Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Empirical establishment of oligonucleotide probe design criteria.

Identifieur interne : 002211 ( PubMed/Checkpoint ); précédent : 002210; suivant : 002212

Empirical establishment of oligonucleotide probe design criteria.

Auteurs : Zhili He [États-Unis] ; Liyou Wu ; Xingyuan Li ; Matthew W. Fields ; Jizhong Zhou

Source :

RBID : pubmed:16000786

Descripteurs français

English descriptors

Abstract

Criteria for the design of gene-specific and group-specific oligonucleotide probes were established experimentally via an oligonucleotide array that contained perfect match (PM) and mismatch probes (50-mers and 70-mers) based upon four genes. The effects of probe-target identity, continuous stretch, mismatch position, and hybridization free energy on specificity were tested. Little hybridization was observed at a probe-target identity of < or =85% for both 50-mer and 70-mer probes. PM signal intensities (33 to 48%) were detected at a probe-target identity of 94% for 50-mer oligonucleotides and 43 to 55% for 70-mer probes at a probe-target identity of 96%. When the effects of sequence identity and continuous stretch were considered independently, a stretch probe (>15 bases) contributed an additional 9% of the PM signal intensity compared to a nonstretch probe (< or =15 bases) at the same identity level. Cross-hybridization increased as the length of continuous stretch increased. A 35-base stretch for 50-mer probes or a 50-base stretch for 70-mer probes had approximately 55% of the PM signal. Little cross-hybridization was observed for probes with a minimal binding free energy greater than -30 kcal/mol for 50-mer probes or -40 kcal/mol for 70-mer probes. Based on the experimental results, a set of criteria are suggested for the design of gene-specific and group-specific oligonucleotide probes, and the experimentally established criteria should provide valuable information for new software and algorithms for microarray-based studies.

DOI: 10.1128/AEM.71.7.3753-3760.2005
PubMed: 16000786


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:16000786

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Empirical establishment of oligonucleotide probe design criteria.</title>
<author>
<name sortKey="He, Zhili" sort="He, Zhili" uniqKey="He Z" first="Zhili" last="He">Zhili He</name>
<affiliation wicri:level="2">
<nlm:affiliation>Environmental Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6038, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Environmental Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6038</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wu, Liyou" sort="Wu, Liyou" uniqKey="Wu L" first="Liyou" last="Wu">Liyou Wu</name>
</author>
<author>
<name sortKey="Li, Xingyuan" sort="Li, Xingyuan" uniqKey="Li X" first="Xingyuan" last="Li">Xingyuan Li</name>
</author>
<author>
<name sortKey="Fields, Matthew W" sort="Fields, Matthew W" uniqKey="Fields M" first="Matthew W" last="Fields">Matthew W. Fields</name>
</author>
<author>
<name sortKey="Zhou, Jizhong" sort="Zhou, Jizhong" uniqKey="Zhou J" first="Jizhong" last="Zhou">Jizhong Zhou</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2005">2005</date>
<idno type="RBID">pubmed:16000786</idno>
<idno type="pmid">16000786</idno>
<idno type="doi">10.1128/AEM.71.7.3753-3760.2005</idno>
<idno type="wicri:Area/PubMed/Corpus">002326</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002326</idno>
<idno type="wicri:Area/PubMed/Curation">002326</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002326</idno>
<idno type="wicri:Area/PubMed/Checkpoint">002211</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">002211</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Empirical establishment of oligonucleotide probe design criteria.</title>
<author>
<name sortKey="He, Zhili" sort="He, Zhili" uniqKey="He Z" first="Zhili" last="He">Zhili He</name>
<affiliation wicri:level="2">
<nlm:affiliation>Environmental Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6038, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Environmental Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6038</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wu, Liyou" sort="Wu, Liyou" uniqKey="Wu L" first="Liyou" last="Wu">Liyou Wu</name>
</author>
<author>
<name sortKey="Li, Xingyuan" sort="Li, Xingyuan" uniqKey="Li X" first="Xingyuan" last="Li">Xingyuan Li</name>
</author>
<author>
<name sortKey="Fields, Matthew W" sort="Fields, Matthew W" uniqKey="Fields M" first="Matthew W" last="Fields">Matthew W. Fields</name>
</author>
<author>
<name sortKey="Zhou, Jizhong" sort="Zhou, Jizhong" uniqKey="Zhou J" first="Jizhong" last="Zhou">Jizhong Zhou</name>
</author>
</analytic>
<series>
<title level="j">Applied and environmental microbiology</title>
<idno type="ISSN">0099-2240</idno>
<imprint>
<date when="2005" type="published">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Base Pair Mismatch</term>
<term>Nucleic Acid Hybridization</term>
<term>Oligonucleotide Array Sequence Analysis</term>
<term>Oligonucleotide Probes (genetics)</term>
<term>Research Design (standards)</term>
<term>Shewanella (genetics)</term>
<term>Species Specificity</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Hybridation d'acides nucléiques</term>
<term>Mésappariement de bases</term>
<term>Plan de recherche (normes)</term>
<term>Shewanella (génétique)</term>
<term>Sondes oligonucléotidiques (génétique)</term>
<term>Spécificité d'espèce</term>
<term>Séquençage par oligonucléotides en batterie</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Oligonucleotide Probes</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Shewanella</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Shewanella</term>
<term>Sondes oligonucléotidiques</term>
</keywords>
<keywords scheme="MESH" qualifier="normes" xml:lang="fr">
<term>Plan de recherche</term>
</keywords>
<keywords scheme="MESH" qualifier="standards" xml:lang="en">
<term>Research Design</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Pair Mismatch</term>
<term>Nucleic Acid Hybridization</term>
<term>Oligonucleotide Array Sequence Analysis</term>
<term>Species Specificity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Hybridation d'acides nucléiques</term>
<term>Mésappariement de bases</term>
<term>Spécificité d'espèce</term>
<term>Séquençage par oligonucléotides en batterie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Criteria for the design of gene-specific and group-specific oligonucleotide probes were established experimentally via an oligonucleotide array that contained perfect match (PM) and mismatch probes (50-mers and 70-mers) based upon four genes. The effects of probe-target identity, continuous stretch, mismatch position, and hybridization free energy on specificity were tested. Little hybridization was observed at a probe-target identity of < or =85% for both 50-mer and 70-mer probes. PM signal intensities (33 to 48%) were detected at a probe-target identity of 94% for 50-mer oligonucleotides and 43 to 55% for 70-mer probes at a probe-target identity of 96%. When the effects of sequence identity and continuous stretch were considered independently, a stretch probe (>15 bases) contributed an additional 9% of the PM signal intensity compared to a nonstretch probe (< or =15 bases) at the same identity level. Cross-hybridization increased as the length of continuous stretch increased. A 35-base stretch for 50-mer probes or a 50-base stretch for 70-mer probes had approximately 55% of the PM signal. Little cross-hybridization was observed for probes with a minimal binding free energy greater than -30 kcal/mol for 50-mer probes or -40 kcal/mol for 70-mer probes. Based on the experimental results, a set of criteria are suggested for the design of gene-specific and group-specific oligonucleotide probes, and the experimentally established criteria should provide valuable information for new software and algorithms for microarray-based studies.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16000786</PMID>
<DateCompleted>
<Year>2005</Year>
<Month>09</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0099-2240</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>71</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2005</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Applied and environmental microbiology</Title>
<ISOAbbreviation>Appl. Environ. Microbiol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Empirical establishment of oligonucleotide probe design criteria.</ArticleTitle>
<Pagination>
<MedlinePgn>3753-60</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Criteria for the design of gene-specific and group-specific oligonucleotide probes were established experimentally via an oligonucleotide array that contained perfect match (PM) and mismatch probes (50-mers and 70-mers) based upon four genes. The effects of probe-target identity, continuous stretch, mismatch position, and hybridization free energy on specificity were tested. Little hybridization was observed at a probe-target identity of < or =85% for both 50-mer and 70-mer probes. PM signal intensities (33 to 48%) were detected at a probe-target identity of 94% for 50-mer oligonucleotides and 43 to 55% for 70-mer probes at a probe-target identity of 96%. When the effects of sequence identity and continuous stretch were considered independently, a stretch probe (>15 bases) contributed an additional 9% of the PM signal intensity compared to a nonstretch probe (< or =15 bases) at the same identity level. Cross-hybridization increased as the length of continuous stretch increased. A 35-base stretch for 50-mer probes or a 50-base stretch for 70-mer probes had approximately 55% of the PM signal. Little cross-hybridization was observed for probes with a minimal binding free energy greater than -30 kcal/mol for 50-mer probes or -40 kcal/mol for 70-mer probes. Based on the experimental results, a set of criteria are suggested for the design of gene-specific and group-specific oligonucleotide probes, and the experimentally established criteria should provide valuable information for new software and algorithms for microarray-based studies.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>He</LastName>
<ForeName>Zhili</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Environmental Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6038, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Liyou</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Xingyuan</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Fields</LastName>
<ForeName>Matthew W</ForeName>
<Initials>MW</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhou</LastName>
<ForeName>Jizhong</ForeName>
<Initials>J</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D023362">Evaluation Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Appl Environ Microbiol</MedlineTA>
<NlmUniqueID>7605801</NlmUniqueID>
<ISSNLinking>0099-2240</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D015345">Oligonucleotide Probes</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020137" MajorTopicYN="N">Base Pair Mismatch</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009693" MajorTopicYN="N">Nucleic Acid Hybridization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020411" MajorTopicYN="N">Oligonucleotide Array Sequence Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015345" MajorTopicYN="N">Oligonucleotide Probes</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012107" MajorTopicYN="N">Research Design</DescriptorName>
<QualifierName UI="Q000592" MajorTopicYN="Y">standards</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020592" MajorTopicYN="N">Shewanella</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013045" MajorTopicYN="N">Species Specificity</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2005</Year>
<Month>7</Month>
<Day>8</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2005</Year>
<Month>9</Month>
<Day>15</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2005</Year>
<Month>7</Month>
<Day>8</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16000786</ArticleId>
<ArticleId IdType="pii">71/7/3753</ArticleId>
<ArticleId IdType="doi">10.1128/AEM.71.7.3753-3760.2005</ArticleId>
<ArticleId IdType="pmc">PMC1169010</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 1999 Mar 23;38(12):3468-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10090733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 1999 Jun;15(6):440-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10383469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1999 Oct 1;27(19):3821-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10481021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2000 Jul 7;102(1):109-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10929718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2000 Nov 15;28(22):4552-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11071945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Feb 15;409(6822):922-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11237012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharmacogenomics. 2000 May;1(2):169-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11256588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2001 Apr;19(4):342-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11283592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2002 Mar;18(3):486-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11934750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 Jun 1;30(11):e51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12034852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2002 Nov;18(11):1432-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12424113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2002 Dec;32 Suppl:474-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12454641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2003 Feb;69(2):1159-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12571043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):4191-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12651953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2003 May 1;19(7):796-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12724288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jun 15;31(12):3057-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12799432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jul 1;31(13):3491-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12824351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2003 Jun;6(3):288-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12831906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechniques. 2004 Apr;36(4):664-70, 672, 674-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15088384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2004 Jul;70(7):4303-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15240314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Oct 22;306(5696):630-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15499004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1991 Jul 2;30(26):6428-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1711369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1989 Oct;86(20):7706-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2479010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1996 Feb;62(2):316-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8593035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1996 Nov 15;24(22):4501-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8948641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Sep 1;25(17):3389-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9254694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1997 Aug 26;36(34):10581-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9265640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1997 Oct 24;278(5338):680-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9381177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 1997 Dec;15(13):1359-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9415887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1998 Feb 24;37(8):2170-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9485363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1998 Jun 1;26(11):2694-701</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9592156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 1996 Dec;14(13):1675-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9634850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1998 Jun 30;37(26):9435-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9649326</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Tennessee</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Fields, Matthew W" sort="Fields, Matthew W" uniqKey="Fields M" first="Matthew W" last="Fields">Matthew W. Fields</name>
<name sortKey="Li, Xingyuan" sort="Li, Xingyuan" uniqKey="Li X" first="Xingyuan" last="Li">Xingyuan Li</name>
<name sortKey="Wu, Liyou" sort="Wu, Liyou" uniqKey="Wu L" first="Liyou" last="Wu">Liyou Wu</name>
<name sortKey="Zhou, Jizhong" sort="Zhou, Jizhong" uniqKey="Zhou J" first="Jizhong" last="Zhou">Jizhong Zhou</name>
</noCountry>
<country name="États-Unis">
<region name="Tennessee">
<name sortKey="He, Zhili" sort="He, Zhili" uniqKey="He Z" first="Zhili" last="He">Zhili He</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002211 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 002211 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:16000786
   |texte=   Empirical establishment of oligonucleotide probe design criteria.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:16000786" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021