Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Organizational heterogeneity of vertebrate genomes.

Identifieur interne : 001C54 ( PubMed/Checkpoint ); précédent : 001C53; suivant : 001C55

Organizational heterogeneity of vertebrate genomes.

Auteurs : Svetlana Frenkel [Israël] ; Valery Kirzhner ; Abraham Korol

Source :

RBID : pubmed:22384143

Descripteurs français

English descriptors

Abstract

Genomes of higher eukaryotes are mosaics of segments with various structural, functional, and evolutionary properties. The availability of whole-genome sequences allows the investigation of their structure as "texts" using different statistical and computational methods. One such method, referred to as Compositional Spectra (CS) analysis, is based on scoring the occurrences of fixed-length oligonucleotides (k-mers) in the target DNA sequence. CS analysis allows generating species- or region-specific characteristics of the genome, regardless of their length and the presence of coding DNA. In this study, we consider the heterogeneity of vertebrate genomes as a joint effect of regional variation in sequence organization superimposed on the differences in nucleotide composition. We estimated compositional and organizational heterogeneity of genome and chromosome sequences separately and found that both heterogeneity types vary widely among genomes as well as among chromosomes in all investigated taxonomic groups. The high correspondence of heterogeneity scores obtained on three genome fractions, coding, repetitive, and the remaining part of the noncoding DNA (the genome dark matter--GDM) allows the assumption that CS-heterogeneity may have functional relevance to genome regulation. Of special interest for such interpretation is the fact that natural GDM sequences display the highest deviation from the corresponding reshuffled sequences.

DOI: 10.1371/journal.pone.0032076
PubMed: 22384143


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:22384143

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Organizational heterogeneity of vertebrate genomes.</title>
<author>
<name sortKey="Frenkel, Svetlana" sort="Frenkel, Svetlana" uniqKey="Frenkel S" first="Svetlana" last="Frenkel">Svetlana Frenkel</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Evolutionary and Environmental Biology and Institute of Evolution, University of Haifa, Mount Carmel, Haifa, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Department of Evolutionary and Environmental Biology and Institute of Evolution, University of Haifa, Mount Carmel, Haifa</wicri:regionArea>
<wicri:noRegion>Haifa</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kirzhner, Valery" sort="Kirzhner, Valery" uniqKey="Kirzhner V" first="Valery" last="Kirzhner">Valery Kirzhner</name>
</author>
<author>
<name sortKey="Korol, Abraham" sort="Korol, Abraham" uniqKey="Korol A" first="Abraham" last="Korol">Abraham Korol</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22384143</idno>
<idno type="pmid">22384143</idno>
<idno type="doi">10.1371/journal.pone.0032076</idno>
<idno type="wicri:Area/PubMed/Corpus">001E02</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001E02</idno>
<idno type="wicri:Area/PubMed/Curation">001E02</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001E02</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001C54</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001C54</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Organizational heterogeneity of vertebrate genomes.</title>
<author>
<name sortKey="Frenkel, Svetlana" sort="Frenkel, Svetlana" uniqKey="Frenkel S" first="Svetlana" last="Frenkel">Svetlana Frenkel</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Evolutionary and Environmental Biology and Institute of Evolution, University of Haifa, Mount Carmel, Haifa, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Department of Evolutionary and Environmental Biology and Institute of Evolution, University of Haifa, Mount Carmel, Haifa</wicri:regionArea>
<wicri:noRegion>Haifa</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kirzhner, Valery" sort="Kirzhner, Valery" uniqKey="Kirzhner V" first="Valery" last="Kirzhner">Valery Kirzhner</name>
</author>
<author>
<name sortKey="Korol, Abraham" sort="Korol, Abraham" uniqKey="Korol A" first="Abraham" last="Korol">Abraham Korol</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithms</term>
<term>Animals</term>
<term>Base Sequence</term>
<term>Biodiversity</term>
<term>Chromosomes (ultrastructure)</term>
<term>CpG Islands</term>
<term>Fishes</term>
<term>Genetic Variation</term>
<term>Genome</term>
<term>Humans</term>
<term>Mammals (metabolism)</term>
<term>Models, Genetic</term>
<term>Models, Statistical</term>
<term>Molecular Sequence Data</term>
<term>Oligonucleotides (genetics)</term>
<term>Sequence Analysis, DNA</term>
<term>Software</term>
<term>Vertebrates</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Algorithmes</term>
<term>Analyse de séquence d'ADN</term>
<term>Animaux</term>
<term>Biodiversité</term>
<term>Chromosomes (ultrastructure)</term>
<term>Données de séquences moléculaires</term>
<term>Génome</term>
<term>Humains</term>
<term>Ilots CpG</term>
<term>Logiciel</term>
<term>Mammifères (métabolisme)</term>
<term>Modèles génétiques</term>
<term>Modèles statistiques</term>
<term>Oligonucléotides (génétique)</term>
<term>Poissons</term>
<term>Séquence nucléotidique</term>
<term>Variation génétique</term>
<term>Vertébrés</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Oligonucleotides</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Oligonucléotides</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Mammals</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Mammifères</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="en">
<term>Chromosomes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Algorithms</term>
<term>Animals</term>
<term>Base Sequence</term>
<term>Biodiversity</term>
<term>CpG Islands</term>
<term>Fishes</term>
<term>Genetic Variation</term>
<term>Genome</term>
<term>Humans</term>
<term>Models, Genetic</term>
<term>Models, Statistical</term>
<term>Molecular Sequence Data</term>
<term>Sequence Analysis, DNA</term>
<term>Software</term>
<term>Vertebrates</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="fr">
<term>Algorithmes</term>
<term>Analyse de séquence d'ADN</term>
<term>Animaux</term>
<term>Biodiversité</term>
<term>Chromosomes</term>
<term>Données de séquences moléculaires</term>
<term>Génome</term>
<term>Humains</term>
<term>Ilots CpG</term>
<term>Logiciel</term>
<term>Modèles génétiques</term>
<term>Modèles statistiques</term>
<term>Poissons</term>
<term>Séquence nucléotidique</term>
<term>Variation génétique</term>
<term>Vertébrés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Genomes of higher eukaryotes are mosaics of segments with various structural, functional, and evolutionary properties. The availability of whole-genome sequences allows the investigation of their structure as "texts" using different statistical and computational methods. One such method, referred to as Compositional Spectra (CS) analysis, is based on scoring the occurrences of fixed-length oligonucleotides (k-mers) in the target DNA sequence. CS analysis allows generating species- or region-specific characteristics of the genome, regardless of their length and the presence of coding DNA. In this study, we consider the heterogeneity of vertebrate genomes as a joint effect of regional variation in sequence organization superimposed on the differences in nucleotide composition. We estimated compositional and organizational heterogeneity of genome and chromosome sequences separately and found that both heterogeneity types vary widely among genomes as well as among chromosomes in all investigated taxonomic groups. The high correspondence of heterogeneity scores obtained on three genome fractions, coding, repetitive, and the remaining part of the noncoding DNA (the genome dark matter--GDM) allows the assumption that CS-heterogeneity may have functional relevance to genome regulation. Of special interest for such interpretation is the fact that natural GDM sequences display the highest deviation from the corresponding reshuffled sequences.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22384143</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>08</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2012</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS ONE</ISOAbbreviation>
</Journal>
<ArticleTitle>Organizational heterogeneity of vertebrate genomes.</ArticleTitle>
<Pagination>
<MedlinePgn>e32076</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0032076</ELocationID>
<Abstract>
<AbstractText>Genomes of higher eukaryotes are mosaics of segments with various structural, functional, and evolutionary properties. The availability of whole-genome sequences allows the investigation of their structure as "texts" using different statistical and computational methods. One such method, referred to as Compositional Spectra (CS) analysis, is based on scoring the occurrences of fixed-length oligonucleotides (k-mers) in the target DNA sequence. CS analysis allows generating species- or region-specific characteristics of the genome, regardless of their length and the presence of coding DNA. In this study, we consider the heterogeneity of vertebrate genomes as a joint effect of regional variation in sequence organization superimposed on the differences in nucleotide composition. We estimated compositional and organizational heterogeneity of genome and chromosome sequences separately and found that both heterogeneity types vary widely among genomes as well as among chromosomes in all investigated taxonomic groups. The high correspondence of heterogeneity scores obtained on three genome fractions, coding, repetitive, and the remaining part of the noncoding DNA (the genome dark matter--GDM) allows the assumption that CS-heterogeneity may have functional relevance to genome regulation. Of special interest for such interpretation is the fact that natural GDM sequences display the highest deviation from the corresponding reshuffled sequences.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Frenkel</LastName>
<ForeName>Svetlana</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Evolutionary and Environmental Biology and Institute of Evolution, University of Haifa, Mount Carmel, Haifa, Israel.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kirzhner</LastName>
<ForeName>Valery</ForeName>
<Initials>V</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Korol</LastName>
<ForeName>Abraham</ForeName>
<Initials>A</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>02</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009841">Oligonucleotides</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000465" MajorTopicYN="N">Algorithms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044822" MajorTopicYN="N">Biodiversity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002875" MajorTopicYN="N">Chromosomes</DescriptorName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018899" MajorTopicYN="N">CpG Islands</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005399" MajorTopicYN="N">Fishes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014644" MajorTopicYN="N">Genetic Variation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016678" MajorTopicYN="Y">Genome</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008322" MajorTopicYN="N">Mammals</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008957" MajorTopicYN="N">Models, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015233" MajorTopicYN="N">Models, Statistical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009841" MajorTopicYN="N">Oligonucleotides</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012984" MajorTopicYN="N">Software</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014714" MajorTopicYN="N">Vertebrates</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>08</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>01</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>3</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>3</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>8</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22384143</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0032076</ArticleId>
<ArticleId IdType="pii">PONE-D-11-15938</ArticleId>
<ArticleId IdType="pmc">PMC3288070</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Trends Microbiol. 2001 Jul;9(7):335-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11435108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol Evol. 2011;3:614-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21697099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1998 Sep 4;281(5):827-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9719638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2003 Mar 1;19(4):513-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12611807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2002 Nov;3(11):838-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12415314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Apr 7;434(7034):724-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15815621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Sep 1;31(17):5212-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12930973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1980 Oct 10;8(19):4545-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7433114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biostatistics. 2010 Jul;11(3):499-514</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20212320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005;33(1):e6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15653627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2000 Dec;10(12):1986-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11116093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2002 Apr;12(4):656-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11932250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 1989;23:637-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2694946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genomics Hum Genet. 2009;10:285-311</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19630562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosystems. 2005 Sep;81(3):208-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15936870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Jan 25;445(7126):379-781</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17251970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2007 Nov;23(11):543-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17964682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 1998 Sep;8(9):916-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9750191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Feb 24;106(8):2677-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19188606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Genet. 2008;61:307-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18282512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2005 Dec;21(12):639-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16202472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2000 Jan 4;241(1):3-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10607893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol Evol. 2010 Feb 08;2:153-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20333231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2001 Oct 3;276(1-2):57-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11591472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Nov 1;21(21):3951-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16131519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Mar;75(3 Pt 1):032903</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17500745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Jan 1;27(1):127-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21062764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Aug 17;317(5840):915</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17702936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 2007 Apr;64(4):448-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17479343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1998 Dec 11;224(1-2):123-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9931467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2009;10:146</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19344507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Dec 5;420(6915):578-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12466853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Sep;66(3 Pt 1):031913</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12366158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2003 Sep;13(9):1998-2004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12915492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chromosoma. 2007 Feb;116(1):29-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17072634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2007 Jan;175(1):421-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17057231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 1994;48:619-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7826021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004;32(3):949-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14963262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics. 1992 Aug;13(4):1095-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1505946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol Struct Dyn. 1990 Jun;7(6):1251-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2363847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2005;5:63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16280081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2005 Nov;15(11):1519-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16251462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1999 Dec 2;402(6761):489-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10591208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12837-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7809131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Sep 22;437(7058):551-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16177791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2002 Oct 30;300(1-2):129-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12468094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2005 Nov;15(11):1468-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16251456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Apr 1;428(6982):529-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15057824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Nov;24(11):2385-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17728280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Biol Med Model. 2005;2:20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15927055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Bioinformatics. 2008;2008:205969</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19956701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2003 Oct 1;12(19):2411-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12915446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 Nov;18(11):1743-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18832441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2006 Oct 15;15 Spec No 2:R170-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16987880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2010 Jun;22(3):326-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20493676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1987 Jul 20;196(2):261-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3656447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 May 18;405(6784):311-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10830953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2001 Apr;2(4):292-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11283701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2007 Oct 1;400(1-2):9-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17629634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Apr 20;440(7087):1045-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16625196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Oct 31;302(5646):842-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14593172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Theor Biol. 1999 Mar 7;197(1):63-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10036208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Biol. 2007 Apr;56(2):206-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17454975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2010 Jan;27(1):177-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19759235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2003 Oct;13(10):2306-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12975312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cytogenet Genome Res. 2007;116(3):167-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17317955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2003 Feb 21;112(4):403-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12600306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2005 Feb 1;14(3):421-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15590696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(8):e22855</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21829660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3433-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18305168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2008;9:632</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19108743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2003 Apr;13(4):693-702</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12671005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Feb 3;101(5):1268-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14736919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Oct 9;326(5950):289-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19815776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2004 Nov 22;20(17):3156-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15217808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Theor Biol. 1999 Mar 7;197(1):51-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10036207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jul 12;102(28):9836-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15985556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2003 Oct;20(10):1633-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12885971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2006 Jan;23(1):56-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16151189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Sep 16;105(37):13971-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18780784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2005 Feb;6(2):151-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15716910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2010 Jun;20(6):761-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20430782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2004 Apr;14(4):528-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15059993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Feb 16;291(5507):1289-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11181992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 May 28;304(5675):1321-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15131266</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Israël</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Kirzhner, Valery" sort="Kirzhner, Valery" uniqKey="Kirzhner V" first="Valery" last="Kirzhner">Valery Kirzhner</name>
<name sortKey="Korol, Abraham" sort="Korol, Abraham" uniqKey="Korol A" first="Abraham" last="Korol">Abraham Korol</name>
</noCountry>
<country name="Israël">
<noRegion>
<name sortKey="Frenkel, Svetlana" sort="Frenkel, Svetlana" uniqKey="Frenkel S" first="Svetlana" last="Frenkel">Svetlana Frenkel</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001C54 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 001C54 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:22384143
   |texte=   Organizational heterogeneity of vertebrate genomes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:22384143" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021