Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A computational study of expanded heterocyclic nucleosides in DNA.

Identifieur interne : 002020 ( PubMed/Checkpoint ); précédent : 002019; suivant : 002021

A computational study of expanded heterocyclic nucleosides in DNA.

Auteurs : Peter I. O'Daniel [États-Unis] ; Malcolm Jefferson ; Olaf Wiest ; Katherine L. Seley-Radtke

Source :

RBID : pubmed:18808194

Descripteurs français

English descriptors

Abstract

The first molecular dynamics study of a series of heterospacer-expanded tricyclic bases in DNA using modified force field parameters in AMBER is detailed. The expanded purine nucleoside monomers have been designed to probe the effects of a heteroaromatic spacer ring on the structure, function, and dynamics of the DNA helix. The heterobase scaffold has been expanded with a furan, pyrrole, or thiophene spacer ring. This structural modification increases the polarizability of the bases and provides an additional hydrogen bond donor with the amine hydrogen of the pyrrole ring or hydrogen bond acceptor with the furan or thiophene ring free electron pairs. The polarizability of the expanded bases were determined by AM1 calculations and the results of the MD simulations of 20-mers predict that the modified curvature of the expanded base leads to a much larger major groove, while the effect on the minor groove is negligible. Overall, the structure resembles A-DNA. MD simulations of 10-mers suggest that the balance between base pairing vs. base stacking and intercalation can be shifted towards the latter due to the increased surface area and polarizability of the expanded bases.

DOI: 10.1080/07391102.2008.10507243
PubMed: 18808194


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:18808194

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A computational study of expanded heterocyclic nucleosides in DNA.</title>
<author>
<name sortKey="O Daniel, Peter I" sort="O Daniel, Peter I" uniqKey="O Daniel P" first="Peter I" last="O'Daniel">Peter I. O'Daniel</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250</wicri:regionArea>
<orgName type="university">Université du Maryland</orgName>
<placeName>
<settlement type="city">College Park (Maryland)</settlement>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jefferson, Malcolm" sort="Jefferson, Malcolm" uniqKey="Jefferson M" first="Malcolm" last="Jefferson">Malcolm Jefferson</name>
</author>
<author>
<name sortKey="Wiest, Olaf" sort="Wiest, Olaf" uniqKey="Wiest O" first="Olaf" last="Wiest">Olaf Wiest</name>
</author>
<author>
<name sortKey="Seley Radtke, Katherine L" sort="Seley Radtke, Katherine L" uniqKey="Seley Radtke K" first="Katherine L" last="Seley-Radtke">Katherine L. Seley-Radtke</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="RBID">pubmed:18808194</idno>
<idno type="pmid">18808194</idno>
<idno type="doi">10.1080/07391102.2008.10507243</idno>
<idno type="wicri:Area/PubMed/Corpus">002076</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002076</idno>
<idno type="wicri:Area/PubMed/Curation">002076</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002076</idno>
<idno type="wicri:Area/PubMed/Checkpoint">002020</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">002020</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A computational study of expanded heterocyclic nucleosides in DNA.</title>
<author>
<name sortKey="O Daniel, Peter I" sort="O Daniel, Peter I" uniqKey="O Daniel P" first="Peter I" last="O'Daniel">Peter I. O'Daniel</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250</wicri:regionArea>
<orgName type="university">Université du Maryland</orgName>
<placeName>
<settlement type="city">College Park (Maryland)</settlement>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jefferson, Malcolm" sort="Jefferson, Malcolm" uniqKey="Jefferson M" first="Malcolm" last="Jefferson">Malcolm Jefferson</name>
</author>
<author>
<name sortKey="Wiest, Olaf" sort="Wiest, Olaf" uniqKey="Wiest O" first="Olaf" last="Wiest">Olaf Wiest</name>
</author>
<author>
<name sortKey="Seley Radtke, Katherine L" sort="Seley Radtke, Katherine L" uniqKey="Seley Radtke K" first="Katherine L" last="Seley-Radtke">Katherine L. Seley-Radtke</name>
</author>
</analytic>
<series>
<title level="j">Journal of biomolecular structure & dynamics</title>
<idno type="ISSN">0739-1102</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Computer Simulation</term>
<term>DNA (chemistry)</term>
<term>Models, Molecular</term>
<term>Molecular Conformation</term>
<term>Molecular Structure</term>
<term>Purine Nucleosides (chemistry)</term>
<term>Static Electricity</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN ()</term>
<term>Conformation moléculaire</term>
<term>Modèles moléculaires</term>
<term>Nucléoside purique ()</term>
<term>Simulation numérique</term>
<term>Structure moléculaire</term>
<term>Électricité statique</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>DNA</term>
<term>Purine Nucleosides</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Computer Simulation</term>
<term>Models, Molecular</term>
<term>Molecular Conformation</term>
<term>Molecular Structure</term>
<term>Static Electricity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>ADN</term>
<term>Conformation moléculaire</term>
<term>Modèles moléculaires</term>
<term>Nucléoside purique</term>
<term>Simulation numérique</term>
<term>Structure moléculaire</term>
<term>Électricité statique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The first molecular dynamics study of a series of heterospacer-expanded tricyclic bases in DNA using modified force field parameters in AMBER is detailed. The expanded purine nucleoside monomers have been designed to probe the effects of a heteroaromatic spacer ring on the structure, function, and dynamics of the DNA helix. The heterobase scaffold has been expanded with a furan, pyrrole, or thiophene spacer ring. This structural modification increases the polarizability of the bases and provides an additional hydrogen bond donor with the amine hydrogen of the pyrrole ring or hydrogen bond acceptor with the furan or thiophene ring free electron pairs. The polarizability of the expanded bases were determined by AM1 calculations and the results of the MD simulations of 20-mers predict that the modified curvature of the expanded base leads to a much larger major groove, while the effect on the minor groove is negligible. Overall, the structure resembles A-DNA. MD simulations of 10-mers suggest that the balance between base pairing vs. base stacking and intercalation can be shifted towards the latter due to the increased surface area and polarizability of the expanded bases.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18808194</PMID>
<DateCompleted>
<Year>2008</Year>
<Month>12</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>01</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0739-1102</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>26</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2008</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Journal of biomolecular structure & dynamics</Title>
<ISOAbbreviation>J. Biomol. Struct. Dyn.</ISOAbbreviation>
</Journal>
<ArticleTitle>A computational study of expanded heterocyclic nucleosides in DNA.</ArticleTitle>
<Pagination>
<MedlinePgn>283-92</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The first molecular dynamics study of a series of heterospacer-expanded tricyclic bases in DNA using modified force field parameters in AMBER is detailed. The expanded purine nucleoside monomers have been designed to probe the effects of a heteroaromatic spacer ring on the structure, function, and dynamics of the DNA helix. The heterobase scaffold has been expanded with a furan, pyrrole, or thiophene spacer ring. This structural modification increases the polarizability of the bases and provides an additional hydrogen bond donor with the amine hydrogen of the pyrrole ring or hydrogen bond acceptor with the furan or thiophene ring free electron pairs. The polarizability of the expanded bases were determined by AM1 calculations and the results of the MD simulations of 20-mers predict that the modified curvature of the expanded base leads to a much larger major groove, while the effect on the minor groove is negligible. Overall, the structure resembles A-DNA. MD simulations of 10-mers suggest that the balance between base pairing vs. base stacking and intercalation can be shifted towards the latter due to the increased surface area and polarizability of the expanded bases.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>O'Daniel</LastName>
<ForeName>Peter I</ForeName>
<Initials>PI</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jefferson</LastName>
<ForeName>Malcolm</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wiest</LastName>
<ForeName>Olaf</ForeName>
<Initials>O</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Seley-Radtke</LastName>
<ForeName>Katherine L</ForeName>
<Initials>KL</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM073645-03</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM 073645-01</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM073645-02</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM073645-01</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM073645</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM073645-04</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Biomol Struct Dyn</MedlineTA>
<NlmUniqueID>8404176</NlmUniqueID>
<ISSNLinking>0739-1102</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011684">Purine Nucleosides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9007-49-2</RegistryNumber>
<NameOfSubstance UI="D004247">DNA</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D003198" MajorTopicYN="N">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004247" MajorTopicYN="N">DNA</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008968" MajorTopicYN="Y">Molecular Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015394" MajorTopicYN="N">Molecular Structure</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011684" MajorTopicYN="N">Purine Nucleosides</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055672" MajorTopicYN="N">Static Electricity</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>9</Month>
<Day>24</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>12</Month>
<Day>23</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>9</Month>
<Day>24</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18808194</ArticleId>
<ArticleId IdType="pii">d=3031&c=4271&p=16859&do=detail</ArticleId>
<ArticleId IdType="pmc">PMC2593457</ArticleId>
<ArticleId IdType="mid">NIHMS79764</ArticleId>
<ArticleId IdType="doi">10.1080/07391102.2008.10507243</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 1999 Jul 30;290(5):967-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10438596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Aided Mol Des. 2000 Feb;14(2):123-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10721501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2000 May 1;28(9):1929-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10756193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2000 Mar;39(6):990-1009</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10760910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biophys Biomol Struct. 2001;30:1-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11340050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioorg Med Chem. 2001 Sep;9(9):2215-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11553460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2002 Sep 4;124(35):10367-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12197739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):15965-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12456887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2003 Apr 11;42(14):1655-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12698469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2003 May 21;125(20):6134-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12785844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2003 Aug 13;125(32):9638-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12904030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2003 Aug 20;125(33):9970-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12914460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Sep 1;31(17):5108-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12930962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2003 Dec 15;42(48):5973-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14679546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Org Chem. 2004 Jan 9;69(1):195-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14703398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2004 Feb 4;126(4):1102-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14746479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Org Biomol Chem. 2004 Apr 21;2(8):1194-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15064798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2004 May 7;14(3):355-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15125838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chembiochem. 2004 Jun 7;5(6):765-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15174157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2004 Jun 9;126(22):6900-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15174859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2004 Oct 29;343(4):879-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15476807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2004 Nov 10;126(44):14642-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15521784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Org Chem. 2005 Jan 21;70(2):639-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15651812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Org Chem. 2005 Mar 18;70(6):2048-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15760186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 2005 Nov 10;109(44):21135-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16853737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acc Chem Res. 2007 Feb;40(2):141-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17309194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 2007 Mar 22;111(11):2999-3009</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17388411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Chem Chem Phys. 2008 Mar 7;10(9):1229-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18292856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 1998;120(24):6191-6192</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20852721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2000 Feb 10;122(10):2213-2222</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20865137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2000 Jul 26;122(29):6841-6847</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20882115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 1996 Aug 28;118(34):8182-8183</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20882117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Theory Comput. 2007 Nov;3(6):2301-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26636221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biopolymers. 1985 Jan;24(1):9-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3886035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1984 Aug 14;23(17):3868-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6487584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1993 Mar 9;32(9):2177-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8443159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol. 1995 Apr;2(4):213-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9383423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1998 Apr 15;26(8):1906-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9518483</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Maryland</li>
</region>
<settlement>
<li>College Park (Maryland)</li>
</settlement>
<orgName>
<li>Université du Maryland</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Jefferson, Malcolm" sort="Jefferson, Malcolm" uniqKey="Jefferson M" first="Malcolm" last="Jefferson">Malcolm Jefferson</name>
<name sortKey="Seley Radtke, Katherine L" sort="Seley Radtke, Katherine L" uniqKey="Seley Radtke K" first="Katherine L" last="Seley-Radtke">Katherine L. Seley-Radtke</name>
<name sortKey="Wiest, Olaf" sort="Wiest, Olaf" uniqKey="Wiest O" first="Olaf" last="Wiest">Olaf Wiest</name>
</noCountry>
<country name="États-Unis">
<region name="Maryland">
<name sortKey="O Daniel, Peter I" sort="O Daniel, Peter I" uniqKey="O Daniel P" first="Peter I" last="O'Daniel">Peter I. O'Daniel</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002020 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 002020 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:18808194
   |texte=   A computational study of expanded heterocyclic nucleosides in DNA.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:18808194" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021