to activities in a Neurospora extract. We propose that de novo DNA methylation in Neurospora cells is triggered by cooperative recognition of the minor groove of multiple short A:T tracts. Similarities between sequences subjected to repeat-induced point mutation in Neurospora crassa and A:T-rich repeated sequences in heterochromatin in other organisms suggest that related mechanisms control silent chromatin in fungi, plants, and animals.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tamaru</LastName>
<ForeName>Hisashi</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology and Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Selker</LastName>
<ForeName>Eric U</ForeName>
<Initials>EU</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM035690</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R37 GM035690</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM35690</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mol Cell Biol</MedlineTA>
<NlmUniqueID>8109087</NlmUniqueID>
<ISSNLinking>0270-7306</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004271">DNA, Fungal</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004274">DNA, Recombinant</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D024243">HMGB1 Protein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>8J337D1HZY</RegistryNumber>
<NameOfSubstance UI="D003596">Cytosine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020856" MajorTopicYN="N">AT Rich Sequence</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D024761" MajorTopicYN="N">AT-Hook Motifs</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020029" MajorTopicYN="N">Base Pairing</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001681" MajorTopicYN="N">Biological Assay</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003596" MajorTopicYN="N">Cytosine</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019175" MajorTopicYN="Y">DNA Methylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004271" MajorTopicYN="N">DNA, Fungal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004274" MajorTopicYN="N">DNA, Recombinant</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D024202" MajorTopicYN="N">Electrophoretic Mobility Shift Assay</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D024243" MajorTopicYN="N">HMGB1 Protein</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009492" MajorTopicYN="Y">Neurospora crassa</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017354" MajorTopicYN="N">Point Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012091" MajorTopicYN="N">Repetitive Sequences, Nucleic Acid</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013329" MajorTopicYN="N">Structure-Activity Relationship</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2003</Year>
<Month>3</Month>
<Day>18</Day>
<Hour>4</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2003</Year>
<Month>4</Month>
<Day>5</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2003</Year>
<Month>3</Month>
<Day>18</Day>
<Hour>4</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">12640122</ArticleId>
<ArticleId IdType="pmc">PMC150737</ArticleId>
<ArticleId IdType="doi">10.1128/mcb.23.7.2379-2394.2003</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 1986 May 15-21;321(6067):209-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2423876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1987 Oct 2;238(4823):48-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2958937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1987 Jun;169(6):2902-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2953709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1987 Dec 4;51(5):741-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2960455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1988 Jun;85(11):3728-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2967496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1988 Sep;85(18):6870-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2842795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 1988;22:199-233</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3071248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1989 Jun 30;244(4912):1571-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2544994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1989 Oct;9(10):4416-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2531278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1989 Dec 20;8(13):3997-4006</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2556260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1989 Dec 5;210(3):587-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2614835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1990 Feb 14;166(3):1110-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2154972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1990 May 25;265(15):8573-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1692833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 1990;24:579-613</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2150906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1991 Apr;127(4):699-710</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1827629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1992 Feb 15;89(4):1358-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1741388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2654-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1557369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genet Anal Tech Appl. 1992 Apr;9(2):48-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1356381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chromosoma. 1992 Oct;101(10):602-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1385053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1993 Feb 11;21(3):555-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8441667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1993 Aug;12(8):3237-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8344261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1993 Dec 10;262(5140):1724-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8259516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1993 Dec 10;262(5140):1737-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7505062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1994 Sep 29;371(6496):435-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8090226</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1994 Nov;14(11):7059-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7935421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Symp Quant Biol. 1993;58:323-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7956045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1994 Oct 1;8(19):2282-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7958895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1995 Oct;15(10):5586-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7565710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1995 Dec 29;83(7):1137-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8548801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1997 Jun;146(2):509-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9178002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 1997 Aug;13(8):335-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9260521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1998 Apr 1;17(7):2079-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9524129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9430-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9689097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Cancer Biol. 1999 Oct;9(5):329-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10547341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Dec 17;274(51):36357-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10593928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2000 Jul 7;300(2):249-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10873464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2000 Oct;20(20):7480-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11003645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Apr 6;292(5514):110-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11283354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2001 Jun;11(6):266-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11356363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2001 May 28;1519(1-2):13-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11406267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2001 Aug 1;20(15):4309-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11483533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Aug 10;293(5532):1089-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11498579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2001 Sep 15;29(18):3784-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11557810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2001 Oct 17;277(1-2):63-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11602345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Nov 15;414(6861):277-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11713521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2002 Feb;22(4):1218-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11809812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Feb 22;108(4):489-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11909520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Jun 25;99(13):8802-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12072568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2002 Jul 17;523(1-3):7-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12123795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Dec 10;99 Suppl 4:16485-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12189210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1979 Dec 20;7(8):2369-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">523320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1985 Dec;82(23):8114-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2415981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1986 Mar;83(5):1276-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3456586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Mar 16;96(6):2656-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10077566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1999 Apr 16;97(2):157-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10219236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1987 Mar;7(3):1032-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2951588</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Selker, Eric U" sort="Selker, Eric U" uniqKey="Selker E" first="Eric U" last="Selker">Eric U. Selker</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Tamaru, Hisashi" sort="Tamaru, Hisashi" uniqKey="Tamaru H" first="Hisashi" last="Tamaru">Hisashi Tamaru</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002295 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 002295 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:12640122
   |texte=   Synthesis of signals for de novo DNA methylation in Neurospora crassa.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:12640122" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021