Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Reverse genetics with a full-length infectious cDNA of the Middle East respiratory syndrome coronavirus.

Identifieur interne : 001A74 ( PubMed/Checkpoint ); précédent : 001A73; suivant : 001A75

Reverse genetics with a full-length infectious cDNA of the Middle East respiratory syndrome coronavirus.

Auteurs : Trevor Scobey [États-Unis] ; Boyd L. Yount ; Amy C. Sims ; Eric F. Donaldson ; Sudhakar S. Agnihothram ; Vineet D. Menachery ; Rachel L. Graham ; Jesica Swanstrom ; Peter F. Bove ; Jeeho D. Kim ; Sonia Grego ; Scott H. Randell ; Ralph S. Baric

Source :

RBID : pubmed:24043791

Descripteurs français

English descriptors

Abstract

Severe acute respiratory syndrome with high mortality rates (~50%) is associated with a novel group 2c betacoronavirus designated Middle East respiratory syndrome coronavirus (MERS-CoV). We synthesized a panel of contiguous cDNAs that spanned the entire genome. Following contig assembly into genome-length cDNA, transfected full-length transcripts recovered several recombinant viruses (rMERS-CoV) that contained the expected marker mutations inserted into the component clones. Because the wild-type MERS-CoV contains a tissue culture-adapted T1015N mutation in the S glycoprotein, rMERS-CoV replicated ~0.5 log less efficiently than wild-type virus. In addition, we ablated expression of the accessory protein ORF5 (rMERS•ORF5) and replaced it with tomato red fluorescent protein (rMERS-RFP) or deleted the entire ORF3, 4, and 5 accessory cluster (rMERS-ΔORF3-5). Recombinant rMERS-CoV, rMERS-CoV•ORF5, and MERS-CoV-RFP replicated to high titers, whereas MERS-ΔORF3-5 showed 1-1.5 logs reduced titer compared with rMERS-CoV. Northern blot analyses confirmed the associated molecular changes in the recombinant viruses, and sequence analysis demonstrated that RFP was expressed from the appropriate consensus sequence AACGAA. We further show dipeptidyl peptidase 4 expression, MERS-CoV replication, and RNA and protein synthesis in human airway epithelial cell cultures, primary lung fibroblasts, primary lung microvascular endothelial cells, and primary alveolar type II pneumocytes, demonstrating a much broader tissue tropism than severe acute respiratory syndrome coronavirus. The availability of a MERS-CoV molecular clone, as well as recombinant viruses expressing indicator proteins, will allow for high-throughput testing of therapeutic compounds and provide a genetic platform for studying gene function and the rational design of live virus vaccines.

DOI: 10.1073/pnas.1311542110
PubMed: 24043791


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:24043791

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Reverse genetics with a full-length infectious cDNA of the Middle East respiratory syndrome coronavirus.</title>
<author>
<name sortKey="Scobey, Trevor" sort="Scobey, Trevor" uniqKey="Scobey T" first="Trevor" last="Scobey">Trevor Scobey</name>
<affiliation wicri:level="2">
<nlm:affiliation>Departments of Epidemiology, Cell Biology and Physiology, and Microbiology and Immunology and Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7435.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Departments of Epidemiology, Cell Biology and Physiology, and Microbiology and Immunology and Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Yount, Boyd L" sort="Yount, Boyd L" uniqKey="Yount B" first="Boyd L" last="Yount">Boyd L. Yount</name>
</author>
<author>
<name sortKey="Sims, Amy C" sort="Sims, Amy C" uniqKey="Sims A" first="Amy C" last="Sims">Amy C. Sims</name>
</author>
<author>
<name sortKey="Donaldson, Eric F" sort="Donaldson, Eric F" uniqKey="Donaldson E" first="Eric F" last="Donaldson">Eric F. Donaldson</name>
</author>
<author>
<name sortKey="Agnihothram, Sudhakar S" sort="Agnihothram, Sudhakar S" uniqKey="Agnihothram S" first="Sudhakar S" last="Agnihothram">Sudhakar S. Agnihothram</name>
</author>
<author>
<name sortKey="Menachery, Vineet D" sort="Menachery, Vineet D" uniqKey="Menachery V" first="Vineet D" last="Menachery">Vineet D. Menachery</name>
</author>
<author>
<name sortKey="Graham, Rachel L" sort="Graham, Rachel L" uniqKey="Graham R" first="Rachel L" last="Graham">Rachel L. Graham</name>
</author>
<author>
<name sortKey="Swanstrom, Jesica" sort="Swanstrom, Jesica" uniqKey="Swanstrom J" first="Jesica" last="Swanstrom">Jesica Swanstrom</name>
</author>
<author>
<name sortKey="Bove, Peter F" sort="Bove, Peter F" uniqKey="Bove P" first="Peter F" last="Bove">Peter F. Bove</name>
</author>
<author>
<name sortKey="Kim, Jeeho D" sort="Kim, Jeeho D" uniqKey="Kim J" first="Jeeho D" last="Kim">Jeeho D. Kim</name>
</author>
<author>
<name sortKey="Grego, Sonia" sort="Grego, Sonia" uniqKey="Grego S" first="Sonia" last="Grego">Sonia Grego</name>
</author>
<author>
<name sortKey="Randell, Scott H" sort="Randell, Scott H" uniqKey="Randell S" first="Scott H" last="Randell">Scott H. Randell</name>
</author>
<author>
<name sortKey="Baric, Ralph S" sort="Baric, Ralph S" uniqKey="Baric R" first="Ralph S" last="Baric">Ralph S. Baric</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:24043791</idno>
<idno type="pmid">24043791</idno>
<idno type="doi">10.1073/pnas.1311542110</idno>
<idno type="wicri:Area/PubMed/Corpus">001B87</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001B87</idno>
<idno type="wicri:Area/PubMed/Curation">001B87</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001B87</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001A74</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001A74</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Reverse genetics with a full-length infectious cDNA of the Middle East respiratory syndrome coronavirus.</title>
<author>
<name sortKey="Scobey, Trevor" sort="Scobey, Trevor" uniqKey="Scobey T" first="Trevor" last="Scobey">Trevor Scobey</name>
<affiliation wicri:level="2">
<nlm:affiliation>Departments of Epidemiology, Cell Biology and Physiology, and Microbiology and Immunology and Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7435.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Departments of Epidemiology, Cell Biology and Physiology, and Microbiology and Immunology and Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Yount, Boyd L" sort="Yount, Boyd L" uniqKey="Yount B" first="Boyd L" last="Yount">Boyd L. Yount</name>
</author>
<author>
<name sortKey="Sims, Amy C" sort="Sims, Amy C" uniqKey="Sims A" first="Amy C" last="Sims">Amy C. Sims</name>
</author>
<author>
<name sortKey="Donaldson, Eric F" sort="Donaldson, Eric F" uniqKey="Donaldson E" first="Eric F" last="Donaldson">Eric F. Donaldson</name>
</author>
<author>
<name sortKey="Agnihothram, Sudhakar S" sort="Agnihothram, Sudhakar S" uniqKey="Agnihothram S" first="Sudhakar S" last="Agnihothram">Sudhakar S. Agnihothram</name>
</author>
<author>
<name sortKey="Menachery, Vineet D" sort="Menachery, Vineet D" uniqKey="Menachery V" first="Vineet D" last="Menachery">Vineet D. Menachery</name>
</author>
<author>
<name sortKey="Graham, Rachel L" sort="Graham, Rachel L" uniqKey="Graham R" first="Rachel L" last="Graham">Rachel L. Graham</name>
</author>
<author>
<name sortKey="Swanstrom, Jesica" sort="Swanstrom, Jesica" uniqKey="Swanstrom J" first="Jesica" last="Swanstrom">Jesica Swanstrom</name>
</author>
<author>
<name sortKey="Bove, Peter F" sort="Bove, Peter F" uniqKey="Bove P" first="Peter F" last="Bove">Peter F. Bove</name>
</author>
<author>
<name sortKey="Kim, Jeeho D" sort="Kim, Jeeho D" uniqKey="Kim J" first="Jeeho D" last="Kim">Jeeho D. Kim</name>
</author>
<author>
<name sortKey="Grego, Sonia" sort="Grego, Sonia" uniqKey="Grego S" first="Sonia" last="Grego">Sonia Grego</name>
</author>
<author>
<name sortKey="Randell, Scott H" sort="Randell, Scott H" uniqKey="Randell S" first="Scott H" last="Randell">Scott H. Randell</name>
</author>
<author>
<name sortKey="Baric, Ralph S" sort="Baric, Ralph S" uniqKey="Baric R" first="Ralph S" last="Baric">Ralph S. Baric</name>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="eISSN">1091-6490</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Blotting, Northern</term>
<term>Blotting, Western</term>
<term>Cells, Cultured</term>
<term>Communicable Diseases, Emerging (virology)</term>
<term>Coronavirus (genetics)</term>
<term>DNA Primers (genetics)</term>
<term>DNA, Complementary (genetics)</term>
<term>Dipeptidyl Peptidase 4 (metabolism)</term>
<term>Gene Expression Regulation, Viral (genetics)</term>
<term>Gene Expression Regulation, Viral (physiology)</term>
<term>Humans</term>
<term>Luminescent Proteins</term>
<term>Middle East</term>
<term>Polymorphism, Restriction Fragment Length</term>
<term>Real-Time Polymerase Chain Reaction</term>
<term>Severe Acute Respiratory Syndrome (virology)</term>
<term>Spike Glycoprotein, Coronavirus (genetics)</term>
<term>Spike Glycoprotein, Coronavirus (physiology)</term>
<term>Virus Attachment</term>
<term>Virus Replication (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN complémentaire (génétique)</term>
<term>Amorces ADN (génétique)</term>
<term>Attachement viral</term>
<term>Cellules cultivées</term>
<term>Coronavirus (génétique)</term>
<term>Dipeptidyl peptidase 4 (métabolisme)</term>
<term>Glycoprotéine de spicule des coronavirus (génétique)</term>
<term>Glycoprotéine de spicule des coronavirus (physiologie)</term>
<term>Humains</term>
<term>Maladies transmissibles émergentes (virologie)</term>
<term>Moyen Orient</term>
<term>Polymorphisme de restriction</term>
<term>Protéines luminescentes</term>
<term>Réaction de polymérisation en chaine en temps réel</term>
<term>Régulation de l'expression des gènes viraux (génétique)</term>
<term>Régulation de l'expression des gènes viraux (physiologie)</term>
<term>Réplication virale (physiologie)</term>
<term>Syndrome respiratoire aigu sévère (virologie)</term>
<term>Technique de Northern</term>
<term>Technique de Western</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA Primers</term>
<term>DNA, Complementary</term>
<term>Spike Glycoprotein, Coronavirus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Spike Glycoprotein, Coronavirus</term>
</keywords>
<keywords scheme="MESH" type="geographic" xml:lang="en">
<term>Middle East</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Coronavirus</term>
<term>Gene Expression Regulation, Viral</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN complémentaire</term>
<term>Amorces ADN</term>
<term>Coronavirus</term>
<term>Glycoprotéine de spicule des coronavirus</term>
<term>Régulation de l'expression des gènes viraux</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Dipeptidyl Peptidase 4</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Dipeptidyl peptidase 4</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Glycoprotéine de spicule des coronavirus</term>
<term>Régulation de l'expression des gènes viraux</term>
<term>Réplication virale</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Gene Expression Regulation, Viral</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Maladies transmissibles émergentes</term>
<term>Syndrome respiratoire aigu sévère</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Communicable Diseases, Emerging</term>
<term>Severe Acute Respiratory Syndrome</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Blotting, Northern</term>
<term>Blotting, Western</term>
<term>Cells, Cultured</term>
<term>Humans</term>
<term>Luminescent Proteins</term>
<term>Polymorphism, Restriction Fragment Length</term>
<term>Real-Time Polymerase Chain Reaction</term>
<term>Virus Attachment</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Attachement viral</term>
<term>Cellules cultivées</term>
<term>Humains</term>
<term>Moyen Orient</term>
<term>Polymorphisme de restriction</term>
<term>Protéines luminescentes</term>
<term>Réaction de polymérisation en chaine en temps réel</term>
<term>Technique de Northern</term>
<term>Technique de Western</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Severe acute respiratory syndrome with high mortality rates (~50%) is associated with a novel group 2c betacoronavirus designated Middle East respiratory syndrome coronavirus (MERS-CoV). We synthesized a panel of contiguous cDNAs that spanned the entire genome. Following contig assembly into genome-length cDNA, transfected full-length transcripts recovered several recombinant viruses (rMERS-CoV) that contained the expected marker mutations inserted into the component clones. Because the wild-type MERS-CoV contains a tissue culture-adapted T1015N mutation in the S glycoprotein, rMERS-CoV replicated ~0.5 log less efficiently than wild-type virus. In addition, we ablated expression of the accessory protein ORF5 (rMERS•ORF5) and replaced it with tomato red fluorescent protein (rMERS-RFP) or deleted the entire ORF3, 4, and 5 accessory cluster (rMERS-ΔORF3-5). Recombinant rMERS-CoV, rMERS-CoV•ORF5, and MERS-CoV-RFP replicated to high titers, whereas MERS-ΔORF3-5 showed 1-1.5 logs reduced titer compared with rMERS-CoV. Northern blot analyses confirmed the associated molecular changes in the recombinant viruses, and sequence analysis demonstrated that RFP was expressed from the appropriate consensus sequence AACGAA. We further show dipeptidyl peptidase 4 expression, MERS-CoV replication, and RNA and protein synthesis in human airway epithelial cell cultures, primary lung fibroblasts, primary lung microvascular endothelial cells, and primary alveolar type II pneumocytes, demonstrating a much broader tissue tropism than severe acute respiratory syndrome coronavirus. The availability of a MERS-CoV molecular clone, as well as recombinant viruses expressing indicator proteins, will allow for high-throughput testing of therapeutic compounds and provide a genetic platform for studying gene function and the rational design of live virus vaccines.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24043791</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>12</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1091-6490</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>110</Volume>
<Issue>40</Issue>
<PubDate>
<Year>2013</Year>
<Month>Oct</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc. Natl. Acad. Sci. U.S.A.</ISOAbbreviation>
</Journal>
<ArticleTitle>Reverse genetics with a full-length infectious cDNA of the Middle East respiratory syndrome coronavirus.</ArticleTitle>
<Pagination>
<MedlinePgn>16157-62</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1073/pnas.1311542110</ELocationID>
<Abstract>
<AbstractText>Severe acute respiratory syndrome with high mortality rates (~50%) is associated with a novel group 2c betacoronavirus designated Middle East respiratory syndrome coronavirus (MERS-CoV). We synthesized a panel of contiguous cDNAs that spanned the entire genome. Following contig assembly into genome-length cDNA, transfected full-length transcripts recovered several recombinant viruses (rMERS-CoV) that contained the expected marker mutations inserted into the component clones. Because the wild-type MERS-CoV contains a tissue culture-adapted T1015N mutation in the S glycoprotein, rMERS-CoV replicated ~0.5 log less efficiently than wild-type virus. In addition, we ablated expression of the accessory protein ORF5 (rMERS•ORF5) and replaced it with tomato red fluorescent protein (rMERS-RFP) or deleted the entire ORF3, 4, and 5 accessory cluster (rMERS-ΔORF3-5). Recombinant rMERS-CoV, rMERS-CoV•ORF5, and MERS-CoV-RFP replicated to high titers, whereas MERS-ΔORF3-5 showed 1-1.5 logs reduced titer compared with rMERS-CoV. Northern blot analyses confirmed the associated molecular changes in the recombinant viruses, and sequence analysis demonstrated that RFP was expressed from the appropriate consensus sequence AACGAA. We further show dipeptidyl peptidase 4 expression, MERS-CoV replication, and RNA and protein synthesis in human airway epithelial cell cultures, primary lung fibroblasts, primary lung microvascular endothelial cells, and primary alveolar type II pneumocytes, demonstrating a much broader tissue tropism than severe acute respiratory syndrome coronavirus. The availability of a MERS-CoV molecular clone, as well as recombinant viruses expressing indicator proteins, will allow for high-throughput testing of therapeutic compounds and provide a genetic platform for studying gene function and the rational design of live virus vaccines.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Scobey</LastName>
<ForeName>Trevor</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Departments of Epidemiology, Cell Biology and Physiology, and Microbiology and Immunology and Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7435.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yount</LastName>
<ForeName>Boyd L</ForeName>
<Initials>BL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sims</LastName>
<ForeName>Amy C</ForeName>
<Initials>AC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Donaldson</LastName>
<ForeName>Eric F</ForeName>
<Initials>EF</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Agnihothram</LastName>
<ForeName>Sudhakar S</ForeName>
<Initials>SS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Menachery</LastName>
<ForeName>Vineet D</ForeName>
<Initials>VD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Graham</LastName>
<ForeName>Rachel L</ForeName>
<Initials>RL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Swanstrom</LastName>
<ForeName>Jesica</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bove</LastName>
<ForeName>Peter F</ForeName>
<Initials>PF</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kim</LastName>
<ForeName>Jeeho D</ForeName>
<Initials>JD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Grego</LastName>
<ForeName>Sonia</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Randell</LastName>
<ForeName>Scott H</ForeName>
<Initials>SH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Baric</LastName>
<ForeName>Ralph S</ForeName>
<Initials>RS</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 AI085524</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>AI085524</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>AI108197</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI108197</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U19AI100625</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U19AI107810</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U19 AI107810</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U19 AI100625</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>09</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017931">DNA Primers</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018076">DNA, Complementary</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008164">Luminescent Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064370">Spike Glycoprotein, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C413662">red fluorescent protein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.14.5</RegistryNumber>
<NameOfSubstance UI="D018819">Dipeptidyl Peptidase 4</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D015152" MajorTopicYN="N">Blotting, Northern</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015153" MajorTopicYN="N">Blotting, Western</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002478" MajorTopicYN="N">Cells, Cultured</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021821" MajorTopicYN="N">Communicable Diseases, Emerging</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017934" MajorTopicYN="N">Coronavirus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017931" MajorTopicYN="N">DNA Primers</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018076" MajorTopicYN="N">DNA, Complementary</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018819" MajorTopicYN="N">Dipeptidyl Peptidase 4</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015967" MajorTopicYN="N">Gene Expression Regulation, Viral</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008164" MajorTopicYN="N">Luminescent Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008877" MajorTopicYN="N" Type="Geographic">Middle East</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012150" MajorTopicYN="N">Polymorphism, Restriction Fragment Length</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060888" MajorTopicYN="N">Real-Time Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045169" MajorTopicYN="N">Severe Acute Respiratory Syndrome</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064370" MajorTopicYN="N">Spike Glycoprotein, Coronavirus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053585" MajorTopicYN="N">Virus Attachment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014779" MajorTopicYN="N">Virus Replication</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">emerging pathogen</Keyword>
<Keyword MajorTopicYN="N">synthetic genome</Keyword>
<Keyword MajorTopicYN="N">zoonosis</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>9</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>9</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>12</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24043791</ArticleId>
<ArticleId IdType="pii">1311542110</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.1311542110</ArticleId>
<ArticleId IdType="pmc">PMC3791741</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):12995-3000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14569023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2013 Oct 15;208(8):1350-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23878322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1997 Mar;71(3):1946-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9032326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Microbiol Immunol. 2005;287:31-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15609508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Aug 15;103(33):12546-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16891412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Jul;81(14):7410-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17507479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Feb;82(3):1414-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18032498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Jun;82(11):5137-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18367528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Dec;82(23):11948-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18818320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Dec 16;105(50):19944-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19036930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Intern Med. 2009;48(9):621-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19420806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2009 Jun;7(6):439-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19430490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Respir Res. 2009;10:102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19874627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Nov 5;285(45):34939-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20801871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2012 Jan;86(2):667-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22072765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Virol. 2012 Jun;2(3):264-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22572391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2013;945:109-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23097104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2012 Dec;86(23):12816-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22993147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2012 Nov 8;367(19):1814-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23075143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2012;3(6). pii: e00473-12. doi: 10.1128/mBio.00473-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23170002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2012 Dec;18(12):1820-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23142821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Apr;87(7):3885-902</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23365422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Mar 14;495(7440):251-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23486063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2013 Apr 18;368(16):1560-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23550601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 May;87(10):5502-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23468491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Jun;87(11):6081-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23427150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Jun;87(12):6604-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23552422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2013 Jun 27;368(26):2487-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23718156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2013 Aug;23(8):986-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23835475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Jun 1;101(22):8455-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15150417</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Caroline du Nord</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Agnihothram, Sudhakar S" sort="Agnihothram, Sudhakar S" uniqKey="Agnihothram S" first="Sudhakar S" last="Agnihothram">Sudhakar S. Agnihothram</name>
<name sortKey="Baric, Ralph S" sort="Baric, Ralph S" uniqKey="Baric R" first="Ralph S" last="Baric">Ralph S. Baric</name>
<name sortKey="Bove, Peter F" sort="Bove, Peter F" uniqKey="Bove P" first="Peter F" last="Bove">Peter F. Bove</name>
<name sortKey="Donaldson, Eric F" sort="Donaldson, Eric F" uniqKey="Donaldson E" first="Eric F" last="Donaldson">Eric F. Donaldson</name>
<name sortKey="Graham, Rachel L" sort="Graham, Rachel L" uniqKey="Graham R" first="Rachel L" last="Graham">Rachel L. Graham</name>
<name sortKey="Grego, Sonia" sort="Grego, Sonia" uniqKey="Grego S" first="Sonia" last="Grego">Sonia Grego</name>
<name sortKey="Kim, Jeeho D" sort="Kim, Jeeho D" uniqKey="Kim J" first="Jeeho D" last="Kim">Jeeho D. Kim</name>
<name sortKey="Menachery, Vineet D" sort="Menachery, Vineet D" uniqKey="Menachery V" first="Vineet D" last="Menachery">Vineet D. Menachery</name>
<name sortKey="Randell, Scott H" sort="Randell, Scott H" uniqKey="Randell S" first="Scott H" last="Randell">Scott H. Randell</name>
<name sortKey="Sims, Amy C" sort="Sims, Amy C" uniqKey="Sims A" first="Amy C" last="Sims">Amy C. Sims</name>
<name sortKey="Swanstrom, Jesica" sort="Swanstrom, Jesica" uniqKey="Swanstrom J" first="Jesica" last="Swanstrom">Jesica Swanstrom</name>
<name sortKey="Yount, Boyd L" sort="Yount, Boyd L" uniqKey="Yount B" first="Boyd L" last="Yount">Boyd L. Yount</name>
</noCountry>
<country name="États-Unis">
<region name="Caroline du Nord">
<name sortKey="Scobey, Trevor" sort="Scobey, Trevor" uniqKey="Scobey T" first="Trevor" last="Scobey">Trevor Scobey</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A74 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 001A74 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:24043791
   |texte=   Reverse genetics with a full-length infectious cDNA of the Middle East respiratory syndrome coronavirus.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:24043791" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021