Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The disruptive positions in human G-quadruplex motifs are less polymorphic and more conserved than their neutral counterparts.

Identifieur interne : 001E78 ( PubMed/Checkpoint ); précédent : 001E77; suivant : 001E79

The disruptive positions in human G-quadruplex motifs are less polymorphic and more conserved than their neutral counterparts.

Auteurs : Sigve Nakken [Norvège] ; Torbj Rn Rognes ; Eivind Hovig

Source :

RBID : pubmed:19617376

Descripteurs français

English descriptors

Abstract

Specific guanine-rich sequence motifs in the human genome have considerable potential to form four-stranded structures known as G-quadruplexes or G4 DNA. The enrichment of these motifs in key chromosomal regions has suggested a functional role for the G-quadruplex structure in genomic regulation. In this work, we have examined the spectrum of nucleotide substitutions in G4 motifs, and related this spectrum to G4 prevalence. Data collected from the large repository of human SNPs indicates that the core feature of G-quadruplex motifs, 5'-GGG-3', exhibits specific mutational patterns that preserve the potential for G4 formation. In particular, we find a genome-wide pattern in which sites that disrupt the guanine triplets are more conserved and less polymorphic than their neutral counterparts. This also holds when considering non-CpG sites only. However, the low level of polymorphisms in guanine tracts is not only confined to G4 motifs. A complete mapping of DNA three-mers at guanine polymorphisms indicated that short guanine tracts are the most under-represented sequence context at polymorphic sites. Furthermore, we provide evidence for a strand bias upstream of human genes. Here, a significantly lower rate of G4-disruptive SNPs on the non-template strand supports a higher relative influence of G4 formation on this strand during transcription.

DOI: 10.1093/nar/gkp590
PubMed: 19617376


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:19617376

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The disruptive positions in human G-quadruplex motifs are less polymorphic and more conserved than their neutral counterparts.</title>
<author>
<name sortKey="Nakken, Sigve" sort="Nakken, Sigve" uniqKey="Nakken S" first="Sigve" last="Nakken">Sigve Nakken</name>
<affiliation wicri:level="3">
<nlm:affiliation>Centre for Molecular Biology and Neuroscience, Institute of Medical Microbiology, Oslo University Hospital, Rikshospitalet, NO-0027, Oslo, Norway. sigve.nakken@medisin.uio.no</nlm:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>Centre for Molecular Biology and Neuroscience, Institute of Medical Microbiology, Oslo University Hospital, Rikshospitalet, NO-0027, Oslo</wicri:regionArea>
<placeName>
<settlement type="city">Oslo</settlement>
<region nuts="2">Østlandet</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rognes, Torbj Rn" sort="Rognes, Torbj Rn" uniqKey="Rognes T" first="Torbj Rn" last="Rognes">Torbj Rn Rognes</name>
</author>
<author>
<name sortKey="Hovig, Eivind" sort="Hovig, Eivind" uniqKey="Hovig E" first="Eivind" last="Hovig">Eivind Hovig</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19617376</idno>
<idno type="pmid">19617376</idno>
<idno type="doi">10.1093/nar/gkp590</idno>
<idno type="wicri:Area/PubMed/Corpus">002003</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002003</idno>
<idno type="wicri:Area/PubMed/Curation">002003</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002003</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001E78</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001E78</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The disruptive positions in human G-quadruplex motifs are less polymorphic and more conserved than their neutral counterparts.</title>
<author>
<name sortKey="Nakken, Sigve" sort="Nakken, Sigve" uniqKey="Nakken S" first="Sigve" last="Nakken">Sigve Nakken</name>
<affiliation wicri:level="3">
<nlm:affiliation>Centre for Molecular Biology and Neuroscience, Institute of Medical Microbiology, Oslo University Hospital, Rikshospitalet, NO-0027, Oslo, Norway. sigve.nakken@medisin.uio.no</nlm:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>Centre for Molecular Biology and Neuroscience, Institute of Medical Microbiology, Oslo University Hospital, Rikshospitalet, NO-0027, Oslo</wicri:regionArea>
<placeName>
<settlement type="city">Oslo</settlement>
<region nuts="2">Østlandet</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rognes, Torbj Rn" sort="Rognes, Torbj Rn" uniqKey="Rognes T" first="Torbj Rn" last="Rognes">Torbj Rn Rognes</name>
</author>
<author>
<name sortKey="Hovig, Eivind" sort="Hovig, Eivind" uniqKey="Hovig E" first="Eivind" last="Hovig">Eivind Hovig</name>
</author>
</analytic>
<series>
<title level="j">Nucleic acids research</title>
<idno type="eISSN">1362-4962</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Base Sequence</term>
<term>Conserved Sequence</term>
<term>DNA (chemistry)</term>
<term>G-Quadruplexes</term>
<term>Genome, Human</term>
<term>Guanine (analysis)</term>
<term>Humans</term>
<term>Polymorphism, Single Nucleotide</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN ()</term>
<term>G-quadruplexes</term>
<term>Guanine (analyse)</term>
<term>Génome humain</term>
<term>Humains</term>
<term>Polymorphisme de nucléotide simple</term>
<term>Séquence conservée</term>
<term>Séquence nucléotidique</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Guanine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>DNA</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Guanine</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Sequence</term>
<term>Conserved Sequence</term>
<term>G-Quadruplexes</term>
<term>Genome, Human</term>
<term>Humans</term>
<term>Polymorphism, Single Nucleotide</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>ADN</term>
<term>G-quadruplexes</term>
<term>Génome humain</term>
<term>Humains</term>
<term>Polymorphisme de nucléotide simple</term>
<term>Séquence conservée</term>
<term>Séquence nucléotidique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Specific guanine-rich sequence motifs in the human genome have considerable potential to form four-stranded structures known as G-quadruplexes or G4 DNA. The enrichment of these motifs in key chromosomal regions has suggested a functional role for the G-quadruplex structure in genomic regulation. In this work, we have examined the spectrum of nucleotide substitutions in G4 motifs, and related this spectrum to G4 prevalence. Data collected from the large repository of human SNPs indicates that the core feature of G-quadruplex motifs, 5'-GGG-3', exhibits specific mutational patterns that preserve the potential for G4 formation. In particular, we find a genome-wide pattern in which sites that disrupt the guanine triplets are more conserved and less polymorphic than their neutral counterparts. This also holds when considering non-CpG sites only. However, the low level of polymorphisms in guanine tracts is not only confined to G4 motifs. A complete mapping of DNA three-mers at guanine polymorphisms indicated that short guanine tracts are the most under-represented sequence context at polymorphic sites. Furthermore, we provide evidence for a strand bias upstream of human genes. Here, a significantly lower rate of G4-disruptive SNPs on the non-template strand supports a higher relative influence of G4 formation on this strand during transcription.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19617376</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>11</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1362-4962</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>37</Volume>
<Issue>17</Issue>
<PubDate>
<Year>2009</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Nucleic acids research</Title>
<ISOAbbreviation>Nucleic Acids Res.</ISOAbbreviation>
</Journal>
<ArticleTitle>The disruptive positions in human G-quadruplex motifs are less polymorphic and more conserved than their neutral counterparts.</ArticleTitle>
<Pagination>
<MedlinePgn>5749-56</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/nar/gkp590</ELocationID>
<Abstract>
<AbstractText>Specific guanine-rich sequence motifs in the human genome have considerable potential to form four-stranded structures known as G-quadruplexes or G4 DNA. The enrichment of these motifs in key chromosomal regions has suggested a functional role for the G-quadruplex structure in genomic regulation. In this work, we have examined the spectrum of nucleotide substitutions in G4 motifs, and related this spectrum to G4 prevalence. Data collected from the large repository of human SNPs indicates that the core feature of G-quadruplex motifs, 5'-GGG-3', exhibits specific mutational patterns that preserve the potential for G4 formation. In particular, we find a genome-wide pattern in which sites that disrupt the guanine triplets are more conserved and less polymorphic than their neutral counterparts. This also holds when considering non-CpG sites only. However, the low level of polymorphisms in guanine tracts is not only confined to G4 motifs. A complete mapping of DNA three-mers at guanine polymorphisms indicated that short guanine tracts are the most under-represented sequence context at polymorphic sites. Furthermore, we provide evidence for a strand bias upstream of human genes. Here, a significantly lower rate of G4-disruptive SNPs on the non-template strand supports a higher relative influence of G4 formation on this strand during transcription.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Nakken</LastName>
<ForeName>Sigve</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Centre for Molecular Biology and Neuroscience, Institute of Medical Microbiology, Oslo University Hospital, Rikshospitalet, NO-0027, Oslo, Norway. sigve.nakken@medisin.uio.no</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rognes</LastName>
<ForeName>Torbjørn</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hovig</LastName>
<ForeName>Eivind</ForeName>
<Initials>E</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>07</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Nucleic Acids Res</MedlineTA>
<NlmUniqueID>0411011</NlmUniqueID>
<ISSNLinking>0305-1048</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>5Z93L87A1R</RegistryNumber>
<NameOfSubstance UI="D006147">Guanine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9007-49-2</RegistryNumber>
<NameOfSubstance UI="D004247">DNA</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017124" MajorTopicYN="N">Conserved Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004247" MajorTopicYN="N">DNA</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054856" MajorTopicYN="Y">G-Quadruplexes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015894" MajorTopicYN="N">Genome, Human</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006147" MajorTopicYN="N">Guanine</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020641" MajorTopicYN="Y">Polymorphism, Single Nucleotide</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>7</Month>
<Day>21</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>7</Month>
<Day>21</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>12</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19617376</ArticleId>
<ArticleId IdType="pii">gkp590</ArticleId>
<ArticleId IdType="doi">10.1093/nar/gkp590</ArticleId>
<ArticleId IdType="pmc">PMC2761265</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 2003 Mar 21;327(2):303-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12628237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jun;37(11):3625-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19359361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2004 Jul 1;18(13):1618-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15231739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1986 May 15-21;321(6067):209-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2423876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1988 Jul 28;334(6180):364-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3393228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1989 Dec 1;59(5):871-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2590943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1989 Dec 14;342(6251):825-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2601741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2829-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1557389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 1992 Mar;34(3):189-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1588594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1993 Nov 5;268(31):23524-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8226881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 1993 Dec 15;1(4):263-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8081740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1996 Jul;178(13):3885-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8682794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 1996 Aug 1;6(8):968-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8805338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1997 Oct 15;16(20):6314-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9321410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1998 Mar 1;26(5):1167-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9469822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 1998 Aug;63(2):474-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9683596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Oct 16;273(42):27587-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9765292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Jan 8;274(2):1066-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9873052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 May 28;274(22):15908-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10336496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1962 Dec 15;48:2013-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13947099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2004 Dec 22;126(50):16405-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15600342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2005 Mar;22(3):650-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15537806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005;33(9):2887-900</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15908587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005;33(9):2901-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15914666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005;33(9):2908-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15914667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2005 Oct;12(10):847-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16142245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2006 Jun 27;45(25):7854-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16784237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2006;409:86-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16793396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W676-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16845096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006;34(14):3887-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16914419</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2006 Sep;24(9):1068-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16964207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006;34(19):5402-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17012276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007;35(2):406-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17169996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2007 May 15;581(10):1951-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17462634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Biosci. 2007;12:4336-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17485378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007;35(9):3064-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17452368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007;35(12):4214-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17576685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2008 Jan 15;47(2):689-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18092816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 Feb;18(2):233-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18096746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Mar;36(4):1321-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18187510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2008 Mar;26(3):256</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18327223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 May;36(8):2700-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18353860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2008 Jun;28(12):4116-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18426915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Aug;36(13):4433-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18599514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2001 Jan 1;29(1):308-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11125122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8572-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11438689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Sep 3;99(18):11593-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12195017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jan 1;31(1):51-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12519945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Chem. 2008 Sep 25;51(18):5641-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18767830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Nov;36(19):6260-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18832370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2009 Feb 3;7(2):e1000027</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19192947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Carcinog. 2009 Apr;48(4):319-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19306310</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 May;37(9):2830-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19282446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004;32(8):2598-606</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15141030</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Norvège</li>
</country>
<region>
<li>Østlandet</li>
</region>
<settlement>
<li>Oslo</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Hovig, Eivind" sort="Hovig, Eivind" uniqKey="Hovig E" first="Eivind" last="Hovig">Eivind Hovig</name>
<name sortKey="Rognes, Torbj Rn" sort="Rognes, Torbj Rn" uniqKey="Rognes T" first="Torbj Rn" last="Rognes">Torbj Rn Rognes</name>
</noCountry>
<country name="Norvège">
<region name="Østlandet">
<name sortKey="Nakken, Sigve" sort="Nakken, Sigve" uniqKey="Nakken S" first="Sigve" last="Nakken">Sigve Nakken</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001E78 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 001E78 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:19617376
   |texte=   The disruptive positions in human G-quadruplex motifs are less polymorphic and more conserved than their neutral counterparts.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:19617376" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021