Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Conservation and regulatory associations of a wide affinity range of mouse transcription factor binding sites.

Identifieur interne : 001E58 ( PubMed/Checkpoint ); précédent : 001E57; suivant : 001E59

Conservation and regulatory associations of a wide affinity range of mouse transcription factor binding sites.

Auteurs : Savina A. Jaeger [États-Unis] ; Esther T. Chan ; Michael F. Berger ; Rolf Stottmann ; Timothy R. Hughes ; Martha L. Bulyk

Source :

RBID : pubmed:20079828

Descripteurs français

English descriptors

Abstract

Sequence-specific binding by transcription factors (TFs) interprets regulatory information encoded in the genome. Using recently published universal protein binding microarray (PBM) data on the in vitro DNA binding preferences of these proteins for all possible 8-base-pair sequences, we examined the evolutionary conservation and enrichment within putative regulatory regions of the binding sequences of a diverse library of 104 nonredundant mouse TFs spanning 22 different DNA-binding domain structural classes. We found that not only high affinity binding sites, but also numerous moderate and low affinity binding sites, are under negative selection in the mouse genome. These 8-mers occur preferentially in putative regulatory regions of the mouse genome, including CpG islands and non-exonic ultraconserved elements (UCEs). Of TFs whose PBM "bound" 8-mers are enriched within sets of tissue-specific UCEs, many are expressed in the same tissue(s) as the UCE-driven gene expression. Phylogenetically conserved motif occurrences of various TFs were also enriched in the noncoding sequence surrounding numerous gene sets corresponding to Gene Ontology categories and tissue-specific gene expression clusters, suggesting involvement in transcriptional regulation of those genes. Altogether, our results indicate that many of the sequences bound by these proteins in vitro, including lower affinity DNA sequences, are likely to be functionally important in vivo. This study not only provides an initial analysis of the potential regulatory associations of 104 mouse TFs, but also presents an approach for the functional analysis of TFs from any other metazoan genome as their DNA binding preferences are determined by PBMs or other technologies.

DOI: 10.1016/j.ygeno.2010.01.002
PubMed: 20079828


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:20079828

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Conservation and regulatory associations of a wide affinity range of mouse transcription factor binding sites.</title>
<author>
<name sortKey="Jaeger, Savina A" sort="Jaeger, Savina A" uniqKey="Jaeger S" first="Savina A" last="Jaeger">Savina A. Jaeger</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chan, Esther T" sort="Chan, Esther T" uniqKey="Chan E" first="Esther T" last="Chan">Esther T. Chan</name>
</author>
<author>
<name sortKey="Berger, Michael F" sort="Berger, Michael F" uniqKey="Berger M" first="Michael F" last="Berger">Michael F. Berger</name>
</author>
<author>
<name sortKey="Stottmann, Rolf" sort="Stottmann, Rolf" uniqKey="Stottmann R" first="Rolf" last="Stottmann">Rolf Stottmann</name>
</author>
<author>
<name sortKey="Hughes, Timothy R" sort="Hughes, Timothy R" uniqKey="Hughes T" first="Timothy R" last="Hughes">Timothy R. Hughes</name>
</author>
<author>
<name sortKey="Bulyk, Martha L" sort="Bulyk, Martha L" uniqKey="Bulyk M" first="Martha L" last="Bulyk">Martha L. Bulyk</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20079828</idno>
<idno type="pmid">20079828</idno>
<idno type="doi">10.1016/j.ygeno.2010.01.002</idno>
<idno type="wicri:Area/PubMed/Corpus">001F71</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001F71</idno>
<idno type="wicri:Area/PubMed/Curation">001F71</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001F71</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001E58</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001E58</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Conservation and regulatory associations of a wide affinity range of mouse transcription factor binding sites.</title>
<author>
<name sortKey="Jaeger, Savina A" sort="Jaeger, Savina A" uniqKey="Jaeger S" first="Savina A" last="Jaeger">Savina A. Jaeger</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chan, Esther T" sort="Chan, Esther T" uniqKey="Chan E" first="Esther T" last="Chan">Esther T. Chan</name>
</author>
<author>
<name sortKey="Berger, Michael F" sort="Berger, Michael F" uniqKey="Berger M" first="Michael F" last="Berger">Michael F. Berger</name>
</author>
<author>
<name sortKey="Stottmann, Rolf" sort="Stottmann, Rolf" uniqKey="Stottmann R" first="Rolf" last="Stottmann">Rolf Stottmann</name>
</author>
<author>
<name sortKey="Hughes, Timothy R" sort="Hughes, Timothy R" uniqKey="Hughes T" first="Timothy R" last="Hughes">Timothy R. Hughes</name>
</author>
<author>
<name sortKey="Bulyk, Martha L" sort="Bulyk, Martha L" uniqKey="Bulyk M" first="Martha L" last="Bulyk">Martha L. Bulyk</name>
</author>
</analytic>
<series>
<title level="j">Genomics</title>
<idno type="eISSN">1089-8646</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Base Sequence (genetics)</term>
<term>Binding Sites (genetics)</term>
<term>CpG Islands (genetics)</term>
<term>Gene Expression Regulation</term>
<term>Humans</term>
<term>Mice</term>
<term>Promoter Regions, Genetic (genetics)</term>
<term>Protein Array Analysis</term>
<term>Regulatory Sequences, Nucleic Acid (genetics)</term>
<term>Sequence Analysis, DNA</term>
<term>Transcription Factors (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de séquence d'ADN</term>
<term>Analyse par réseau de protéines</term>
<term>Animaux</term>
<term>Facteurs de transcription (métabolisme)</term>
<term>Humains</term>
<term>Ilots CpG (génétique)</term>
<term>Régions promotrices (génétique) (génétique)</term>
<term>Régulation de l'expression des gènes</term>
<term>Sites de fixation (génétique)</term>
<term>Souris</term>
<term>Séquence nucléotidique (génétique)</term>
<term>Séquences d'acides nucléiques régulatrices (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Base Sequence</term>
<term>Binding Sites</term>
<term>CpG Islands</term>
<term>Promoter Regions, Genetic</term>
<term>Regulatory Sequences, Nucleic Acid</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Ilots CpG</term>
<term>Régions promotrices (génétique)</term>
<term>Sites de fixation</term>
<term>Séquence nucléotidique</term>
<term>Séquences d'acides nucléiques régulatrices</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Facteurs de transcription</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Gene Expression Regulation</term>
<term>Humans</term>
<term>Mice</term>
<term>Protein Array Analysis</term>
<term>Sequence Analysis, DNA</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de séquence d'ADN</term>
<term>Analyse par réseau de protéines</term>
<term>Animaux</term>
<term>Humains</term>
<term>Régulation de l'expression des gènes</term>
<term>Souris</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Sequence-specific binding by transcription factors (TFs) interprets regulatory information encoded in the genome. Using recently published universal protein binding microarray (PBM) data on the in vitro DNA binding preferences of these proteins for all possible 8-base-pair sequences, we examined the evolutionary conservation and enrichment within putative regulatory regions of the binding sequences of a diverse library of 104 nonredundant mouse TFs spanning 22 different DNA-binding domain structural classes. We found that not only high affinity binding sites, but also numerous moderate and low affinity binding sites, are under negative selection in the mouse genome. These 8-mers occur preferentially in putative regulatory regions of the mouse genome, including CpG islands and non-exonic ultraconserved elements (UCEs). Of TFs whose PBM "bound" 8-mers are enriched within sets of tissue-specific UCEs, many are expressed in the same tissue(s) as the UCE-driven gene expression. Phylogenetically conserved motif occurrences of various TFs were also enriched in the noncoding sequence surrounding numerous gene sets corresponding to Gene Ontology categories and tissue-specific gene expression clusters, suggesting involvement in transcriptional regulation of those genes. Altogether, our results indicate that many of the sequences bound by these proteins in vitro, including lower affinity DNA sequences, are likely to be functionally important in vivo. This study not only provides an initial analysis of the potential regulatory associations of 104 mouse TFs, but also presents an approach for the functional analysis of TFs from any other metazoan genome as their DNA binding preferences are determined by PBMs or other technologies.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20079828</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>07</Month>
<Day>08</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1089-8646</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>95</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2010</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Genomics</Title>
<ISOAbbreviation>Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Conservation and regulatory associations of a wide affinity range of mouse transcription factor binding sites.</ArticleTitle>
<Pagination>
<MedlinePgn>185-95</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.ygeno.2010.01.002</ELocationID>
<Abstract>
<AbstractText>Sequence-specific binding by transcription factors (TFs) interprets regulatory information encoded in the genome. Using recently published universal protein binding microarray (PBM) data on the in vitro DNA binding preferences of these proteins for all possible 8-base-pair sequences, we examined the evolutionary conservation and enrichment within putative regulatory regions of the binding sequences of a diverse library of 104 nonredundant mouse TFs spanning 22 different DNA-binding domain structural classes. We found that not only high affinity binding sites, but also numerous moderate and low affinity binding sites, are under negative selection in the mouse genome. These 8-mers occur preferentially in putative regulatory regions of the mouse genome, including CpG islands and non-exonic ultraconserved elements (UCEs). Of TFs whose PBM "bound" 8-mers are enriched within sets of tissue-specific UCEs, many are expressed in the same tissue(s) as the UCE-driven gene expression. Phylogenetically conserved motif occurrences of various TFs were also enriched in the noncoding sequence surrounding numerous gene sets corresponding to Gene Ontology categories and tissue-specific gene expression clusters, suggesting involvement in transcriptional regulation of those genes. Altogether, our results indicate that many of the sequences bound by these proteins in vitro, including lower affinity DNA sequences, are likely to be functionally important in vivo. This study not only provides an initial analysis of the potential regulatory associations of 104 mouse TFs, but also presents an approach for the functional analysis of TFs from any other metazoan genome as their DNA binding preferences are determined by PBMs or other technologies.</AbstractText>
<CopyrightInformation>Copyright 2010 Elsevier Inc. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Jaeger</LastName>
<ForeName>Savina A</ForeName>
<Initials>SA</Initials>
<AffiliationInfo>
<Affiliation>Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chan</LastName>
<ForeName>Esther T</ForeName>
<Initials>ET</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Berger</LastName>
<ForeName>Michael F</ForeName>
<Initials>MF</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Stottmann</LastName>
<ForeName>Rolf</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hughes</LastName>
<ForeName>Timothy R</ForeName>
<Initials>TR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bulyk</LastName>
<ForeName>Martha L</ForeName>
<Initials>ML</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 HG003985-03</GrantID>
<Acronym>HG</Acronym>
<Agency>NHGRI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 HG003985</GrantID>
<Acronym>HG</Acronym>
<Agency>NHGRI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>F32 HD053198</GrantID>
<Acronym>HD</Acronym>
<Agency>NICHD NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>F32 HD053198-02</GrantID>
<Acronym>HD</Acronym>
<Agency>NICHD NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>MOP-77721</GrantID>
<Agency>Canadian Institutes of Health Research</Agency>
<Country>Canada</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>01</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Genomics</MedlineTA>
<NlmUniqueID>8800135</NlmUniqueID>
<ISSNLinking>0888-7543</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018899" MajorTopicYN="N">CpG Islands</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005786" MajorTopicYN="Y">Gene Expression Regulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011401" MajorTopicYN="N">Promoter Regions, Genetic</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040081" MajorTopicYN="N">Protein Array Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012045" MajorTopicYN="N">Regulatory Sequences, Nucleic Acid</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>01</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2010</Year>
<Month>01</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>1</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>1</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>7</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20079828</ArticleId>
<ArticleId IdType="pii">S0888-7543(10)00003-0</ArticleId>
<ArticleId IdType="doi">10.1016/j.ygeno.2010.01.002</ArticleId>
<ArticleId IdType="pmc">PMC2848887</ArticleId>
<ArticleId IdType="mid">NIHMS170602</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mech Dev. 1994 Jul;47(1):81-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7947324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1999 Sep 3;237(1):1-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10524230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1996 May 16;381(6579):238-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8622766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Biol. 1999 Jun 15;210(2):305-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10357893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2004 Dec;36(12):1331-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15543148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Dec 24;306(5705):2255-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15618518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol. 2004;3(5):21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15588312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2005 Feb;132(4):645-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15677724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Psychiatry. 2005 Apr;10(4):393-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15558077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2005 Apr 15;14 Spec No 1:R101-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15809261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2005 Aug;15(8):1034-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16024819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Jan 31;103(5):1319-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16432194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Jan 31;103(5):1412-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16432200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2006 May;2(5):e53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16733548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2006 Jun 15;22(12):1534-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16574695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2006 Aug;16(8):962-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16809671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Cell Res. 2006 Oct 1;312(16):3108-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16919269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2006 Nov;24(11):1429-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16998473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 23;444(7118):499-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17086198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Jan 12;315(5809):233-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17218526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Feb 16;315(5814):972-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17218491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2007 Jun;39(6):730-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17529977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Feb 3;403(6769):564-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10676967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2000 May;25(1):25-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10802651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6481-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10823896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2000 Sep;156(1):297-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10978293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Symp Quant Biol. 1999;64:141-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11232279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2001 Jun 15;29(12):2471-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11410653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Jun 19;98(13):7158-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11404456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2001 Jul;128(13):2433-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11493561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 Mar 1;30(5):1255-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11861919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2002 May;129(9):2293-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11959836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 Oct 15;30(20):4442-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12384591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Biol. 2003 Jan 1;253(1):150-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12490204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jan 1;31(1):51-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12519945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Sep 30;100 Suppl 1:11836-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12923295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2003 Aug 28;3:19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12946282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Oct 30;425(6961):917-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14586460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2004 Jan;131(2):263-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14668413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2003;5(1):201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14709165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2004 Feb 20;116(4):499-509</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14980218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Apr 20;101(16):6062-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15075390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 May 28;304(5675):1321-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15131266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2004 Jul;131(14):3319-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15201224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2007 Jun;17(6):760-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17567995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Jun 14;447(7146):799-816</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17571346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2007 Aug;134(15):2761-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17596284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Aug 2;448(7153):553-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17603471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2007 Sep;274(18):4848-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17714511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Neurosci. 2007 Nov;8(11):859-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17948031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2007 Nov;17(11):1550-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17908821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2007 Dec;3(12):e254</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18166073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2008 Feb;40(2):158-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18176564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Jan 31;451(7178):535-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18172436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2008 Apr;5(4):347-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18311145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2008 Jun 27;133(7):1266-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18585359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2008 Dec;180(4):2277-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18957701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2009;4(3):393-411</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19265799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2009 Apr;19(4):556-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19158363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Jun 26;324(5935):1720-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19443739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2009 Jul 23;138(2):314-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19632181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 1994 Sep;120(9):2673-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7956841</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Massachusetts</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Berger, Michael F" sort="Berger, Michael F" uniqKey="Berger M" first="Michael F" last="Berger">Michael F. Berger</name>
<name sortKey="Bulyk, Martha L" sort="Bulyk, Martha L" uniqKey="Bulyk M" first="Martha L" last="Bulyk">Martha L. Bulyk</name>
<name sortKey="Chan, Esther T" sort="Chan, Esther T" uniqKey="Chan E" first="Esther T" last="Chan">Esther T. Chan</name>
<name sortKey="Hughes, Timothy R" sort="Hughes, Timothy R" uniqKey="Hughes T" first="Timothy R" last="Hughes">Timothy R. Hughes</name>
<name sortKey="Stottmann, Rolf" sort="Stottmann, Rolf" uniqKey="Stottmann R" first="Rolf" last="Stottmann">Rolf Stottmann</name>
</noCountry>
<country name="États-Unis">
<region name="Massachusetts">
<name sortKey="Jaeger, Savina A" sort="Jaeger, Savina A" uniqKey="Jaeger S" first="Savina A" last="Jaeger">Savina A. Jaeger</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001E58 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 001E58 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:20079828
   |texte=   Conservation and regulatory associations of a wide affinity range of mouse transcription factor binding sites.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:20079828" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021