Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Role of the spike glycoprotein of human Middle East respiratory syndrome coronavirus (MERS-CoV) in virus entry and syncytia formation.

Identifieur interne : 001A71 ( PubMed/Checkpoint ); précédent : 001A70; suivant : 001A72

Role of the spike glycoprotein of human Middle East respiratory syndrome coronavirus (MERS-CoV) in virus entry and syncytia formation.

Auteurs : Zhaohui Qian [République populaire de Chine] ; Samuel R. Dominguez ; Kathryn V. Holmes

Source :

RBID : pubmed:24098509

Descripteurs français

English descriptors

Abstract

Little is known about the biology of the emerging human group c betacoronavirus, Middle East Respiratory Syndrome coronavirus (MERS-CoV). Because coronavirus spike glycoproteins (S) mediate virus entry, affect viral host range, and elicit neutralizing antibodies, analyzing the functions of MERS-CoV S protein is a high research priority. MERS-CoV S on lentivirus pseudovirions mediated entry into a variety of cell types including embryo cells from New World Eptesicus fuscus bats. Surprisingly, a polyclonal antibody to the S protein of MHV, a group a murine betacoronavirus, cross-reacted in immunoblots with the S2 domain of group c MERS-CoV spike protein. MERS pseudovirions released from 293T cells contained only uncleaved S, and pseudovirus entry was blocked by lysosomotropic reagents NH4Cl and bafilomycin and inhibitors of cathepsin L. However, when MERS pseudovirions with uncleaved S protein were adsorbed at 4°C to Vero E6 cells, brief trypsin treatment at neutral pH triggered virus entry at the plasma membrane and syncytia formation. When 293T cells producing MERS pseudotypes co-expressed serine proteases TMPRSS-2 or -4, large syncytia formed at neutral pH, and the pseudovirions produced were non-infectious and deficient in S protein. These experiments show that if S protein on MERS pseudovirions is uncleaved, then viruses enter by endocytosis in a cathepsin L-dependent manner, but if MERS-CoV S is cleaved, either during virus maturation by serine proteases or on pseudovirions by trypsin in extracellular fluids, then viruses enter at the plasma membrane at neutral pH and cause massive syncytia formation even in cells that express little or no MERS-CoV receptor. Thus, whether MERS-CoV enters cells within endosomes or at the plasma membrane depends upon the host cell type and tissue, and is determined by the location of host proteases that cleave the viral spike glycoprotein and activate membrane fusion.

DOI: 10.1371/journal.pone.0076469
PubMed: 24098509


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:24098509

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Role of the spike glycoprotein of human Middle East respiratory syndrome coronavirus (MERS-CoV) in virus entry and syncytia formation.</title>
<author>
<name sortKey="Qian, Zhaohui" sort="Qian, Zhaohui" uniqKey="Qian Z" first="Zhaohui" last="Qian">Zhaohui Qian</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America ; Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America ; Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dominguez, Samuel R" sort="Dominguez, Samuel R" uniqKey="Dominguez S" first="Samuel R" last="Dominguez">Samuel R. Dominguez</name>
</author>
<author>
<name sortKey="Holmes, Kathryn V" sort="Holmes, Kathryn V" uniqKey="Holmes K" first="Kathryn V" last="Holmes">Kathryn V. Holmes</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:24098509</idno>
<idno type="pmid">24098509</idno>
<idno type="doi">10.1371/journal.pone.0076469</idno>
<idno type="wicri:Area/PubMed/Corpus">001B64</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001B64</idno>
<idno type="wicri:Area/PubMed/Curation">001B64</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001B64</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001A71</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001A71</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Role of the spike glycoprotein of human Middle East respiratory syndrome coronavirus (MERS-CoV) in virus entry and syncytia formation.</title>
<author>
<name sortKey="Qian, Zhaohui" sort="Qian, Zhaohui" uniqKey="Qian Z" first="Zhaohui" last="Qian">Zhaohui Qian</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America ; Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America ; Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dominguez, Samuel R" sort="Dominguez, Samuel R" uniqKey="Dominguez S" first="Samuel R" last="Dominguez">Samuel R. Dominguez</name>
</author>
<author>
<name sortKey="Holmes, Kathryn V" sort="Holmes, Kathryn V" uniqKey="Holmes K" first="Kathryn V" last="Holmes">Kathryn V. Holmes</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Cell Line</term>
<term>Cell Membrane (metabolism)</term>
<term>Cell Membrane (virology)</term>
<term>Chlorocebus aethiops</term>
<term>Coronavirus (physiology)</term>
<term>Endosomes (metabolism)</term>
<term>Gene Deletion</term>
<term>Gene Expression</term>
<term>Gene Order</term>
<term>Giant Cells (virology)</term>
<term>HEK293 Cells</term>
<term>Humans</term>
<term>Hydrogen-Ion Concentration</term>
<term>Lentivirus (genetics)</term>
<term>Lentivirus (metabolism)</term>
<term>Mice</term>
<term>Receptors, Virus (metabolism)</term>
<term>Spike Glycoprotein, Coronavirus (genetics)</term>
<term>Spike Glycoprotein, Coronavirus (metabolism)</term>
<term>Trypsin (metabolism)</term>
<term>Vero Cells</term>
<term>Viral Tropism</term>
<term>Virus Internalization</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Cellules HEK293</term>
<term>Cellules Vero</term>
<term>Cellules géantes (virologie)</term>
<term>Concentration en ions d'hydrogène</term>
<term>Coronavirus (physiologie)</term>
<term>Délétion de gène</term>
<term>Endosomes (métabolisme)</term>
<term>Expression des gènes</term>
<term>Glycoprotéine de spicule des coronavirus (génétique)</term>
<term>Glycoprotéine de spicule des coronavirus (métabolisme)</term>
<term>Humains</term>
<term>Lentivirus (génétique)</term>
<term>Lentivirus (métabolisme)</term>
<term>Lignée cellulaire</term>
<term>Membrane cellulaire (métabolisme)</term>
<term>Membrane cellulaire (virologie)</term>
<term>Ordre des gènes</term>
<term>Pénétration virale</term>
<term>Récepteurs viraux (métabolisme)</term>
<term>Souris</term>
<term>Tropisme viral</term>
<term>Trypsine (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Spike Glycoprotein, Coronavirus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Receptors, Virus</term>
<term>Spike Glycoprotein, Coronavirus</term>
<term>Trypsin</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Lentivirus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Glycoprotéine de spicule des coronavirus</term>
<term>Lentivirus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cell Membrane</term>
<term>Endosomes</term>
<term>Lentivirus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Endosomes</term>
<term>Glycoprotéine de spicule des coronavirus</term>
<term>Lentivirus</term>
<term>Membrane cellulaire</term>
<term>Récepteurs viraux</term>
<term>Trypsine</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Cellules géantes</term>
<term>Membrane cellulaire</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Cell Membrane</term>
<term>Giant Cells</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cell Line</term>
<term>Chlorocebus aethiops</term>
<term>Gene Deletion</term>
<term>Gene Expression</term>
<term>Gene Order</term>
<term>HEK293 Cells</term>
<term>Humans</term>
<term>Hydrogen-Ion Concentration</term>
<term>Mice</term>
<term>Vero Cells</term>
<term>Viral Tropism</term>
<term>Virus Internalization</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Cellules HEK293</term>
<term>Cellules Vero</term>
<term>Concentration en ions d'hydrogène</term>
<term>Délétion de gène</term>
<term>Expression des gènes</term>
<term>Humains</term>
<term>Lignée cellulaire</term>
<term>Ordre des gènes</term>
<term>Pénétration virale</term>
<term>Souris</term>
<term>Tropisme viral</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Little is known about the biology of the emerging human group c betacoronavirus, Middle East Respiratory Syndrome coronavirus (MERS-CoV). Because coronavirus spike glycoproteins (S) mediate virus entry, affect viral host range, and elicit neutralizing antibodies, analyzing the functions of MERS-CoV S protein is a high research priority. MERS-CoV S on lentivirus pseudovirions mediated entry into a variety of cell types including embryo cells from New World Eptesicus fuscus bats. Surprisingly, a polyclonal antibody to the S protein of MHV, a group a murine betacoronavirus, cross-reacted in immunoblots with the S2 domain of group c MERS-CoV spike protein. MERS pseudovirions released from 293T cells contained only uncleaved S, and pseudovirus entry was blocked by lysosomotropic reagents NH4Cl and bafilomycin and inhibitors of cathepsin L. However, when MERS pseudovirions with uncleaved S protein were adsorbed at 4°C to Vero E6 cells, brief trypsin treatment at neutral pH triggered virus entry at the plasma membrane and syncytia formation. When 293T cells producing MERS pseudotypes co-expressed serine proteases TMPRSS-2 or -4, large syncytia formed at neutral pH, and the pseudovirions produced were non-infectious and deficient in S protein. These experiments show that if S protein on MERS pseudovirions is uncleaved, then viruses enter by endocytosis in a cathepsin L-dependent manner, but if MERS-CoV S is cleaved, either during virus maturation by serine proteases or on pseudovirions by trypsin in extracellular fluids, then viruses enter at the plasma membrane at neutral pH and cause massive syncytia formation even in cells that express little or no MERS-CoV receptor. Thus, whether MERS-CoV enters cells within endosomes or at the plasma membrane depends upon the host cell type and tissue, and is determined by the location of host proteases that cleave the viral spike glycoprotein and activate membrane fusion. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24098509</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>07</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2013</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS ONE</ISOAbbreviation>
</Journal>
<ArticleTitle>Role of the spike glycoprotein of human Middle East respiratory syndrome coronavirus (MERS-CoV) in virus entry and syncytia formation.</ArticleTitle>
<Pagination>
<MedlinePgn>e76469</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0076469</ELocationID>
<Abstract>
<AbstractText>Little is known about the biology of the emerging human group c betacoronavirus, Middle East Respiratory Syndrome coronavirus (MERS-CoV). Because coronavirus spike glycoproteins (S) mediate virus entry, affect viral host range, and elicit neutralizing antibodies, analyzing the functions of MERS-CoV S protein is a high research priority. MERS-CoV S on lentivirus pseudovirions mediated entry into a variety of cell types including embryo cells from New World Eptesicus fuscus bats. Surprisingly, a polyclonal antibody to the S protein of MHV, a group a murine betacoronavirus, cross-reacted in immunoblots with the S2 domain of group c MERS-CoV spike protein. MERS pseudovirions released from 293T cells contained only uncleaved S, and pseudovirus entry was blocked by lysosomotropic reagents NH4Cl and bafilomycin and inhibitors of cathepsin L. However, when MERS pseudovirions with uncleaved S protein were adsorbed at 4°C to Vero E6 cells, brief trypsin treatment at neutral pH triggered virus entry at the plasma membrane and syncytia formation. When 293T cells producing MERS pseudotypes co-expressed serine proteases TMPRSS-2 or -4, large syncytia formed at neutral pH, and the pseudovirions produced were non-infectious and deficient in S protein. These experiments show that if S protein on MERS pseudovirions is uncleaved, then viruses enter by endocytosis in a cathepsin L-dependent manner, but if MERS-CoV S is cleaved, either during virus maturation by serine proteases or on pseudovirions by trypsin in extracellular fluids, then viruses enter at the plasma membrane at neutral pH and cause massive syncytia formation even in cells that express little or no MERS-CoV receptor. Thus, whether MERS-CoV enters cells within endosomes or at the plasma membrane depends upon the host cell type and tissue, and is determined by the location of host proteases that cleave the viral spike glycoprotein and activate membrane fusion. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Qian</LastName>
<ForeName>Zhaohui</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America ; Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dominguez</LastName>
<ForeName>Samuel R</ForeName>
<Initials>SR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Holmes</LastName>
<ForeName>Kathryn V</ForeName>
<Initials>KV</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>K08 AI-073525</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>10</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011991">Receptors, Virus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064370">Spike Glycoprotein, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.21.4</RegistryNumber>
<NameOfSubstance UI="D014357">Trypsin</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002462" MajorTopicYN="N">Cell Membrane</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002522" MajorTopicYN="N">Chlorocebus aethiops</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017934" MajorTopicYN="N">Coronavirus</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011992" MajorTopicYN="N">Endosomes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017353" MajorTopicYN="N">Gene Deletion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015870" MajorTopicYN="N">Gene Expression</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D023061" MajorTopicYN="N">Gene Order</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015726" MajorTopicYN="N">Giant Cells</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057809" MajorTopicYN="N">HEK293 Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006863" MajorTopicYN="N">Hydrogen-Ion Concentration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016086" MajorTopicYN="N">Lentivirus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011991" MajorTopicYN="N">Receptors, Virus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064370" MajorTopicYN="N">Spike Glycoprotein, Coronavirus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014357" MajorTopicYN="N">Trypsin</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014709" MajorTopicYN="N">Vero Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056189" MajorTopicYN="N">Viral Tropism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053586" MajorTopicYN="Y">Virus Internalization</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>06</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>08</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>10</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>10</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>7</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24098509</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0076469</ArticleId>
<ArticleId IdType="pii">PONE-D-13-26136</ArticleId>
<ArticleId IdType="pmc">PMC3789674</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2012 Nov 8;367(19):1814-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23075143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2012;3(6). pii: e00473-12. doi: 10.1128/mBio.00473-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23170002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Dec 7;287(50):41931-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23091051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2012;3(6). pii: e00515-12. doi: 10.1128/mBio.00515-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23232719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2013;4(1):e00548-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23300251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Feb;87(3):1811-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23192872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1997 Jun 23;233(1):1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9201212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1997 Jun 16;16(12):3435-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9218786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Nov 2;101(44):15748-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15496474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Feb;79(3):1595-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15650185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 May 31;102(22):7988-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15897467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Jun 10;308(5728):1643-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15831716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Aug 16;102(33):11876-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16081529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Aug 30;102(35):12543-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16116101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2005 Sep 30;340(2):224-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16051304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):14040-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16169905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Oct 28;310(5748):676-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16195424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Feb 10;281(6):3198-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16339146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Oct;80(19):9896-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chromatogr A. 2007 Feb 9;1141(2):212-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17187811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Feb;81(4):1574-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17121802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Jan;82(2):755-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18003729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2007 Sep;13(9):1295-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18252098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Feb 21;451(7181):990-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18288193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Mar;82(6):2883-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18199653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Biochem Mol Biol. 2008 May-Jun;43(3):189-219</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18568847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Sep;82(17):8942-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18562527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2008 Dec;14(12):1890-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19046513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2009 Jan;83(2):712-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18971274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2009 Sep;15(9):1377-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19788804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2013;4(1):e00611-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23422412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Mar 14;495(7440):251-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23486063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2013 May;94(Pt 5):1028-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23364191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 May;87(10):5502-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23468491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2013 Mar;19(3):456-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23622767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2013 Jun 1;207(11):1743-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23532101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Jun;87(12):6604-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23552422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect. 2013 Aug;67(2):130-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23583636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2000 Nov 10;103(4):679-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11106737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Jul 5;277(27):24609-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11986312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2003 Jan;77(2):830-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12502799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1967-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1953-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2003 Oct;77(19):10260-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12970410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Nov 27;426(6965):450-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14647384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Mar 23;101(12):4240-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15010527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Jun;78(11):5766-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15140974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Jun;78(11):5913-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15140989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Jun 1;101(22):8455-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15150417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Sep;78(17):9007-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15308697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1980 Jan;33(1):449-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6245243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1985 Mar 10;260(5):2973-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3972812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1985 Dec;56(3):912-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2999444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1986 Oct 23-29;323(6090):725-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3095663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 1989 Apr;83(4):1299-307</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2564851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1991 Dec;65(12):6881-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1719235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1992 Jun 4;357(6377):417-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1350661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1992 Nov;191(1):517-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1413526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1996 Dec;70(12):8669-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8970993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2010 Mar 15;201(6):946-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20144042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Apr;84(7):3134-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19906932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Oct;84(19):10016-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20631123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Stem Cell. 2010 Oct 8;7(4):508-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20887956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Dec;84(24):12658-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20926566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Dec;84(24):13004-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20926577</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2011 May;85(9):4122-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21325420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(5):e19156</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21589915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2012 Apr;4(4):557-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22590686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2012 Jun;4(6):1011-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22816037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2012 Dec;86(23):12816-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22993147</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<settlement>
<li>Pékin</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Dominguez, Samuel R" sort="Dominguez, Samuel R" uniqKey="Dominguez S" first="Samuel R" last="Dominguez">Samuel R. Dominguez</name>
<name sortKey="Holmes, Kathryn V" sort="Holmes, Kathryn V" uniqKey="Holmes K" first="Kathryn V" last="Holmes">Kathryn V. Holmes</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Qian, Zhaohui" sort="Qian, Zhaohui" uniqKey="Qian Z" first="Zhaohui" last="Qian">Zhaohui Qian</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A71 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 001A71 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:24098509
   |texte=   Role of the spike glycoprotein of human Middle East respiratory syndrome coronavirus (MERS-CoV) in virus entry and syncytia formation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:24098509" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021