Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Transition from a plasmid to a chromosomal mode of replication entails additional regulators.

Identifieur interne : 001D29 ( PubMed/Checkpoint ); précédent : 001D28; suivant : 001D30

Transition from a plasmid to a chromosomal mode of replication entails additional regulators.

Auteurs : Tatiana Venkova-Canova [États-Unis] ; Dhruba K. Chattoraj

Source :

RBID : pubmed:21444815

Descripteurs français

English descriptors

Abstract

Plasmid origins of replication are rare in bacterial chromosomes, except in multichromosome bacteria. The replication origin of Vibrio cholerae chromosome II (chrII) closely resembles iteron-bearing plasmid origins. Iterons are repeated initiator binding sites in plasmid origins and participate both in replication initiation and its control. The control is mediated primarily by coupling of iterons via the bound initiators ("handcuffing"), which causes steric hindrance to the origin. The control in chrII must be different, since the timing of its replication is cell cycle-specific, whereas in plasmids it is random. Here we show that chrII uses, in addition to iterons, another kind of initiator binding site, named 39-mers. The 39-mers confer stringent control by increasing handcuffing of iterons, presumably via initiator remodeling. Iterons, although potential inhibitors of replication themselves, restrain the 39-mer-mediated inhibition, possibly by direct coupling ("heterohandcuffing"). We propose that the presumptive transition of a plasmid to a chromosomal mode of control requires additional regulators to increase the stringency of control, and as will be discussed, to gain the capacity to modulate the effectiveness of the regulators at different stages of the cell cycle.

DOI: 10.1073/pnas.1013244108
PubMed: 21444815


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:21444815

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Transition from a plasmid to a chromosomal mode of replication entails additional regulators.</title>
<author>
<name sortKey="Venkova Canova, Tatiana" sort="Venkova Canova, Tatiana" uniqKey="Venkova Canova T" first="Tatiana" last="Venkova-Canova">Tatiana Venkova-Canova</name>
<affiliation wicri:level="2">
<nlm:affiliation>Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chattoraj, Dhruba K" sort="Chattoraj, Dhruba K" uniqKey="Chattoraj D" first="Dhruba K" last="Chattoraj">Dhruba K. Chattoraj</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21444815</idno>
<idno type="pmid">21444815</idno>
<idno type="doi">10.1073/pnas.1013244108</idno>
<idno type="wicri:Area/PubMed/Corpus">001E89</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001E89</idno>
<idno type="wicri:Area/PubMed/Curation">001E89</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001E89</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001D29</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001D29</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Transition from a plasmid to a chromosomal mode of replication entails additional regulators.</title>
<author>
<name sortKey="Venkova Canova, Tatiana" sort="Venkova Canova, Tatiana" uniqKey="Venkova Canova T" first="Tatiana" last="Venkova-Canova">Tatiana Venkova-Canova</name>
<affiliation wicri:level="2">
<nlm:affiliation>Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chattoraj, Dhruba K" sort="Chattoraj, Dhruba K" uniqKey="Chattoraj D" first="Dhruba K" last="Chattoraj">Dhruba K. Chattoraj</name>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="eISSN">1091-6490</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Base Sequence</term>
<term>Cell Cycle (genetics)</term>
<term>Chromosomes, Bacterial (genetics)</term>
<term>DNA Helicases (genetics)</term>
<term>DNA Helicases (metabolism)</term>
<term>DNA Replication</term>
<term>Electrophoretic Mobility Shift Assay</term>
<term>Escherichia coli (genetics)</term>
<term>Plasmids (genetics)</term>
<term>Replication Origin</term>
<term>Trans-Activators (genetics)</term>
<term>Trans-Activators (metabolism)</term>
<term>Vibrio cholerae (cytology)</term>
<term>Vibrio cholerae (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Chromosomes de bactérie (génétique)</term>
<term>Cycle cellulaire (génétique)</term>
<term>Escherichia coli (génétique)</term>
<term>Helicase (génétique)</term>
<term>Helicase (métabolisme)</term>
<term>Origine de réplication</term>
<term>Plasmides (génétique)</term>
<term>Réplication de l'ADN</term>
<term>Séquence nucléotidique</term>
<term>Test de retard de migration électrophorétique</term>
<term>Transactivateurs (génétique)</term>
<term>Transactivateurs (métabolisme)</term>
<term>Vibrio cholerae (cytologie)</term>
<term>Vibrio cholerae (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA Helicases</term>
<term>Trans-Activators</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Vibrio cholerae</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Vibrio cholerae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Cell Cycle</term>
<term>Chromosomes, Bacterial</term>
<term>Escherichia coli</term>
<term>Plasmids</term>
<term>Vibrio cholerae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Chromosomes de bactérie</term>
<term>Cycle cellulaire</term>
<term>Escherichia coli</term>
<term>Helicase</term>
<term>Plasmides</term>
<term>Transactivateurs</term>
<term>Vibrio cholerae</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>DNA Helicases</term>
<term>Trans-Activators</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Helicase</term>
<term>Transactivateurs</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Sequence</term>
<term>DNA Replication</term>
<term>Electrophoretic Mobility Shift Assay</term>
<term>Replication Origin</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Origine de réplication</term>
<term>Réplication de l'ADN</term>
<term>Séquence nucléotidique</term>
<term>Test de retard de migration électrophorétique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Plasmid origins of replication are rare in bacterial chromosomes, except in multichromosome bacteria. The replication origin of Vibrio cholerae chromosome II (chrII) closely resembles iteron-bearing plasmid origins. Iterons are repeated initiator binding sites in plasmid origins and participate both in replication initiation and its control. The control is mediated primarily by coupling of iterons via the bound initiators ("handcuffing"), which causes steric hindrance to the origin. The control in chrII must be different, since the timing of its replication is cell cycle-specific, whereas in plasmids it is random. Here we show that chrII uses, in addition to iterons, another kind of initiator binding site, named 39-mers. The 39-mers confer stringent control by increasing handcuffing of iterons, presumably via initiator remodeling. Iterons, although potential inhibitors of replication themselves, restrain the 39-mer-mediated inhibition, possibly by direct coupling ("heterohandcuffing"). We propose that the presumptive transition of a plasmid to a chromosomal mode of control requires additional regulators to increase the stringency of control, and as will be discussed, to gain the capacity to modulate the effectiveness of the regulators at different stages of the cell cycle.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21444815</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>06</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1091-6490</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>108</Volume>
<Issue>15</Issue>
<PubDate>
<Year>2011</Year>
<Month>Apr</Month>
<Day>12</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc. Natl. Acad. Sci. U.S.A.</ISOAbbreviation>
</Journal>
<ArticleTitle>Transition from a plasmid to a chromosomal mode of replication entails additional regulators.</ArticleTitle>
<Pagination>
<MedlinePgn>6199-204</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1073/pnas.1013244108</ELocationID>
<Abstract>
<AbstractText>Plasmid origins of replication are rare in bacterial chromosomes, except in multichromosome bacteria. The replication origin of Vibrio cholerae chromosome II (chrII) closely resembles iteron-bearing plasmid origins. Iterons are repeated initiator binding sites in plasmid origins and participate both in replication initiation and its control. The control is mediated primarily by coupling of iterons via the bound initiators ("handcuffing"), which causes steric hindrance to the origin. The control in chrII must be different, since the timing of its replication is cell cycle-specific, whereas in plasmids it is random. Here we show that chrII uses, in addition to iterons, another kind of initiator binding site, named 39-mers. The 39-mers confer stringent control by increasing handcuffing of iterons, presumably via initiator remodeling. Iterons, although potential inhibitors of replication themselves, restrain the 39-mer-mediated inhibition, possibly by direct coupling ("heterohandcuffing"). We propose that the presumptive transition of a plasmid to a chromosomal mode of control requires additional regulators to increase the stringency of control, and as will be discussed, to gain the capacity to modulate the effectiveness of the regulators at different stages of the cell cycle.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Venkova-Canova</LastName>
<ForeName>Tatiana</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chattoraj</LastName>
<ForeName>Dhruba K</ForeName>
<Initials>DK</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<Agency>Intramural NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052060">Research Support, N.I.H., Intramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>03</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D015534">Trans-Activators</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C045264">replication initiator protein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.4.-</RegistryNumber>
<NameOfSubstance UI="D004265">DNA Helicases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002453" MajorTopicYN="N">Cell Cycle</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002876" MajorTopicYN="N">Chromosomes, Bacterial</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004265" MajorTopicYN="N">DNA Helicases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004261" MajorTopicYN="Y">DNA Replication</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D024202" MajorTopicYN="N">Electrophoretic Mobility Shift Assay</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010957" MajorTopicYN="N">Plasmids</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018741" MajorTopicYN="N">Replication Origin</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015534" MajorTopicYN="N">Trans-Activators</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014734" MajorTopicYN="N">Vibrio cholerae</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>3</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>3</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>6</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21444815</ArticleId>
<ArticleId IdType="pii">1013244108</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.1013244108</ArticleId>
<ArticleId IdType="pmc">PMC3076835</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Microbiol. 2007 Nov;66(4):1016-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17944831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2007 Jul 11;26(13):3124-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17557077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2009 May 15;23(10):1221-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19401329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2010 Mar;8(3):163-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20157337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2010 May;6(5):e1000939</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20463886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2010 Jul 9;142(1):101-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20603017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 May 16;278(20):18606-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12637554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2003 Aug 22;114(4):521-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12941279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2004 Jan;51(2):349-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14756777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Feb 20;279(8):6711-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14665626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2004 Jul 13;14(13):R501-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15242627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2004 Nov;54(3):836-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15491371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1984 Oct;81(20):6456-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6387706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1986 Mar 14;44(5):681-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3948245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1986 Nov 20;192(2):275-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3560217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1988 Mar;170(3):1380-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3277954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1988 Aug;170(8):3554-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3403509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1989 Oct;86(20):7942-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2682632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1989 Dec 21;85(1):15-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2533576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1991 Jun 15;102(1):67-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1864511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1992 Mar;11(3):1205-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1547780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):4903-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1594591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1995 Dec;18(5):903-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8825094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2005 Jun;56(5):1129-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15882408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2005 Nov;187(21):7167-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16237000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2006 Jan;188(2):789-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16385068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2006 Jul;61(1):9-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16824091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Aug 8;103(32):12051-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16873545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2006 Sep;188(17):6419-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16923911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2008 Feb;9(2):151-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18246107</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Maryland</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Chattoraj, Dhruba K" sort="Chattoraj, Dhruba K" uniqKey="Chattoraj D" first="Dhruba K" last="Chattoraj">Dhruba K. Chattoraj</name>
</noCountry>
<country name="États-Unis">
<region name="Maryland">
<name sortKey="Venkova Canova, Tatiana" sort="Venkova Canova, Tatiana" uniqKey="Venkova Canova T" first="Tatiana" last="Venkova-Canova">Tatiana Venkova-Canova</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001D29 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 001D29 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:21444815
   |texte=   Transition from a plasmid to a chromosomal mode of replication entails additional regulators.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:21444815" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021