Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A multiscale approach to characterize the early aggregation steps of the amyloid-forming peptide GNNQQNY from the yeast prion sup-35.

Identifieur interne : 001E02 ( PubMed/Checkpoint ); précédent : 001E01; suivant : 001E03

A multiscale approach to characterize the early aggregation steps of the amyloid-forming peptide GNNQQNY from the yeast prion sup-35.

Auteurs : Jessica Nasica-Labouze [Canada] ; Massimiliano Meli ; Philippe Derreumaux ; Giorgio Colombo ; Normand Mousseau

Source :

RBID : pubmed:21625573

Descripteurs français

English descriptors

Abstract

The self-organization of peptides into amyloidogenic oligomers is one of the key events for a wide range of molecular and degenerative diseases. Atomic-resolution characterization of the mechanisms responsible for the aggregation process and the resulting structures is thus a necessary step to improve our understanding of the determinants of these pathologies. To address this issue, we combine the accelerated sampling properties of replica exchange molecular dynamics simulations based on the OPEP coarse-grained potential with the atomic resolution description of interactions provided by all-atom MD simulations, and investigate the oligomerization process of the GNNQQNY for three system sizes: 3-mers, 12-mers and 20-mers. Results for our integrated simulations show a rich variety of structural arrangements for aggregates of all sizes. Elongated fibril-like structures can form transiently in the 20-mer case, but they are not stable and easily interconvert in more globular and disordered forms. Our extensive characterization of the intermediate structures and their physico-chemical determinants points to a high degree of polymorphism for the GNNQQNY sequence that can be reflected at the macroscopic scale. Detailed mechanisms and structures that underlie amyloid aggregation are also provided.

DOI: 10.1371/journal.pcbi.1002051
PubMed: 21625573


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:21625573

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A multiscale approach to characterize the early aggregation steps of the amyloid-forming peptide GNNQQNY from the yeast prion sup-35.</title>
<author>
<name sortKey="Nasica Labouze, Jessica" sort="Nasica Labouze, Jessica" uniqKey="Nasica Labouze J" first="Jessica" last="Nasica-Labouze">Jessica Nasica-Labouze</name>
<affiliation wicri:level="1">
<nlm:affiliation>Département de Physique and GEPROM, Université de Montréal, Montréal, Québec, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Département de Physique and GEPROM, Université de Montréal, Montréal, Québec</wicri:regionArea>
<wicri:noRegion>Québec</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Meli, Massimiliano" sort="Meli, Massimiliano" uniqKey="Meli M" first="Massimiliano" last="Meli">Massimiliano Meli</name>
</author>
<author>
<name sortKey="Derreumaux, Philippe" sort="Derreumaux, Philippe" uniqKey="Derreumaux P" first="Philippe" last="Derreumaux">Philippe Derreumaux</name>
</author>
<author>
<name sortKey="Colombo, Giorgio" sort="Colombo, Giorgio" uniqKey="Colombo G" first="Giorgio" last="Colombo">Giorgio Colombo</name>
</author>
<author>
<name sortKey="Mousseau, Normand" sort="Mousseau, Normand" uniqKey="Mousseau N" first="Normand" last="Mousseau">Normand Mousseau</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21625573</idno>
<idno type="pmid">21625573</idno>
<idno type="doi">10.1371/journal.pcbi.1002051</idno>
<idno type="wicri:Area/PubMed/Corpus">001E74</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001E74</idno>
<idno type="wicri:Area/PubMed/Curation">001E74</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001E74</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001E02</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001E02</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A multiscale approach to characterize the early aggregation steps of the amyloid-forming peptide GNNQQNY from the yeast prion sup-35.</title>
<author>
<name sortKey="Nasica Labouze, Jessica" sort="Nasica Labouze, Jessica" uniqKey="Nasica Labouze J" first="Jessica" last="Nasica-Labouze">Jessica Nasica-Labouze</name>
<affiliation wicri:level="1">
<nlm:affiliation>Département de Physique and GEPROM, Université de Montréal, Montréal, Québec, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Département de Physique and GEPROM, Université de Montréal, Montréal, Québec</wicri:regionArea>
<wicri:noRegion>Québec</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Meli, Massimiliano" sort="Meli, Massimiliano" uniqKey="Meli M" first="Massimiliano" last="Meli">Massimiliano Meli</name>
</author>
<author>
<name sortKey="Derreumaux, Philippe" sort="Derreumaux, Philippe" uniqKey="Derreumaux P" first="Philippe" last="Derreumaux">Philippe Derreumaux</name>
</author>
<author>
<name sortKey="Colombo, Giorgio" sort="Colombo, Giorgio" uniqKey="Colombo G" first="Giorgio" last="Colombo">Giorgio Colombo</name>
</author>
<author>
<name sortKey="Mousseau, Normand" sort="Mousseau, Normand" uniqKey="Mousseau N" first="Normand" last="Mousseau">Normand Mousseau</name>
</author>
</analytic>
<series>
<title level="j">PLoS computational biology</title>
<idno type="eISSN">1553-7358</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amyloid (chemistry)</term>
<term>Molecular Dynamics Simulation</term>
<term>Oligopeptides (chemistry)</term>
<term>Peptide Termination Factors (chemistry)</term>
<term>Prions (chemistry)</term>
<term>Protein Conformation</term>
<term>Saccharomyces cerevisiae Proteins (chemistry)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Amyloïde ()</term>
<term>Conformation des protéines</term>
<term>Facteurs terminaison chaîne peptidique ()</term>
<term>Oligopeptides ()</term>
<term>Prions ()</term>
<term>Protéines de Saccharomyces cerevisiae ()</term>
<term>Simulation de dynamique moléculaire</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Amyloid</term>
<term>Oligopeptides</term>
<term>Peptide Termination Factors</term>
<term>Prions</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Molecular Dynamics Simulation</term>
<term>Protein Conformation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Amyloïde</term>
<term>Conformation des protéines</term>
<term>Facteurs terminaison chaîne peptidique</term>
<term>Oligopeptides</term>
<term>Prions</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Simulation de dynamique moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The self-organization of peptides into amyloidogenic oligomers is one of the key events for a wide range of molecular and degenerative diseases. Atomic-resolution characterization of the mechanisms responsible for the aggregation process and the resulting structures is thus a necessary step to improve our understanding of the determinants of these pathologies. To address this issue, we combine the accelerated sampling properties of replica exchange molecular dynamics simulations based on the OPEP coarse-grained potential with the atomic resolution description of interactions provided by all-atom MD simulations, and investigate the oligomerization process of the GNNQQNY for three system sizes: 3-mers, 12-mers and 20-mers. Results for our integrated simulations show a rich variety of structural arrangements for aggregates of all sizes. Elongated fibril-like structures can form transiently in the 20-mer case, but they are not stable and easily interconvert in more globular and disordered forms. Our extensive characterization of the intermediate structures and their physico-chemical determinants points to a high degree of polymorphism for the GNNQQNY sequence that can be reflected at the macroscopic scale. Detailed mechanisms and structures that underlie amyloid aggregation are also provided.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21625573</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>09</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1553-7358</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2011</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>PLoS computational biology</Title>
<ISOAbbreviation>PLoS Comput. Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>A multiscale approach to characterize the early aggregation steps of the amyloid-forming peptide GNNQQNY from the yeast prion sup-35.</ArticleTitle>
<Pagination>
<MedlinePgn>e1002051</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pcbi.1002051</ELocationID>
<Abstract>
<AbstractText>The self-organization of peptides into amyloidogenic oligomers is one of the key events for a wide range of molecular and degenerative diseases. Atomic-resolution characterization of the mechanisms responsible for the aggregation process and the resulting structures is thus a necessary step to improve our understanding of the determinants of these pathologies. To address this issue, we combine the accelerated sampling properties of replica exchange molecular dynamics simulations based on the OPEP coarse-grained potential with the atomic resolution description of interactions provided by all-atom MD simulations, and investigate the oligomerization process of the GNNQQNY for three system sizes: 3-mers, 12-mers and 20-mers. Results for our integrated simulations show a rich variety of structural arrangements for aggregates of all sizes. Elongated fibril-like structures can form transiently in the 20-mer case, but they are not stable and easily interconvert in more globular and disordered forms. Our extensive characterization of the intermediate structures and their physico-chemical determinants points to a high degree of polymorphism for the GNNQQNY sequence that can be reflected at the macroscopic scale. Detailed mechanisms and structures that underlie amyloid aggregation are also provided.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Nasica-Labouze</LastName>
<ForeName>Jessica</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Département de Physique and GEPROM, Université de Montréal, Montréal, Québec, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Meli</LastName>
<ForeName>Massimiliano</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Derreumaux</LastName>
<ForeName>Philippe</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Colombo</LastName>
<ForeName>Giorgio</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mousseau</LastName>
<ForeName>Normand</ForeName>
<Initials>N</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>05</Month>
<Day>19</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS Comput Biol</MedlineTA>
<NlmUniqueID>101238922</NlmUniqueID>
<ISSNLinking>1553-734X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000682">Amyloid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009842">Oligopeptides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010454">Peptide Termination Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011328">Prions</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C068068">SUP35 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000682" MajorTopicYN="N">Amyloid</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056004" MajorTopicYN="N">Molecular Dynamics Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009842" MajorTopicYN="N">Oligopeptides</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010454" MajorTopicYN="N">Peptide Termination Factors</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011328" MajorTopicYN="N">Prions</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>10</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>03</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>6</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>6</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>9</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21625573</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pcbi.1002051</ArticleId>
<ArticleId IdType="pii">PCOMPBIOL-D-10-00055</ArticleId>
<ArticleId IdType="pmc">PMC3098217</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Am Chem Soc. 2007 Apr 25;129(16):5117-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17397156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Rev Lett. 2006 Jun 16;96(23):238102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16803409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2007 Jun 15;92(12):4262-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17384062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4335-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15070716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Dec 11;326(5959):1533-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20007899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2008 Dec;4(12):e1000238</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19057640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1997 Oct 31;273(3):729-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9356260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Phys. 2007 Jan 14;126(2):025101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17228975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Biosci. 2008;13:5681-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18508615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2008;47(31):5842-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18528917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2009 Jul 8;97(1):1-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19580739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prion. 2007 Jan-Mar;1(1):3-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19164927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 2008 Apr 10;112(14):4410-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18341325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2008 Dec;95(11):5037-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18757563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2008 Aug;14(8):837-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18568035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2009 Feb 27;386(3):869-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19038266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2006 Sep 15;23(6):887-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2010 Mar 17;98(6):1038-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20303861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Apr 18;300(5618):486-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12702875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1991 Mar 5;218(1):183-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2002501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1999 Sep;24(9):329-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10470028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Jan 14;307(5707):262-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15653506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 2008 Jun 5;112(22):6856-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18457440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Apr 4;416(6880):507-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11932737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Jul 18;418(6895):291</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12124613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2010 Oct 27;132(42):14960-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20923147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Phys. 2006 Aug 28;125(8):084911</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16965061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Struct Biol. 2003 Apr;13(2):146-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12727507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2004 Jul;10 Suppl:S10-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15272267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2004 Jul;12(7):1245-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15242601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 May 24;447(7143):453-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17468747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Phys. 2010 Apr 28;132(16):165103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20441311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Feb 27;98(5):2375-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11226247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2004 Sep 22;126(37):11509-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15366896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2006 Apr 28;358(2):580-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16519898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2008 Dec 26;377(4):1036-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18938138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2007 Dec 26;129(51):16005-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18052168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2002 Jul;269(14):3362-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12135474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 Aug 11;48(31):7465-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19586054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Sep 1;106(35):14745-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19706468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1981 Feb 15;146(1):119-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7265226</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jul 1;31(13):3293-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12824310</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2008 Jun;94(11):4414-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18263661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 Jul 7;48(26):6072-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19358576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2008 Jun;15(6):558-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18511942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2007 Jul;16(7):1294-307</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17567749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3342-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10097040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2008 Apr;71(1):207-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17932914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Jun 9;435(7043):773-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15944695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2008 Nov 12;130(45):14990-5001</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18937465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2009 Sep;5(9):e1000492</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19730673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Struct Biol. 2007 Feb;17(1):48-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17251001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2006;75:333-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16756495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2006 Aug 1;91(3):824-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16679374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Nov 21;97(24):13045-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11069287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2003 Jul 25;330(5):1165-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12860136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Apr 29;100(9):5154-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12700355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Dec 4;284(49):34272-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19808677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):13749-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16172406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prion. 2009 Apr-Jun;3(2):89-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19597329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 2009 Jan 8;113(1):267-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19067549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jul;37(Web Server issue):W498-503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19433514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Nov 25;105(47):18349-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19015532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Phys. 2009 Mar 28;130(12):125101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19334894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2007 Sep 1;93(5):1484-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17483185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2007 Nov 1;69(2):394-408</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17600832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2006 Jan 17;45(2):498-512</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16401079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2000 Jul;2(7):E115-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10878819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurobiol Aging. 2004 May-Jun;25(5):569-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15172732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Alzheimer Res. 2008 Jun;5(3):244-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18537541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1981 Feb 15;146(1):101-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7265225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 1997 Aug;6(8):1661-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9260279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Chem. 2010 Mar;31(4):726-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19569182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2006 Aug 4;23(3):425-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16885031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Protein Chem. 2006;73:217-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17190615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Aug 1;103(31):11533-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16864786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 2009 Feb 12;113(6):1728-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19154133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Phys. 2009 Mar 28;130(12):124111</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19334812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Theory Comput. 2008 Mar;4(3):435-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26620784</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Colombo, Giorgio" sort="Colombo, Giorgio" uniqKey="Colombo G" first="Giorgio" last="Colombo">Giorgio Colombo</name>
<name sortKey="Derreumaux, Philippe" sort="Derreumaux, Philippe" uniqKey="Derreumaux P" first="Philippe" last="Derreumaux">Philippe Derreumaux</name>
<name sortKey="Meli, Massimiliano" sort="Meli, Massimiliano" uniqKey="Meli M" first="Massimiliano" last="Meli">Massimiliano Meli</name>
<name sortKey="Mousseau, Normand" sort="Mousseau, Normand" uniqKey="Mousseau N" first="Normand" last="Mousseau">Normand Mousseau</name>
</noCountry>
<country name="Canada">
<noRegion>
<name sortKey="Nasica Labouze, Jessica" sort="Nasica Labouze, Jessica" uniqKey="Nasica Labouze J" first="Jessica" last="Nasica-Labouze">Jessica Nasica-Labouze</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001E02 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 001E02 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:21625573
   |texte=   A multiscale approach to characterize the early aggregation steps of the amyloid-forming peptide GNNQQNY from the yeast prion sup-35.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:21625573" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021