Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Studying the evolution of promoter sequences: a waiting time problem.

Identifieur interne : 001E16 ( PubMed/Checkpoint ); précédent : 001E15; suivant : 001E17

Studying the evolution of promoter sequences: a waiting time problem.

Auteurs : Sarah Behrens [Allemagne] ; Martin Vingron

Source :

RBID : pubmed:21128851

Descripteurs français

English descriptors

Abstract

To gain a better understanding of the evolutionary dynamics of regulatory DNA sequences, we address the following questions: (1) How long does it take until a given transcription factor (TF) binding site emerges at random in a promoter sequence? and (2) How does the composition of a TF binding site affect this waiting time? Using two different probabilistic models (an i.i.d. model and a neighbor dependent model), we can compute the expected waiting time for every k-mer, k ranging from 5 to 10, until it appears in a promoter of a species. Our findings indicate that new TF binding sites can be created on a short evolutionary time scale, i.e. in a time span below the speciation time of human and chimp. Furthermore, one can conclude that the composition of a TF binding site plays a crucial role concerning the waiting time until it appears and that the CpG methylation-deamination substitution process probably accelerates the creation of new TF binding sites. A screening of existing TF binding sites moreover reveals that k-mers predicted to have short waiting times occur more frequently than others. Supplementary Material is available at www.libertonline.com/cmb .

DOI: 10.1089/cmb.2010.0084
PubMed: 21128851


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:21128851

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Studying the evolution of promoter sequences: a waiting time problem.</title>
<author>
<name sortKey="Behrens, Sarah" sort="Behrens, Sarah" uniqKey="Behrens S" first="Sarah" last="Behrens">Sarah Behrens</name>
<affiliation wicri:level="3">
<nlm:affiliation>Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany. sbehrens@molgen.mpg.de</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin</wicri:regionArea>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Vingron, Martin" sort="Vingron, Martin" uniqKey="Vingron M" first="Martin" last="Vingron">Martin Vingron</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:21128851</idno>
<idno type="pmid">21128851</idno>
<idno type="doi">10.1089/cmb.2010.0084</idno>
<idno type="wicri:Area/PubMed/Corpus">001F22</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001F22</idno>
<idno type="wicri:Area/PubMed/Curation">001F22</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001F22</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001E16</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001E16</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Studying the evolution of promoter sequences: a waiting time problem.</title>
<author>
<name sortKey="Behrens, Sarah" sort="Behrens, Sarah" uniqKey="Behrens S" first="Sarah" last="Behrens">Sarah Behrens</name>
<affiliation wicri:level="3">
<nlm:affiliation>Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany. sbehrens@molgen.mpg.de</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin</wicri:regionArea>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Vingron, Martin" sort="Vingron, Martin" uniqKey="Vingron M" first="Martin" last="Vingron">Martin Vingron</name>
</author>
</analytic>
<series>
<title level="j">Journal of computational biology : a journal of computational molecular cell biology</title>
<idno type="eISSN">1557-8666</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Base Sequence</term>
<term>Binding Sites</term>
<term>Databases, Nucleic Acid</term>
<term>Evolution, Molecular</term>
<term>Humans</term>
<term>Models, Genetic</term>
<term>Molecular Sequence Data</term>
<term>Pan troglodytes (genetics)</term>
<term>Promoter Regions, Genetic (genetics)</term>
<term>Time Factors</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Bases de données d'acides nucléiques</term>
<term>Données de séquences moléculaires</term>
<term>Facteurs de transcription</term>
<term>Facteurs temps</term>
<term>Humains</term>
<term>Modèles génétiques</term>
<term>Pan troglodytes (génétique)</term>
<term>Régions promotrices (génétique) (génétique)</term>
<term>Sites de fixation</term>
<term>Séquence nucléotidique</term>
<term>Évolution moléculaire</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Pan troglodytes</term>
<term>Promoter Regions, Genetic</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Pan troglodytes</term>
<term>Régions promotrices (génétique)</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Base Sequence</term>
<term>Binding Sites</term>
<term>Databases, Nucleic Acid</term>
<term>Evolution, Molecular</term>
<term>Humans</term>
<term>Models, Genetic</term>
<term>Molecular Sequence Data</term>
<term>Time Factors</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Bases de données d'acides nucléiques</term>
<term>Données de séquences moléculaires</term>
<term>Facteurs de transcription</term>
<term>Facteurs temps</term>
<term>Humains</term>
<term>Modèles génétiques</term>
<term>Sites de fixation</term>
<term>Séquence nucléotidique</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">To gain a better understanding of the evolutionary dynamics of regulatory DNA sequences, we address the following questions: (1) How long does it take until a given transcription factor (TF) binding site emerges at random in a promoter sequence? and (2) How does the composition of a TF binding site affect this waiting time? Using two different probabilistic models (an i.i.d. model and a neighbor dependent model), we can compute the expected waiting time for every k-mer, k ranging from 5 to 10, until it appears in a promoter of a species. Our findings indicate that new TF binding sites can be created on a short evolutionary time scale, i.e. in a time span below the speciation time of human and chimp. Furthermore, one can conclude that the composition of a TF binding site plays a crucial role concerning the waiting time until it appears and that the CpG methylation-deamination substitution process probably accelerates the creation of new TF binding sites. A screening of existing TF binding sites moreover reveals that k-mers predicted to have short waiting times occur more frequently than others. Supplementary Material is available at www.libertonline.com/cmb .</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21128851</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>06</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1557-8666</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>17</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2010</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Journal of computational biology : a journal of computational molecular cell biology</Title>
<ISOAbbreviation>J. Comput. Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Studying the evolution of promoter sequences: a waiting time problem.</ArticleTitle>
<Pagination>
<MedlinePgn>1591-606</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1089/cmb.2010.0084</ELocationID>
<Abstract>
<AbstractText>To gain a better understanding of the evolutionary dynamics of regulatory DNA sequences, we address the following questions: (1) How long does it take until a given transcription factor (TF) binding site emerges at random in a promoter sequence? and (2) How does the composition of a TF binding site affect this waiting time? Using two different probabilistic models (an i.i.d. model and a neighbor dependent model), we can compute the expected waiting time for every k-mer, k ranging from 5 to 10, until it appears in a promoter of a species. Our findings indicate that new TF binding sites can be created on a short evolutionary time scale, i.e. in a time span below the speciation time of human and chimp. Furthermore, one can conclude that the composition of a TF binding site plays a crucial role concerning the waiting time until it appears and that the CpG methylation-deamination substitution process probably accelerates the creation of new TF binding sites. A screening of existing TF binding sites moreover reveals that k-mers predicted to have short waiting times occur more frequently than others. Supplementary Material is available at www.libertonline.com/cmb .</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Behrens</LastName>
<ForeName>Sarah</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany. sbehrens@molgen.mpg.de</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vingron</LastName>
<ForeName>Martin</ForeName>
<Initials>M</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Comput Biol</MedlineTA>
<NlmUniqueID>9433358</NlmUniqueID>
<ISSNLinking>1066-5277</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030561" MajorTopicYN="N">Databases, Nucleic Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="Y">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008957" MajorTopicYN="Y">Models, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002679" MajorTopicYN="N">Pan troglodytes</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011401" MajorTopicYN="N">Promoter Regions, Genetic</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>12</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>12</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>6</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21128851</ArticleId>
<ArticleId IdType="doi">10.1089/cmb.2010.0084</ArticleId>
<ArticleId IdType="pmc">PMC3119604</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jan;38(Database issue):D105-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19906716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2009 Oct;25(10):434-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19815308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Biol. 2000 Feb-Apr;7(1-2):1-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10890386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2001 Sep;18(9):1764-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11504856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2003 Sep;20(9):1377-419</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12777501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Biol. 2003;10(3-4):313-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12935330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2004 Jun;21(6):1064-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15014138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1998 May 15;280(5366):1077-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9582121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 May 15;21(10):2322-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15769841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2006 Apr;2(4):e30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16683025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jan;35(Database issue):D590-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17158159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2007 Feb 23;3(2):e7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17319744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2007 Jun;39(6):730-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17529977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2008 May;4(5):e1000071</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18464896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Genet Dev. 1999 Dec;9(6):637-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10607619</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
<region>
<li>Berlin</li>
</region>
<settlement>
<li>Berlin</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Vingron, Martin" sort="Vingron, Martin" uniqKey="Vingron M" first="Martin" last="Vingron">Martin Vingron</name>
</noCountry>
<country name="Allemagne">
<region name="Berlin">
<name sortKey="Behrens, Sarah" sort="Behrens, Sarah" uniqKey="Behrens S" first="Sarah" last="Behrens">Sarah Behrens</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001E16 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 001E16 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:21128851
   |texte=   Studying the evolution of promoter sequences: a waiting time problem.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:21128851" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021