Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Thermal decomposition of multiply charged T-rich oligonucleotide anions in the gas phase. Influence of internal solvation on the arrhenius parameters for neutral base loss.

Identifieur interne : 002087 ( PubMed/Checkpoint ); précédent : 002086; suivant : 002088

Thermal decomposition of multiply charged T-rich oligonucleotide anions in the gas phase. Influence of internal solvation on the arrhenius parameters for neutral base loss.

Auteurs : Rambod Daneshfar [Canada] ; John S. Klassen

Source :

RBID : pubmed:16782356

Descripteurs français

English descriptors

Abstract

Arrhenius activation parameters (E(a), A) for the loss of neutral nucleobases from a series of T-rich, doubly and triply deprotonated 15- and 20-mer oligodeoxynucleotides (ODN) containing a single reactive base (X = A or C) with the sequence, XT14, XT19 and T19X, have been determined using the blackbody infrared radiative dissociation technique. The A-containing anions are significantly more reactive (> or =3000 times) than the C-containing ions over the temperature range investigated. Importantly, the Arrhenius parameters for the loss of AH exhibit a strong dependence on size of the ODN and, to some extent, the charge state; the Arrhenius parameters increase with size and charge (Ea = 29-39 kcal mol(-1), A = 10(15)-10(20) s(-1)). In contrast, the parameters for the loss of CH are much less sensitive to size (Ea = 35-39 kcal mol(-1), A = 10(14)-10(17) s(-1)). The results are consistent with a greater contribution from the internal solvation of the reactive base to the Arrhenius parameters for the loss of A, compared with C, from the 15- and 20-mers. To further probe differences in internal solvation of A and C, hydrogen/deuterium exchange was carried out on AT19(-3), T19A(-3), CT19(-3) and T19C(-3) using D2O as the exchange reagent. However, the H/D exchange results did not reveal any differences in internal solvation within the ODN anions. Arrhenius parameters for the dissociation of noncovalent complexes of T20(-3) and the neutral nucleobase AH or CH have also been determined. Differences in the parameters indicate differences in the nature of the intermolecular interactions. It is proposed that neutral A-T interactions (i.e., base-base), which originate in solution, dominate in the case of (T20 + AH)(-3), while charge solvation, involving CH and a deprotonated phosphate group, is present for (T20 + CH)(-3).

DOI: 10.1016/j.jasms.2006.05.002
PubMed: 16782356


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:16782356

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Thermal decomposition of multiply charged T-rich oligonucleotide anions in the gas phase. Influence of internal solvation on the arrhenius parameters for neutral base loss.</title>
<author>
<name sortKey="Daneshfar, Rambod" sort="Daneshfar, Rambod" uniqKey="Daneshfar R" first="Rambod" last="Daneshfar">Rambod Daneshfar</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Chemistry, University of Alberta, Edmonton, Alberta</wicri:regionArea>
<wicri:noRegion>Alberta</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Klassen, John S" sort="Klassen, John S" uniqKey="Klassen J" first="John S" last="Klassen">John S. Klassen</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2006">2006</date>
<idno type="RBID">pubmed:16782356</idno>
<idno type="pmid">16782356</idno>
<idno type="doi">10.1016/j.jasms.2006.05.002</idno>
<idno type="wicri:Area/PubMed/Corpus">002251</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002251</idno>
<idno type="wicri:Area/PubMed/Curation">002251</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002251</idno>
<idno type="wicri:Area/PubMed/Checkpoint">002087</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">002087</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Thermal decomposition of multiply charged T-rich oligonucleotide anions in the gas phase. Influence of internal solvation on the arrhenius parameters for neutral base loss.</title>
<author>
<name sortKey="Daneshfar, Rambod" sort="Daneshfar, Rambod" uniqKey="Daneshfar R" first="Rambod" last="Daneshfar">Rambod Daneshfar</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Chemistry, University of Alberta, Edmonton, Alberta</wicri:regionArea>
<wicri:noRegion>Alberta</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Klassen, John S" sort="Klassen, John S" uniqKey="Klassen J" first="John S" last="Klassen">John S. Klassen</name>
</author>
</analytic>
<series>
<title level="j">Journal of the American Society for Mass Spectrometry</title>
<idno type="ISSN">1044-0305</idno>
<imprint>
<date when="2006" type="published">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Base Sequence</term>
<term>Computer Simulation</term>
<term>Gases (chemistry)</term>
<term>Hot Temperature</term>
<term>Hydrogen-Ion Concentration</term>
<term>Kinetics</term>
<term>Models, Chemical</term>
<term>Molecular Sequence Data</term>
<term>Oligonucleotides (chemistry)</term>
<term>Phase Transition</term>
<term>Sequence Analysis, DNA (methods)</term>
<term>Solvents (chemistry)</term>
<term>Spectrometry, Mass, Electrospray Ionization (methods)</term>
<term>Spectroscopy, Fourier Transform Infrared (methods)</term>
<term>Static Electricity</term>
<term>Temperature</term>
<term>Thymidine (chemistry)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de séquence d'ADN ()</term>
<term>Cinétique</term>
<term>Concentration en ions d'hydrogène</term>
<term>Données de séquences moléculaires</term>
<term>Gaz ()</term>
<term>Modèles chimiques</term>
<term>Oligonucléotides ()</term>
<term>Simulation numérique</term>
<term>Solvants ()</term>
<term>Spectrométrie de masse ESI ()</term>
<term>Spectroscopie infrarouge à transformée de Fourier ()</term>
<term>Séquence nucléotidique</term>
<term>Température</term>
<term>Température élevée</term>
<term>Thymidine ()</term>
<term>Transition de phase</term>
<term>Électricité statique</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Gases</term>
<term>Oligonucleotides</term>
<term>Solvents</term>
<term>Thymidine</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Sequence Analysis, DNA</term>
<term>Spectrometry, Mass, Electrospray Ionization</term>
<term>Spectroscopy, Fourier Transform Infrared</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Sequence</term>
<term>Computer Simulation</term>
<term>Hot Temperature</term>
<term>Hydrogen-Ion Concentration</term>
<term>Kinetics</term>
<term>Models, Chemical</term>
<term>Molecular Sequence Data</term>
<term>Phase Transition</term>
<term>Static Electricity</term>
<term>Temperature</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de séquence d'ADN</term>
<term>Cinétique</term>
<term>Concentration en ions d'hydrogène</term>
<term>Données de séquences moléculaires</term>
<term>Gaz</term>
<term>Modèles chimiques</term>
<term>Oligonucléotides</term>
<term>Simulation numérique</term>
<term>Solvants</term>
<term>Spectrométrie de masse ESI</term>
<term>Spectroscopie infrarouge à transformée de Fourier</term>
<term>Séquence nucléotidique</term>
<term>Température</term>
<term>Température élevée</term>
<term>Thymidine</term>
<term>Transition de phase</term>
<term>Électricité statique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Arrhenius activation parameters (E(a), A) for the loss of neutral nucleobases from a series of T-rich, doubly and triply deprotonated 15- and 20-mer oligodeoxynucleotides (ODN) containing a single reactive base (X = A or C) with the sequence, XT14, XT19 and T19X, have been determined using the blackbody infrared radiative dissociation technique. The A-containing anions are significantly more reactive (> or =3000 times) than the C-containing ions over the temperature range investigated. Importantly, the Arrhenius parameters for the loss of AH exhibit a strong dependence on size of the ODN and, to some extent, the charge state; the Arrhenius parameters increase with size and charge (Ea = 29-39 kcal mol(-1), A = 10(15)-10(20) s(-1)). In contrast, the parameters for the loss of CH are much less sensitive to size (Ea = 35-39 kcal mol(-1), A = 10(14)-10(17) s(-1)). The results are consistent with a greater contribution from the internal solvation of the reactive base to the Arrhenius parameters for the loss of A, compared with C, from the 15- and 20-mers. To further probe differences in internal solvation of A and C, hydrogen/deuterium exchange was carried out on AT19(-3), T19A(-3), CT19(-3) and T19C(-3) using D2O as the exchange reagent. However, the H/D exchange results did not reveal any differences in internal solvation within the ODN anions. Arrhenius parameters for the dissociation of noncovalent complexes of T20(-3) and the neutral nucleobase AH or CH have also been determined. Differences in the parameters indicate differences in the nature of the intermolecular interactions. It is proposed that neutral A-T interactions (i.e., base-base), which originate in solution, dominate in the case of (T20 + AH)(-3), while charge solvation, involving CH and a deprotonated phosphate group, is present for (T20 + CH)(-3).</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16782356</PMID>
<DateCompleted>
<Year>2007</Year>
<Month>07</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">1044-0305</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>17</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2006</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Journal of the American Society for Mass Spectrometry</Title>
<ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation>
</Journal>
<ArticleTitle>Thermal decomposition of multiply charged T-rich oligonucleotide anions in the gas phase. Influence of internal solvation on the arrhenius parameters for neutral base loss.</ArticleTitle>
<Pagination>
<MedlinePgn>1229-38</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Arrhenius activation parameters (E(a), A) for the loss of neutral nucleobases from a series of T-rich, doubly and triply deprotonated 15- and 20-mer oligodeoxynucleotides (ODN) containing a single reactive base (X = A or C) with the sequence, XT14, XT19 and T19X, have been determined using the blackbody infrared radiative dissociation technique. The A-containing anions are significantly more reactive (> or =3000 times) than the C-containing ions over the temperature range investigated. Importantly, the Arrhenius parameters for the loss of AH exhibit a strong dependence on size of the ODN and, to some extent, the charge state; the Arrhenius parameters increase with size and charge (Ea = 29-39 kcal mol(-1), A = 10(15)-10(20) s(-1)). In contrast, the parameters for the loss of CH are much less sensitive to size (Ea = 35-39 kcal mol(-1), A = 10(14)-10(17) s(-1)). The results are consistent with a greater contribution from the internal solvation of the reactive base to the Arrhenius parameters for the loss of A, compared with C, from the 15- and 20-mers. To further probe differences in internal solvation of A and C, hydrogen/deuterium exchange was carried out on AT19(-3), T19A(-3), CT19(-3) and T19C(-3) using D2O as the exchange reagent. However, the H/D exchange results did not reveal any differences in internal solvation within the ODN anions. Arrhenius parameters for the dissociation of noncovalent complexes of T20(-3) and the neutral nucleobase AH or CH have also been determined. Differences in the parameters indicate differences in the nature of the intermolecular interactions. It is proposed that neutral A-T interactions (i.e., base-base), which originate in solution, dominate in the case of (T20 + AH)(-3), while charge solvation, involving CH and a deprotonated phosphate group, is present for (T20 + CH)(-3).</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Daneshfar</LastName>
<ForeName>Rambod</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Klassen</LastName>
<ForeName>John S</ForeName>
<Initials>JS</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2006</Year>
<Month>06</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Am Soc Mass Spectrom</MedlineTA>
<NlmUniqueID>9010412</NlmUniqueID>
<ISSNLinking>1044-0305</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005740">Gases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009841">Oligonucleotides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012997">Solvents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>VC2W18DGKR</RegistryNumber>
<NameOfSubstance UI="D013936">Thymidine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003198" MajorTopicYN="N">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005740" MajorTopicYN="N">Gases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006358" MajorTopicYN="N">Hot Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006863" MajorTopicYN="N">Hydrogen-Ion Concentration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008956" MajorTopicYN="Y">Models, Chemical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009841" MajorTopicYN="N">Oligonucleotides</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044367" MajorTopicYN="N">Phase Transition</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012997" MajorTopicYN="N">Solvents</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021241" MajorTopicYN="N">Spectrometry, Mass, Electrospray Ionization</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017550" MajorTopicYN="N">Spectroscopy, Fourier Transform Infrared</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055672" MajorTopicYN="N">Static Electricity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013696" MajorTopicYN="N">Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013936" MajorTopicYN="N">Thymidine</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2005</Year>
<Month>11</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2006</Year>
<Month>05</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2006</Year>
<Month>05</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2006</Year>
<Month>6</Month>
<Day>20</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2007</Year>
<Month>7</Month>
<Day>4</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2006</Year>
<Month>6</Month>
<Day>20</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16782356</ArticleId>
<ArticleId IdType="pii">S1044-0305(06)00480-6</ArticleId>
<ArticleId IdType="doi">10.1016/j.jasms.2006.05.002</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Chem Biol. 1995 Nov;2(11):709-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9383477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1973 Dec 4;12(25):5151-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4600811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2002 May 22;124(20):5902-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12010066</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Soc Mass Spectrom. 1999 Nov;10 (11):1095-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10536816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 1998 Sep 1;70(17):3566-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9737208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Soc Mass Spectrom. 2001 May;12(5):580-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11349956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Soc Mass Spectrom. 1995 Feb;6(2):102-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24222072</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Soc Mass Spectrom. 2001 Feb;12(2):193-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11212004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Soc Mass Spectrom. 2004 Jan;15(1):55-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14698556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1972 Jan 4;11(1):23-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5009434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):790-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8381533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Soc Mass Spectrom. 1998 Jul;9(7):683-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9879378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2001 Oct 1;73(19):4647-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11605843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mass Spectrom Rev. 2005 Mar-Apr;24(2):265-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15389854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Soc Mass Spectrom. 2002 Mar;13(3):195-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11908798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2003 Nov 12;125(45):13630-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14599179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1972 Sep 12;11(19):3610-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4626532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Soc Mass Spectrom. 1998 Nov;9(11):1117-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9794082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Soc Mass Spectrom. 1992 Jan;3(1):60-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24242838</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Klassen, John S" sort="Klassen, John S" uniqKey="Klassen J" first="John S" last="Klassen">John S. Klassen</name>
</noCountry>
<country name="Canada">
<noRegion>
<name sortKey="Daneshfar, Rambod" sort="Daneshfar, Rambod" uniqKey="Daneshfar R" first="Rambod" last="Daneshfar">Rambod Daneshfar</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002087 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 002087 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:16782356
   |texte=   Thermal decomposition of multiply charged T-rich oligonucleotide anions in the gas phase. Influence of internal solvation on the arrhenius parameters for neutral base loss.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:16782356" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021