Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Clustering of DNA sequences in human promoters.

Identifieur interne : 002280 ( PubMed/Checkpoint ); précédent : 002279; suivant : 002281

Clustering of DNA sequences in human promoters.

Auteurs : Peter C. Fitzgerald [États-Unis] ; Andrey Shlyakhtenko ; Alain A. Mir ; Charles Vinson

Source :

RBID : pubmed:15256515

Descripteurs français

English descriptors

Abstract

We have determined the distribution of each of the 65,536 DNA sequences that are eight bases long (8-mer) in a set of 13,010 human genomic promoter sequences aligned relative to the putative transcription start site (TSS). A limited number of 8-mers have peaks in their distribution (cluster), and most cluster within 100 bp of the TSS. The 156 DNA sequences exhibiting the greatest statistically significant clustering near the TSS can be placed into nine groups of related sequences. Each group is defined by a consensus sequence, and seven of these consensus sequences are known binding sites for the transcription factors (TFs) SP1, NF-Y, ETS, CREB, TBP, USF, and NRF-1. One sequence, which we named Clus1, is not a known TF binding site. The ninth sequence group is composed of the strand-specific Kozak sequence that clusters downstream of the TSS. An examination of the co-occurrence of these TF consensus sequences indicates a positive correlation for most of them except for sequences bound by TBP (the TATA box). Human mRNA expression data from 29 tissues indicate that the ETS, NRF-1, and Clus1 sequences that cluster are predominantly found in the promoters of housekeeping genes (e.g., ribosomal genes). In contrast, TATA is more abundant in the promoters of tissue-specific genes. This analysis identified eight DNA sequences in 5082 promoters that we suggest are important for regulating gene expression.

DOI: 10.1101/gr.1953904
PubMed: 15256515


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:15256515

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Clustering of DNA sequences in human promoters.</title>
<author>
<name sortKey="Fitzgerald, Peter C" sort="Fitzgerald, Peter C" uniqKey="Fitzgerald P" first="Peter C" last="Fitzgerald">Peter C. Fitzgerald</name>
<affiliation wicri:level="1">
<nlm:affiliation>Genome Analysis Unit, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Genome Analysis Unit, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892</wicri:regionArea>
<wicri:noRegion>Maryland 20892</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shlyakhtenko, Andrey" sort="Shlyakhtenko, Andrey" uniqKey="Shlyakhtenko A" first="Andrey" last="Shlyakhtenko">Andrey Shlyakhtenko</name>
</author>
<author>
<name sortKey="Mir, Alain A" sort="Mir, Alain A" uniqKey="Mir A" first="Alain A" last="Mir">Alain A. Mir</name>
</author>
<author>
<name sortKey="Vinson, Charles" sort="Vinson, Charles" uniqKey="Vinson C" first="Charles" last="Vinson">Charles Vinson</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2004">2004</date>
<idno type="RBID">pubmed:15256515</idno>
<idno type="pmid">15256515</idno>
<idno type="doi">10.1101/gr.1953904</idno>
<idno type="wicri:Area/PubMed/Corpus">002381</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002381</idno>
<idno type="wicri:Area/PubMed/Curation">002381</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002381</idno>
<idno type="wicri:Area/PubMed/Checkpoint">002280</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">002280</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Clustering of DNA sequences in human promoters.</title>
<author>
<name sortKey="Fitzgerald, Peter C" sort="Fitzgerald, Peter C" uniqKey="Fitzgerald P" first="Peter C" last="Fitzgerald">Peter C. Fitzgerald</name>
<affiliation wicri:level="1">
<nlm:affiliation>Genome Analysis Unit, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Genome Analysis Unit, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892</wicri:regionArea>
<wicri:noRegion>Maryland 20892</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shlyakhtenko, Andrey" sort="Shlyakhtenko, Andrey" uniqKey="Shlyakhtenko A" first="Andrey" last="Shlyakhtenko">Andrey Shlyakhtenko</name>
</author>
<author>
<name sortKey="Mir, Alain A" sort="Mir, Alain A" uniqKey="Mir A" first="Alain A" last="Mir">Alain A. Mir</name>
</author>
<author>
<name sortKey="Vinson, Charles" sort="Vinson, Charles" uniqKey="Vinson C" first="Charles" last="Vinson">Charles Vinson</name>
</author>
</analytic>
<series>
<title level="j">Genome research</title>
<idno type="ISSN">1088-9051</idno>
<imprint>
<date when="2004" type="published">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Base Sequence</term>
<term>Cluster Analysis</term>
<term>Computational Biology (methods)</term>
<term>Consensus Sequence</term>
<term>Humans</term>
<term>Models, Genetic</term>
<term>Molecular Sequence Data</term>
<term>Promoter Regions, Genetic</term>
<term>Transcription Initiation Site</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de regroupements</term>
<term>Biologie informatique ()</term>
<term>Données de séquences moléculaires</term>
<term>Humains</term>
<term>Modèles génétiques</term>
<term>Régions promotrices (génétique)</term>
<term>Site d'initiation de la transcription</term>
<term>Séquence consensus</term>
<term>Séquence nucléotidique</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Computational Biology</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Sequence</term>
<term>Cluster Analysis</term>
<term>Consensus Sequence</term>
<term>Humans</term>
<term>Models, Genetic</term>
<term>Molecular Sequence Data</term>
<term>Promoter Regions, Genetic</term>
<term>Transcription Initiation Site</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de regroupements</term>
<term>Biologie informatique</term>
<term>Données de séquences moléculaires</term>
<term>Humains</term>
<term>Modèles génétiques</term>
<term>Régions promotrices (génétique)</term>
<term>Site d'initiation de la transcription</term>
<term>Séquence consensus</term>
<term>Séquence nucléotidique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We have determined the distribution of each of the 65,536 DNA sequences that are eight bases long (8-mer) in a set of 13,010 human genomic promoter sequences aligned relative to the putative transcription start site (TSS). A limited number of 8-mers have peaks in their distribution (cluster), and most cluster within 100 bp of the TSS. The 156 DNA sequences exhibiting the greatest statistically significant clustering near the TSS can be placed into nine groups of related sequences. Each group is defined by a consensus sequence, and seven of these consensus sequences are known binding sites for the transcription factors (TFs) SP1, NF-Y, ETS, CREB, TBP, USF, and NRF-1. One sequence, which we named Clus1, is not a known TF binding site. The ninth sequence group is composed of the strand-specific Kozak sequence that clusters downstream of the TSS. An examination of the co-occurrence of these TF consensus sequences indicates a positive correlation for most of them except for sequences bound by TBP (the TATA box). Human mRNA expression data from 29 tissues indicate that the ETS, NRF-1, and Clus1 sequences that cluster are predominantly found in the promoters of housekeeping genes (e.g., ribosomal genes). In contrast, TATA is more abundant in the promoters of tissue-specific genes. This analysis identified eight DNA sequences in 5082 promoters that we suggest are important for regulating gene expression.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15256515</PMID>
<DateCompleted>
<Year>2004</Year>
<Month>09</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">1088-9051</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>14</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2004</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Genome research</Title>
<ISOAbbreviation>Genome Res.</ISOAbbreviation>
</Journal>
<ArticleTitle>Clustering of DNA sequences in human promoters.</ArticleTitle>
<Pagination>
<MedlinePgn>1562-74</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>We have determined the distribution of each of the 65,536 DNA sequences that are eight bases long (8-mer) in a set of 13,010 human genomic promoter sequences aligned relative to the putative transcription start site (TSS). A limited number of 8-mers have peaks in their distribution (cluster), and most cluster within 100 bp of the TSS. The 156 DNA sequences exhibiting the greatest statistically significant clustering near the TSS can be placed into nine groups of related sequences. Each group is defined by a consensus sequence, and seven of these consensus sequences are known binding sites for the transcription factors (TFs) SP1, NF-Y, ETS, CREB, TBP, USF, and NRF-1. One sequence, which we named Clus1, is not a known TF binding site. The ninth sequence group is composed of the strand-specific Kozak sequence that clusters downstream of the TSS. An examination of the co-occurrence of these TF consensus sequences indicates a positive correlation for most of them except for sequences bound by TBP (the TATA box). Human mRNA expression data from 29 tissues indicate that the ETS, NRF-1, and Clus1 sequences that cluster are predominantly found in the promoters of housekeeping genes (e.g., ribosomal genes). In contrast, TATA is more abundant in the promoters of tissue-specific genes. This analysis identified eight DNA sequences in 5082 promoters that we suggest are important for regulating gene expression.</AbstractText>
<CopyrightInformation>Copyright 2004 Cold Spring Harbor Laboratory Press ISSN</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>FitzGerald</LastName>
<ForeName>Peter C</ForeName>
<Initials>PC</Initials>
<AffiliationInfo>
<Affiliation>Genome Analysis Unit, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shlyakhtenko</LastName>
<ForeName>Andrey</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mir</LastName>
<ForeName>Alain A</ForeName>
<Initials>AA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Vinson</LastName>
<ForeName>Charles</ForeName>
<Initials>C</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2004</Year>
<Month>07</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Genome Res</MedlineTA>
<NlmUniqueID>9518021</NlmUniqueID>
<ISSNLinking>1088-9051</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="Y">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016000" MajorTopicYN="N">Cluster Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019295" MajorTopicYN="N">Computational Biology</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016384" MajorTopicYN="N">Consensus Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008957" MajorTopicYN="Y">Models, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011401" MajorTopicYN="Y">Promoter Regions, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D024363" MajorTopicYN="N">Transcription Initiation Site</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2004</Year>
<Month>7</Month>
<Day>17</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2004</Year>
<Month>9</Month>
<Day>24</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2004</Year>
<Month>7</Month>
<Day>17</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15256515</ArticleId>
<ArticleId IdType="doi">10.1101/gr.1953904</ArticleId>
<ArticleId IdType="pii">gr.1953904</ArticleId>
<ArticleId IdType="pmc">PMC509265</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Gene. 1999 Oct 18;239(1):15-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10571030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Novartis Found Symp. 2002;247:66-80; discussion 80-3, 84-90, 244-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12539950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2000 Jan 1;28(1):126-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10592200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2000 Jan;16(1):44-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10637631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2000 Jun;16(6):276-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10827456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2000 Jul;20(13):4754-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10848601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1999;68:821-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10872467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2000 Nov;10(11):1807-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11076865</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2001 Jan 1;29(1):137-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11125071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Feb 15;409(6822):860-921</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11237011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Biol Int. 2001;25(1):17-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11237405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2003 Feb;13(2):308-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12566409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2003 Apr;11(4):1101-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12718894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2002;3:8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11882250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1981;50:349-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6791577</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1985 Aug 29-Sep 4;316(6031):774-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4041012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1985 Nov;43(1):165-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4075392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1993 May 6;363(6424):38-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8479534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1993 Jun;7(6):1047-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8504929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1993 Oct 7;365(6446):512-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8413604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1992 Dec;6(12B):2502-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1340465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1210-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7906413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1994 Jul 25;22(14):2801-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8052536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1624-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7878029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1996 May 10;272(5263):830-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8629014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1996 Dec 5;182(1-2):13-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8982062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1997 Mar 20;1351(1-2):73-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9116046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 May 9;272(19):12793-800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9139739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Cancer Res. 1998;75:1-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9709806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2001 Aug;2(8):599-609</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11483993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2001 Nov;2(11):827-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11715049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 Jan 1;30(1):328-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11752328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 Mar 1;30(5):1240-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11861917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Apr 2;99(7):4465-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11904358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2002 Mar 6;286(1):81-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11943463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2002 Jun;12(6):996-1006</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12045153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2002 Sep;22(18):6321-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12192032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Jan 10;278(2):1336-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12401788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jan 1;31(1):374-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12520026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1999 Dec;19(12):8393-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10567564</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Mir, Alain A" sort="Mir, Alain A" uniqKey="Mir A" first="Alain A" last="Mir">Alain A. Mir</name>
<name sortKey="Shlyakhtenko, Andrey" sort="Shlyakhtenko, Andrey" uniqKey="Shlyakhtenko A" first="Andrey" last="Shlyakhtenko">Andrey Shlyakhtenko</name>
<name sortKey="Vinson, Charles" sort="Vinson, Charles" uniqKey="Vinson C" first="Charles" last="Vinson">Charles Vinson</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Fitzgerald, Peter C" sort="Fitzgerald, Peter C" uniqKey="Fitzgerald P" first="Peter C" last="Fitzgerald">Peter C. Fitzgerald</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002280 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 002280 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:15256515
   |texte=   Clustering of DNA sequences in human promoters.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:15256515" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021