Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Quantitative characterization of the large-scale association of ErbB1 and ErbB2 by flow cytometric homo-FRET measurements.

Identifieur interne : 001F65 ( PubMed/Checkpoint ); précédent : 001F64; suivant : 001F66

Quantitative characterization of the large-scale association of ErbB1 and ErbB2 by flow cytometric homo-FRET measurements.

Auteurs : Agnes Szab [Hongrie] ; Gábor Horváth ; János Szöllosi ; Peter Nagy

Source :

RBID : pubmed:18487307

Descripteurs français

English descriptors

Abstract

The association of receptor tyrosine kinases is a key step in the initiation of growth factor-mediated signaling. Although the ligand-induced dimerization of inactive, monomeric receptors was the central dogma of receptor tyrosine kinase activation for decades, the existence of larger oligomers is now accepted. Both homoassociations and heteroassociations are of extreme importance in the epidermal growth factor (EGF) receptor family, leading to diverse and robust signaling. We present a statistically reliable, flow-cytometric homo-fluorescence resonance energy transfer method for the quantitative characterization of large-scale receptor clusters. We assumed that a fraction of a certain protein species is monomeric, whereas the rest are present in homoclusters of N-mers. We measured fluorescence anisotropy as a function of the saturation of fluorescent antibody binding, and fitted the model to the anisotropy data yielding the fraction of monomers and the cluster size. We found that ErbB2 formed larger homoclusters than ErbB1. Stimulation with EGF and heregulin led to a decrease in ErbB2 homocluster size, whereas ErbB1 homoclusters became larger after EGF stimulation. The activation level of ErbB2 was inversely proportional to its homocluster size. We conclude that homoclusters of ErbB1 and ErbB2 behave in a fundamentally different way. Whereas huge ErbB2 clusters serve as a reservoir of inactive coreceptors and dissociate upon stimulation, small ErbB1 homoclusters form higher-order oligomers after ligand binding.

DOI: 10.1529/biophysj.108.133371
PubMed: 18487307


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:18487307

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Quantitative characterization of the large-scale association of ErbB1 and ErbB2 by flow cytometric homo-FRET measurements.</title>
<author>
<name sortKey="Szab, Agnes" sort="Szab, Agnes" uniqKey="Szab A" first="Agnes" last="Szab">Agnes Szab</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biophysics and Cell Biology, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary.</nlm:affiliation>
<country xml:lang="fr">Hongrie</country>
<wicri:regionArea>Department of Biophysics and Cell Biology, Research Center for Molecular Medicine, University of Debrecen, Debrecen</wicri:regionArea>
<wicri:noRegion>Debrecen</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Horvath, Gabor" sort="Horvath, Gabor" uniqKey="Horvath G" first="Gábor" last="Horváth">Gábor Horváth</name>
</author>
<author>
<name sortKey="Szollosi, Janos" sort="Szollosi, Janos" uniqKey="Szollosi J" first="János" last="Szöllosi">János Szöllosi</name>
</author>
<author>
<name sortKey="Nagy, Peter" sort="Nagy, Peter" uniqKey="Nagy P" first="Peter" last="Nagy">Peter Nagy</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="RBID">pubmed:18487307</idno>
<idno type="pmid">18487307</idno>
<idno type="doi">10.1529/biophysj.108.133371</idno>
<idno type="wicri:Area/PubMed/Corpus">002110</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002110</idno>
<idno type="wicri:Area/PubMed/Curation">002110</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002110</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001F65</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001F65</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Quantitative characterization of the large-scale association of ErbB1 and ErbB2 by flow cytometric homo-FRET measurements.</title>
<author>
<name sortKey="Szab, Agnes" sort="Szab, Agnes" uniqKey="Szab A" first="Agnes" last="Szab">Agnes Szab</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biophysics and Cell Biology, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary.</nlm:affiliation>
<country xml:lang="fr">Hongrie</country>
<wicri:regionArea>Department of Biophysics and Cell Biology, Research Center for Molecular Medicine, University of Debrecen, Debrecen</wicri:regionArea>
<wicri:noRegion>Debrecen</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Horvath, Gabor" sort="Horvath, Gabor" uniqKey="Horvath G" first="Gábor" last="Horváth">Gábor Horváth</name>
</author>
<author>
<name sortKey="Szollosi, Janos" sort="Szollosi, Janos" uniqKey="Szollosi J" first="János" last="Szöllosi">János Szöllosi</name>
</author>
<author>
<name sortKey="Nagy, Peter" sort="Nagy, Peter" uniqKey="Nagy P" first="Peter" last="Nagy">Peter Nagy</name>
</author>
</analytic>
<series>
<title level="j">Biophysical journal</title>
<idno type="eISSN">1542-0086</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptor Proteins, Signal Transducing (metabolism)</term>
<term>Cell Line, Tumor</term>
<term>ErbB Receptors (metabolism)</term>
<term>Flow Cytometry (methods)</term>
<term>Fluorescence Resonance Energy Transfer (methods)</term>
<term>Humans</term>
<term>Neoplasms (metabolism)</term>
<term>Protein Interaction Mapping (methods)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Cartographie d'interactions entre protéines ()</term>
<term>Cytométrie en flux ()</term>
<term>Humains</term>
<term>Lignée cellulaire tumorale</term>
<term>Protéines adaptatrices de la transduction du signal (métabolisme)</term>
<term>Récepteurs ErbB (métabolisme)</term>
<term>Transfert d'énergie par résonance de fluorescence ()</term>
<term>Tumeurs (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Adaptor Proteins, Signal Transducing</term>
<term>ErbB Receptors</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Neoplasms</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Flow Cytometry</term>
<term>Fluorescence Resonance Energy Transfer</term>
<term>Protein Interaction Mapping</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Protéines adaptatrices de la transduction du signal</term>
<term>Récepteurs ErbB</term>
<term>Tumeurs</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cell Line, Tumor</term>
<term>Humans</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cartographie d'interactions entre protéines</term>
<term>Cytométrie en flux</term>
<term>Humains</term>
<term>Lignée cellulaire tumorale</term>
<term>Transfert d'énergie par résonance de fluorescence</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The association of receptor tyrosine kinases is a key step in the initiation of growth factor-mediated signaling. Although the ligand-induced dimerization of inactive, monomeric receptors was the central dogma of receptor tyrosine kinase activation for decades, the existence of larger oligomers is now accepted. Both homoassociations and heteroassociations are of extreme importance in the epidermal growth factor (EGF) receptor family, leading to diverse and robust signaling. We present a statistically reliable, flow-cytometric homo-fluorescence resonance energy transfer method for the quantitative characterization of large-scale receptor clusters. We assumed that a fraction of a certain protein species is monomeric, whereas the rest are present in homoclusters of N-mers. We measured fluorescence anisotropy as a function of the saturation of fluorescent antibody binding, and fitted the model to the anisotropy data yielding the fraction of monomers and the cluster size. We found that ErbB2 formed larger homoclusters than ErbB1. Stimulation with EGF and heregulin led to a decrease in ErbB2 homocluster size, whereas ErbB1 homoclusters became larger after EGF stimulation. The activation level of ErbB2 was inversely proportional to its homocluster size. We conclude that homoclusters of ErbB1 and ErbB2 behave in a fundamentally different way. Whereas huge ErbB2 clusters serve as a reservoir of inactive coreceptors and dissociate upon stimulation, small ErbB1 homoclusters form higher-order oligomers after ligand binding.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18487307</PMID>
<DateCompleted>
<Year>2008</Year>
<Month>08</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>08</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1542-0086</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>95</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2008</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Biophysical journal</Title>
<ISOAbbreviation>Biophys. J.</ISOAbbreviation>
</Journal>
<ArticleTitle>Quantitative characterization of the large-scale association of ErbB1 and ErbB2 by flow cytometric homo-FRET measurements.</ArticleTitle>
<Pagination>
<MedlinePgn>2086-96</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1529/biophysj.108.133371</ELocationID>
<Abstract>
<AbstractText>The association of receptor tyrosine kinases is a key step in the initiation of growth factor-mediated signaling. Although the ligand-induced dimerization of inactive, monomeric receptors was the central dogma of receptor tyrosine kinase activation for decades, the existence of larger oligomers is now accepted. Both homoassociations and heteroassociations are of extreme importance in the epidermal growth factor (EGF) receptor family, leading to diverse and robust signaling. We present a statistically reliable, flow-cytometric homo-fluorescence resonance energy transfer method for the quantitative characterization of large-scale receptor clusters. We assumed that a fraction of a certain protein species is monomeric, whereas the rest are present in homoclusters of N-mers. We measured fluorescence anisotropy as a function of the saturation of fluorescent antibody binding, and fitted the model to the anisotropy data yielding the fraction of monomers and the cluster size. We found that ErbB2 formed larger homoclusters than ErbB1. Stimulation with EGF and heregulin led to a decrease in ErbB2 homocluster size, whereas ErbB1 homoclusters became larger after EGF stimulation. The activation level of ErbB2 was inversely proportional to its homocluster size. We conclude that homoclusters of ErbB1 and ErbB2 behave in a fundamentally different way. Whereas huge ErbB2 clusters serve as a reservoir of inactive coreceptors and dissociate upon stimulation, small ErbB1 homoclusters form higher-order oligomers after ligand binding.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Szabó</LastName>
<ForeName>Agnes</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Biophysics and Cell Biology, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Horváth</LastName>
<ForeName>Gábor</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Szöllosi</LastName>
<ForeName>János</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Nagy</LastName>
<ForeName>Peter</ForeName>
<Initials>P</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2008</Year>
<Month>05</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Biophys J</MedlineTA>
<NlmUniqueID>0370626</NlmUniqueID>
<ISSNLinking>0006-3495</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D048868">Adaptor Proteins, Signal Transducing</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C413364">ERBIN protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.10.1</RegistryNumber>
<NameOfSubstance UI="D066246">ErbB Receptors</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D048868" MajorTopicYN="N">Adaptor Proteins, Signal Transducing</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045744" MajorTopicYN="N">Cell Line, Tumor</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D066246" MajorTopicYN="N">ErbB Receptors</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005434" MajorTopicYN="N">Flow Cytometry</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D031541" MajorTopicYN="N">Fluorescence Resonance Energy Transfer</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009369" MajorTopicYN="N">Neoplasms</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025941" MajorTopicYN="N">Protein Interaction Mapping</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>5</Month>
<Day>20</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>8</Month>
<Day>30</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>5</Month>
<Day>20</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18487307</ArticleId>
<ArticleId IdType="pii">S0006-3495(08)70166-8</ArticleId>
<ArticleId IdType="doi">10.1529/biophysj.108.133371</ArticleId>
<ArticleId IdType="pmc">PMC2483738</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 1979 Apr 26;278(5707):835-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">220539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2005 Dec 30;1746(3):221-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16274754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1989;172:471-513</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2747540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 Feb 14;92(4):1122-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7862646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1995 Jun;129(6):1543-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7790353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pathol Oncol Res. 1999;5(4):255-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10607920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2000 Mar;2(3):168-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10707088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2000 Jul 25;39(29):8503-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10913256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cytometry. 2000 Aug 1;40(4):292-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10918280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2001 Feb;2(2):127-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11252954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2001 Aug 31;311(5):1011-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11531336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cytometry. 2002 Jul 1;48(3):124-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12116358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Sep 20;110(6):775-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12297050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Cell Res. 2003 Mar 10;284(1):54-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12648465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Cell Res. 2003 Apr 15;285(1):39-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12681285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Jul 22;100(15):8933-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12853564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2003 Oct;31(Pt 5):1020-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14505472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2003 Nov;21(11):1387-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14595367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2004 Feb;22(2):198-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14704683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2004 Feb 20;116(4):577-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14980224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Cell. 2004 Apr;5(4):317-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15093539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Struct Biol. 2004 Jul;147(1):62-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15109606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comput Methods Programs Biomed. 2004 Sep;75(3):201-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15265619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 1995 Oct;69(4):1569-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8534828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1996 Oct;16(10):5276-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8816440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cytometry. 1998 Jun 1;32(2):120-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9627225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1998 Aug 20;394(6695):798-801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9723621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Mar 26;274(13):8865-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10085130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 1999 Jun;112 ( Pt 11):1733-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10318765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Mar 4;280(9):8238-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15611073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 May 13;280(19):18631-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15757907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cytometry A. 2005 Jun;65(2):148-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15825180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2006 Jul;7(7):505-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16829981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Dec 12;103(50):18992-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17146050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2007 May 1;92(9):3098-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17416632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2007 Apr 17;46(15):4589-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17381163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2007 Jul 15;93(2):684-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17468161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2007 Aug 15;120(Pt 16):2763-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17652160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2008 Feb 1;94(3):803-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17890389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur Biophys J. 2008 Apr;37(4):469-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18043914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2005 Jun 30;1744(2):176-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15950751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Lett. 2005 Sep 28;227(2):201-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16112423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Aug 26;280(34):30392-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15994331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1987 Jul 10;237(4811):178-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2885917</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Hongrie</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Horvath, Gabor" sort="Horvath, Gabor" uniqKey="Horvath G" first="Gábor" last="Horváth">Gábor Horváth</name>
<name sortKey="Nagy, Peter" sort="Nagy, Peter" uniqKey="Nagy P" first="Peter" last="Nagy">Peter Nagy</name>
<name sortKey="Szollosi, Janos" sort="Szollosi, Janos" uniqKey="Szollosi J" first="János" last="Szöllosi">János Szöllosi</name>
</noCountry>
<country name="Hongrie">
<noRegion>
<name sortKey="Szab, Agnes" sort="Szab, Agnes" uniqKey="Szab A" first="Agnes" last="Szab">Agnes Szab</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001F65 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 001F65 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:18487307
   |texte=   Quantitative characterization of the large-scale association of ErbB1 and ErbB2 by flow cytometric homo-FRET measurements.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:18487307" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021