Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Hydrophobic residues in small ankyrin 1 participate in binding to obscurin.

Identifieur interne : 001C77 ( PubMed/Checkpoint ); précédent : 001C76; suivant : 001C78

Hydrophobic residues in small ankyrin 1 participate in binding to obscurin.

Auteurs : Chris D. Willis [États-Unis] ; Taiji Oashi ; Ben Busby ; Alexander D. Mackerell ; Robert J. Bloch

Source :

RBID : pubmed:22416964

Descripteurs français

English descriptors

Abstract

Abstract Small ankyrin-1 is a splice variant of the ANK1 gene that binds to obscurin A. Previous studies have identified electrostatic interactions that contribute to this interaction. In addition, molecular dynamics (MD) simulations predict four hydrophobic residues in a 'hot spot' on the surface of the ankyrin-like repeats of sAnk1, near the charged residues involved in binding. We used site-directed mutagenesis, blot overlays and surface plasmon resonance assays to study the contribution of the hydrophobic residues, V70, F71, I102 and I103, to two different 30-mers of obscurin that bind sAnk1, Obsc₆₃₁₆₋₆₃₄₅ and Obsc₆₂₃₁₋₆₂₆₀. Alanine mutations of each of the hydrophobic residues disrupted binding to the high affinity binding site, Obsc₆₃₁₆₋₆₃₄₅. In contrast, V70A and I102A mutations had no effect on binding to the lower affinity site, Obsc₆₂₃₁₋₆₂₆₀. Alanine mutagenesis of the five hydrophobic residues present in Obsc₆₃₁₆₋₆₃₄₅ showed that V6328, I6332, and V6334 were critical to sAnk1 binding. Individual alanine mutants of the six hydrophobic residues of Obsc₆₂₃₁₋₆₂₆₀ had no effect on binding to sAnk1, although a triple alanine mutant of residues V6233/I6234/I6235 decreased binding. We also examined a model of the Obsc₆₃₁₆₋₆₃₄₅-sAnk1 complex in MD simulations and found I102 of sAnk1 to be within 2.2Å of V6334 of Obsc₆₃₁₆₋₆₃₄₅. In contrast to the I102A mutation, mutating I102 of sAnk1 to other hydrophobic amino acids such as phenylalanine or leucine did not disrupt binding to obscurin. Our results suggest that hydrophobic interactions contribute to the higher affinity of Obsc₆₃₁₆₋₆₃₄₅ for sAnk1 and to the dominant role exhibited by this sequence in binding.

DOI: 10.3109/09687688.2012.660709
PubMed: 22416964


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:22416964

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Hydrophobic residues in small ankyrin 1 participate in binding to obscurin.</title>
<author>
<name sortKey="Willis, Chris D" sort="Willis, Chris D" uniqKey="Willis C" first="Chris D" last="Willis">Chris D. Willis</name>
<affiliation wicri:level="4">
<nlm:affiliation>Program in Biochemistry and Molecular Biology, University of Maryland, Baltimore, Baltimore, MD, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Program in Biochemistry and Molecular Biology, University of Maryland, Baltimore, Baltimore, MD</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
<settlement type="city">College Park (Maryland)</settlement>
</placeName>
<orgName type="university">Université du Maryland</orgName>
</affiliation>
</author>
<author>
<name sortKey="Oashi, Taiji" sort="Oashi, Taiji" uniqKey="Oashi T" first="Taiji" last="Oashi">Taiji Oashi</name>
</author>
<author>
<name sortKey="Busby, Ben" sort="Busby, Ben" uniqKey="Busby B" first="Ben" last="Busby">Ben Busby</name>
</author>
<author>
<name sortKey="Mackerell, Alexander D" sort="Mackerell, Alexander D" uniqKey="Mackerell A" first="Alexander D" last="Mackerell">Alexander D. Mackerell</name>
</author>
<author>
<name sortKey="Bloch, Robert J" sort="Bloch, Robert J" uniqKey="Bloch R" first="Robert J" last="Bloch">Robert J. Bloch</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22416964</idno>
<idno type="pmid">22416964</idno>
<idno type="doi">10.3109/09687688.2012.660709</idno>
<idno type="wicri:Area/PubMed/Corpus">001D98</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001D98</idno>
<idno type="wicri:Area/PubMed/Curation">001D98</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001D98</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001C77</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001C77</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Hydrophobic residues in small ankyrin 1 participate in binding to obscurin.</title>
<author>
<name sortKey="Willis, Chris D" sort="Willis, Chris D" uniqKey="Willis C" first="Chris D" last="Willis">Chris D. Willis</name>
<affiliation wicri:level="4">
<nlm:affiliation>Program in Biochemistry and Molecular Biology, University of Maryland, Baltimore, Baltimore, MD, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Program in Biochemistry and Molecular Biology, University of Maryland, Baltimore, Baltimore, MD</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
<settlement type="city">College Park (Maryland)</settlement>
</placeName>
<orgName type="university">Université du Maryland</orgName>
</affiliation>
</author>
<author>
<name sortKey="Oashi, Taiji" sort="Oashi, Taiji" uniqKey="Oashi T" first="Taiji" last="Oashi">Taiji Oashi</name>
</author>
<author>
<name sortKey="Busby, Ben" sort="Busby, Ben" uniqKey="Busby B" first="Ben" last="Busby">Ben Busby</name>
</author>
<author>
<name sortKey="Mackerell, Alexander D" sort="Mackerell, Alexander D" uniqKey="Mackerell A" first="Alexander D" last="Mackerell">Alexander D. Mackerell</name>
</author>
<author>
<name sortKey="Bloch, Robert J" sort="Bloch, Robert J" uniqKey="Bloch R" first="Robert J" last="Bloch">Robert J. Bloch</name>
</author>
</analytic>
<series>
<title level="j">Molecular membrane biology</title>
<idno type="eISSN">1464-5203</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alanine (genetics)</term>
<term>Alanine (metabolism)</term>
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Ankyrins (chemistry)</term>
<term>Ankyrins (genetics)</term>
<term>Ankyrins (metabolism)</term>
<term>Binding Sites</term>
<term>Guanine Nucleotide Exchange Factors (chemistry)</term>
<term>Guanine Nucleotide Exchange Factors (metabolism)</term>
<term>Hydrophobic and Hydrophilic Interactions</term>
<term>Leucine (genetics)</term>
<term>Leucine (metabolism)</term>
<term>Molecular Dynamics Simulation</term>
<term>Molecular Sequence Data</term>
<term>Muscle Proteins (chemistry)</term>
<term>Muscle Proteins (metabolism)</term>
<term>Mutagenesis, Site-Directed</term>
<term>Protein Binding</term>
<term>Protein Isoforms (chemistry)</term>
<term>Protein Isoforms (genetics)</term>
<term>Protein Isoforms (metabolism)</term>
<term>Rats</term>
<term>Recombinant Proteins (chemistry)</term>
<term>Recombinant Proteins (genetics)</term>
<term>Recombinant Proteins (metabolism)</term>
<term>Surface Plasmon Resonance</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alanine (génétique)</term>
<term>Alanine (métabolisme)</term>
<term>Animaux</term>
<term>Ankyrines ()</term>
<term>Ankyrines (génétique)</term>
<term>Ankyrines (métabolisme)</term>
<term>Données de séquences moléculaires</term>
<term>Facteurs d'échange de nucléotides guanyliques ()</term>
<term>Facteurs d'échange de nucléotides guanyliques (métabolisme)</term>
<term>Interactions hydrophobes et hydrophiles</term>
<term>Isoformes de protéines ()</term>
<term>Isoformes de protéines (génétique)</term>
<term>Isoformes de protéines (métabolisme)</term>
<term>Leucine (génétique)</term>
<term>Leucine (métabolisme)</term>
<term>Liaison aux protéines</term>
<term>Mutagenèse dirigée</term>
<term>Protéines du muscle ()</term>
<term>Protéines du muscle (métabolisme)</term>
<term>Protéines recombinantes ()</term>
<term>Protéines recombinantes (génétique)</term>
<term>Protéines recombinantes (métabolisme)</term>
<term>Rats</term>
<term>Résonance plasmonique de surface</term>
<term>Simulation de dynamique moléculaire</term>
<term>Sites de fixation</term>
<term>Séquence d'acides aminés</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Ankyrins</term>
<term>Guanine Nucleotide Exchange Factors</term>
<term>Muscle Proteins</term>
<term>Protein Isoforms</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Alanine</term>
<term>Ankyrins</term>
<term>Leucine</term>
<term>Protein Isoforms</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Alanine</term>
<term>Ankyrins</term>
<term>Guanine Nucleotide Exchange Factors</term>
<term>Leucine</term>
<term>Muscle Proteins</term>
<term>Protein Isoforms</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Alanine</term>
<term>Ankyrines</term>
<term>Isoformes de protéines</term>
<term>Leucine</term>
<term>Protéines recombinantes</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Alanine</term>
<term>Ankyrines</term>
<term>Facteurs d'échange de nucléotides guanyliques</term>
<term>Isoformes de protéines</term>
<term>Leucine</term>
<term>Protéines du muscle</term>
<term>Protéines recombinantes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Binding Sites</term>
<term>Hydrophobic and Hydrophilic Interactions</term>
<term>Molecular Dynamics Simulation</term>
<term>Molecular Sequence Data</term>
<term>Mutagenesis, Site-Directed</term>
<term>Protein Binding</term>
<term>Rats</term>
<term>Surface Plasmon Resonance</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Ankyrines</term>
<term>Données de séquences moléculaires</term>
<term>Facteurs d'échange de nucléotides guanyliques</term>
<term>Interactions hydrophobes et hydrophiles</term>
<term>Isoformes de protéines</term>
<term>Liaison aux protéines</term>
<term>Mutagenèse dirigée</term>
<term>Protéines du muscle</term>
<term>Protéines recombinantes</term>
<term>Rats</term>
<term>Résonance plasmonique de surface</term>
<term>Simulation de dynamique moléculaire</term>
<term>Sites de fixation</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract Small ankyrin-1 is a splice variant of the ANK1 gene that binds to obscurin A. Previous studies have identified electrostatic interactions that contribute to this interaction. In addition, molecular dynamics (MD) simulations predict four hydrophobic residues in a 'hot spot' on the surface of the ankyrin-like repeats of sAnk1, near the charged residues involved in binding. We used site-directed mutagenesis, blot overlays and surface plasmon resonance assays to study the contribution of the hydrophobic residues, V70, F71, I102 and I103, to two different 30-mers of obscurin that bind sAnk1, Obsc₆₃₁₆₋₆₃₄₅ and Obsc₆₂₃₁₋₆₂₆₀. Alanine mutations of each of the hydrophobic residues disrupted binding to the high affinity binding site, Obsc₆₃₁₆₋₆₃₄₅. In contrast, V70A and I102A mutations had no effect on binding to the lower affinity site, Obsc₆₂₃₁₋₆₂₆₀. Alanine mutagenesis of the five hydrophobic residues present in Obsc₆₃₁₆₋₆₃₄₅ showed that V6328, I6332, and V6334 were critical to sAnk1 binding. Individual alanine mutants of the six hydrophobic residues of Obsc₆₂₃₁₋₆₂₆₀ had no effect on binding to sAnk1, although a triple alanine mutant of residues V6233/I6234/I6235 decreased binding. We also examined a model of the Obsc₆₃₁₆₋₆₃₄₅-sAnk1 complex in MD simulations and found I102 of sAnk1 to be within 2.2Å of V6334 of Obsc₆₃₁₆₋₆₃₄₅. In contrast to the I102A mutation, mutating I102 of sAnk1 to other hydrophobic amino acids such as phenylalanine or leucine did not disrupt binding to obscurin. Our results suggest that hydrophobic interactions contribute to the higher affinity of Obsc₆₃₁₆₋₆₃₄₅ for sAnk1 and to the dominant role exhibited by this sequence in binding.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22416964</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>07</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1464-5203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>29</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2012</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Molecular membrane biology</Title>
<ISOAbbreviation>Mol. Membr. Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Hydrophobic residues in small ankyrin 1 participate in binding to obscurin.</ArticleTitle>
<Pagination>
<MedlinePgn>36-51</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3109/09687688.2012.660709</ELocationID>
<Abstract>
<AbstractText>Abstract Small ankyrin-1 is a splice variant of the ANK1 gene that binds to obscurin A. Previous studies have identified electrostatic interactions that contribute to this interaction. In addition, molecular dynamics (MD) simulations predict four hydrophobic residues in a 'hot spot' on the surface of the ankyrin-like repeats of sAnk1, near the charged residues involved in binding. We used site-directed mutagenesis, blot overlays and surface plasmon resonance assays to study the contribution of the hydrophobic residues, V70, F71, I102 and I103, to two different 30-mers of obscurin that bind sAnk1, Obsc₆₃₁₆₋₆₃₄₅ and Obsc₆₂₃₁₋₆₂₆₀. Alanine mutations of each of the hydrophobic residues disrupted binding to the high affinity binding site, Obsc₆₃₁₆₋₆₃₄₅. In contrast, V70A and I102A mutations had no effect on binding to the lower affinity site, Obsc₆₂₃₁₋₆₂₆₀. Alanine mutagenesis of the five hydrophobic residues present in Obsc₆₃₁₆₋₆₃₄₅ showed that V6328, I6332, and V6334 were critical to sAnk1 binding. Individual alanine mutants of the six hydrophobic residues of Obsc₆₂₃₁₋₆₂₆₀ had no effect on binding to sAnk1, although a triple alanine mutant of residues V6233/I6234/I6235 decreased binding. We also examined a model of the Obsc₆₃₁₆₋₆₃₄₅-sAnk1 complex in MD simulations and found I102 of sAnk1 to be within 2.2Å of V6334 of Obsc₆₃₁₆₋₆₃₄₅. In contrast to the I102A mutation, mutating I102 of sAnk1 to other hydrophobic amino acids such as phenylalanine or leucine did not disrupt binding to obscurin. Our results suggest that hydrophobic interactions contribute to the higher affinity of Obsc₆₃₁₆₋₆₃₄₅ for sAnk1 and to the dominant role exhibited by this sequence in binding.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Willis</LastName>
<ForeName>Chris D</ForeName>
<Initials>CD</Initials>
<AffiliationInfo>
<Affiliation>Program in Biochemistry and Molecular Biology, University of Maryland, Baltimore, Baltimore, MD, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Oashi</LastName>
<ForeName>Taiji</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Busby</LastName>
<ForeName>Ben</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mackerell</LastName>
<ForeName>Alexander D</ForeName>
<Initials>AD</Initials>
<Suffix>Jr</Suffix>
</Author>
<Author ValidYN="Y">
<LastName>Bloch</LastName>
<ForeName>Robert J</ForeName>
<Initials>RJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>T32 GM008181</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM051501</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 AR07592</GrantID>
<Acronym>AR</Acronym>
<Agency>NIAMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 GM08181</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 AR007592</GrantID>
<Acronym>AR</Acronym>
<Agency>NIAMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>CA120215</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 CA120215</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM051501</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R29 GM051501</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AR056330</GrantID>
<Acronym>AR</Acronym>
<Agency>NIAMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Mol Membr Biol</MedlineTA>
<NlmUniqueID>9430797</NlmUniqueID>
<ISSNLinking>0968-7688</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C540195">Ank1 protein, rat</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017487">Ankyrins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020662">Guanine Nucleotide Exchange Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009124">Muscle Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C503780">Obscn protein, rat</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020033">Protein Isoforms</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011994">Recombinant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GMW67QNF9C</RegistryNumber>
<NameOfSubstance UI="D007930">Leucine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>OF5P57N2ZX</RegistryNumber>
<NameOfSubstance UI="D000409">Alanine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000409" MajorTopicYN="N">Alanine</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017487" MajorTopicYN="N">Ankyrins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020662" MajorTopicYN="N">Guanine Nucleotide Exchange Factors</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057927" MajorTopicYN="N">Hydrophobic and Hydrophilic Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007930" MajorTopicYN="N">Leucine</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056004" MajorTopicYN="N">Molecular Dynamics Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009124" MajorTopicYN="N">Muscle Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016297" MajorTopicYN="N">Mutagenesis, Site-Directed</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020033" MajorTopicYN="N">Protein Isoforms</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051381" MajorTopicYN="N">Rats</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011994" MajorTopicYN="N">Recombinant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020349" MajorTopicYN="N">Surface Plasmon Resonance</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>3</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>3</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>7</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22416964</ArticleId>
<ArticleId IdType="doi">10.3109/09687688.2012.660709</ArticleId>
<ArticleId IdType="pmc">PMC3377380</ArticleId>
<ArticleId IdType="mid">NIHMS377901</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Cell. 1998 Dec 11;95(6):749-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9865693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1998 Dec 11;95(6):759-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9865694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Nov 2;282(44):32384-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17720975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1997 Feb 10;136(3):621-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9024692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2006 Jul 7;360(2):421-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16756995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 1998 Oct 15;6(10):1279-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9782052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Chem. 2009 Jul 30;30(10):1545-614</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19444816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Rev. 2009 Oct;89(4):1217-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19789381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Membr Biol. 2005 Sep-Oct;22(5):421-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16308276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2006 Oct;20(12):2102-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17012262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2009 Aug 1;122(Pt 15):2640-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19584095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2008 Jun 1;121(11):1841-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18477606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Chem. 2005 Dec;26(16):1781-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16222654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2010 Nov 23;49(46):9948-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20949908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Rev. 1977 Jan;57(1):71-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Histochem Cell Biol. 2009 Mar;131(3):371-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19002483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2003 Mar;14(3):1138-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12631729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2001 Jul 9;154(1):123-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11448995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 1998 Apr 30;102(18):3586-616</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24889800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2011 Apr 29;408(2):321-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21333652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 1998 May 15;6(5):619-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9634699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1992 Aug;11(8):2863-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1639060</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2004 Jun;13(6):1435-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15152081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2003 Jan 20;160(2):245-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12527750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Cell Res. 2005 Sep 10;309(1):86-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15953600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Biophys Mol Biol. 1968;18:123-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4894870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1971 Feb 14;55(3):379-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5551392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2010 Nov;1798(11):2084-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20682284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Chem. 2004 Aug;25(11):1400-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15185334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Cell Res. 2006 Nov 1;312(18):3546-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16962094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2007 Apr 17;581(8):1549-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17382936</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Maryland</li>
</region>
<settlement>
<li>College Park (Maryland)</li>
</settlement>
<orgName>
<li>Université du Maryland</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Bloch, Robert J" sort="Bloch, Robert J" uniqKey="Bloch R" first="Robert J" last="Bloch">Robert J. Bloch</name>
<name sortKey="Busby, Ben" sort="Busby, Ben" uniqKey="Busby B" first="Ben" last="Busby">Ben Busby</name>
<name sortKey="Mackerell, Alexander D" sort="Mackerell, Alexander D" uniqKey="Mackerell A" first="Alexander D" last="Mackerell">Alexander D. Mackerell</name>
<name sortKey="Oashi, Taiji" sort="Oashi, Taiji" uniqKey="Oashi T" first="Taiji" last="Oashi">Taiji Oashi</name>
</noCountry>
<country name="États-Unis">
<region name="Maryland">
<name sortKey="Willis, Chris D" sort="Willis, Chris D" uniqKey="Willis C" first="Chris D" last="Willis">Chris D. Willis</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001C77 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 001C77 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:22416964
   |texte=   Hydrophobic residues in small ankyrin 1 participate in binding to obscurin.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:22416964" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021