Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Detecting differential transmissibilities that affect the size of self-limited outbreaks.

Identifieur interne : 001939 ( PubMed/Checkpoint ); précédent : 001938; suivant : 001940

Detecting differential transmissibilities that affect the size of self-limited outbreaks.

Auteurs : Seth Blumberg [États-Unis] ; Sebastian Funk [États-Unis] ; Juliet R C. Pulliam [États-Unis]

Source :

RBID : pubmed:25356657

Descripteurs français

English descriptors

Abstract

Our ability to respond appropriately to infectious diseases is enhanced by identifying differences in the potential for transmitting infection between individuals. Here, we identify epidemiological traits of self-limited infections (i.e. infections with an effective reproduction number satisfying [0 < R eff < 1) that correlate with transmissibility. Our analysis is based on a branching process model that permits statistical comparison of both the strength and heterogeneity of transmission for two distinct types of cases. Our approach provides insight into a variety of scenarios, including the transmission of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in the Arabian peninsula, measles in North America, pre-eradication smallpox in Europe, and human monkeypox in the Democratic Republic of the Congo. When applied to chain size data for MERS-CoV transmission before 2014, our method indicates that despite an apparent trend towards improved control, there is not enough statistical evidence to indicate that R eff has declined with time. Meanwhile, chain size data for measles in the United States and Canada reveal statistically significant geographic variation in R eff, suggesting that the timing and coverage of national vaccination programs, as well as contact tracing procedures, may shape the size distribution of observed infection clusters. Infection source data for smallpox suggests that primary cases transmitted more than secondary cases, and provides a quantitative assessment of the effectiveness of control interventions. Human monkeypox, on the other hand, does not show evidence of differential transmission between animals in contact with humans, primary cases, or secondary cases, which assuages the concern that social mixing can amplify transmission by secondary cases. Lastly, we evaluate surveillance requirements for detecting a change in the human-to-human transmission of monkeypox since the cessation of cross-protective smallpox vaccination. Our studies lay the foundation for future investigations regarding how infection source, vaccination status or other putative transmissibility traits may affect self-limited transmission.

DOI: 10.1371/journal.ppat.1004452
PubMed: 25356657


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:25356657

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Detecting differential transmissibilities that affect the size of self-limited outbreaks.</title>
<author>
<name sortKey="Blumberg, Seth" sort="Blumberg, Seth" uniqKey="Blumberg S" first="Seth" last="Blumberg">Seth Blumberg</name>
<affiliation wicri:level="2">
<nlm:affiliation>Francis I. Proctor Foundation, University of California San Francisco, San Francisco, California, United States of America; Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Francis I. Proctor Foundation, University of California San Francisco, San Francisco, California, United States of America; Fogarty International Center, National Institutes of Health, Bethesda, Maryland</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Funk, Sebastian" sort="Funk, Sebastian" uniqKey="Funk S" first="Sebastian" last="Funk">Sebastian Funk</name>
<affiliation wicri:level="4">
<nlm:affiliation>Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom; Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom; Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey</wicri:regionArea>
<placeName>
<region type="state">New Jersey</region>
<settlement type="city">Princeton (New Jersey)</settlement>
</placeName>
<orgName type="university">Université de Princeton</orgName>
</affiliation>
</author>
<author>
<name sortKey="Pulliam, Juliet R C" sort="Pulliam, Juliet R C" uniqKey="Pulliam J" first="Juliet R C" last="Pulliam">Juliet R C. Pulliam</name>
<affiliation wicri:level="2">
<nlm:affiliation>Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America; Department of Biology, University of Florida, Gainesville, Florida, United States of America; Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America; Department of Biology, University of Florida, Gainesville, Florida, United States of America; Emerging Pathogens Institute, University of Florida, Gainesville, Florida</wicri:regionArea>
<placeName>
<region type="state">Floride</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25356657</idno>
<idno type="pmid">25356657</idno>
<idno type="doi">10.1371/journal.ppat.1004452</idno>
<idno type="wicri:Area/PubMed/Corpus">001803</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001803</idno>
<idno type="wicri:Area/PubMed/Curation">001803</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001803</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001939</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001939</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Detecting differential transmissibilities that affect the size of self-limited outbreaks.</title>
<author>
<name sortKey="Blumberg, Seth" sort="Blumberg, Seth" uniqKey="Blumberg S" first="Seth" last="Blumberg">Seth Blumberg</name>
<affiliation wicri:level="2">
<nlm:affiliation>Francis I. Proctor Foundation, University of California San Francisco, San Francisco, California, United States of America; Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Francis I. Proctor Foundation, University of California San Francisco, San Francisco, California, United States of America; Fogarty International Center, National Institutes of Health, Bethesda, Maryland</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Funk, Sebastian" sort="Funk, Sebastian" uniqKey="Funk S" first="Sebastian" last="Funk">Sebastian Funk</name>
<affiliation wicri:level="4">
<nlm:affiliation>Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom; Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom; Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey</wicri:regionArea>
<placeName>
<region type="state">New Jersey</region>
<settlement type="city">Princeton (New Jersey)</settlement>
</placeName>
<orgName type="university">Université de Princeton</orgName>
</affiliation>
</author>
<author>
<name sortKey="Pulliam, Juliet R C" sort="Pulliam, Juliet R C" uniqKey="Pulliam J" first="Juliet R C" last="Pulliam">Juliet R C. Pulliam</name>
<affiliation wicri:level="2">
<nlm:affiliation>Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America; Department of Biology, University of Florida, Gainesville, Florida, United States of America; Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America; Department of Biology, University of Florida, Gainesville, Florida, United States of America; Emerging Pathogens Institute, University of Florida, Gainesville, Florida</wicri:regionArea>
<placeName>
<region type="state">Floride</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS pathogens</title>
<idno type="eISSN">1553-7374</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Coronavirus Infections (epidemiology)</term>
<term>Coronavirus Infections (prevention & control)</term>
<term>Coronavirus Infections (transmission)</term>
<term>Democratic Republic of the Congo (epidemiology)</term>
<term>Disease Outbreaks</term>
<term>Europe (epidemiology)</term>
<term>Humans</term>
<term>Measles (epidemiology)</term>
<term>Measles (prevention & control)</term>
<term>Measles (transmission)</term>
<term>Middle East (epidemiology)</term>
<term>Middle East Respiratory Syndrome Coronavirus</term>
<term>Models, Biological</term>
<term>Monkeypox (epidemiology)</term>
<term>Monkeypox (prevention & control)</term>
<term>Monkeypox (transmission)</term>
<term>North America (epidemiology)</term>
<term>Smallpox (epidemiology)</term>
<term>Smallpox (prevention & control)</term>
<term>Smallpox (transmission)</term>
<term>Stochastic Processes</term>
<term>Vaccination</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Amérique du Nord (épidémiologie)</term>
<term>Coronavirus du syndrome respiratoire du Moyen-Orient</term>
<term>Europe (épidémiologie)</term>
<term>Flambées de maladies</term>
<term>Humains</term>
<term>Infections à coronavirus ()</term>
<term>Infections à coronavirus (transmission)</term>
<term>Infections à coronavirus (épidémiologie)</term>
<term>Modèles biologiques</term>
<term>Moyen Orient (épidémiologie)</term>
<term>Orthopoxvirose simienne ()</term>
<term>Orthopoxvirose simienne (transmission)</term>
<term>Orthopoxvirose simienne (épidémiologie)</term>
<term>Processus stochastiques</term>
<term>Rougeole ()</term>
<term>Rougeole (transmission)</term>
<term>Rougeole (épidémiologie)</term>
<term>République démocratique du Congo (épidémiologie)</term>
<term>Vaccination</term>
<term>Variole ()</term>
<term>Variole (transmission)</term>
<term>Variole (épidémiologie)</term>
</keywords>
<keywords scheme="MESH" type="geographic" qualifier="epidemiology" xml:lang="en">
<term>Democratic Republic of the Congo</term>
<term>Europe</term>
<term>Middle East</term>
<term>North America</term>
</keywords>
<keywords scheme="MESH" qualifier="epidemiology" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Measles</term>
<term>Monkeypox</term>
<term>Smallpox</term>
</keywords>
<keywords scheme="MESH" qualifier="prevention & control" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Measles</term>
<term>Monkeypox</term>
<term>Smallpox</term>
</keywords>
<keywords scheme="MESH" qualifier="transmission" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Measles</term>
<term>Monkeypox</term>
<term>Smallpox</term>
</keywords>
<keywords scheme="MESH" qualifier="épidémiologie" xml:lang="fr">
<term>Amérique du Nord</term>
<term>Europe</term>
<term>Infections à coronavirus</term>
<term>Moyen Orient</term>
<term>Orthopoxvirose simienne</term>
<term>Rougeole</term>
<term>République démocratique du Congo</term>
<term>Variole</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Disease Outbreaks</term>
<term>Humans</term>
<term>Middle East Respiratory Syndrome Coronavirus</term>
<term>Models, Biological</term>
<term>Stochastic Processes</term>
<term>Vaccination</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Coronavirus du syndrome respiratoire du Moyen-Orient</term>
<term>Flambées de maladies</term>
<term>Humains</term>
<term>Infections à coronavirus</term>
<term>Modèles biologiques</term>
<term>Orthopoxvirose simienne</term>
<term>Processus stochastiques</term>
<term>Rougeole</term>
<term>Vaccination</term>
<term>Variole</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Our ability to respond appropriately to infectious diseases is enhanced by identifying differences in the potential for transmitting infection between individuals. Here, we identify epidemiological traits of self-limited infections (i.e. infections with an effective reproduction number satisfying [0 < R eff < 1) that correlate with transmissibility. Our analysis is based on a branching process model that permits statistical comparison of both the strength and heterogeneity of transmission for two distinct types of cases. Our approach provides insight into a variety of scenarios, including the transmission of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in the Arabian peninsula, measles in North America, pre-eradication smallpox in Europe, and human monkeypox in the Democratic Republic of the Congo. When applied to chain size data for MERS-CoV transmission before 2014, our method indicates that despite an apparent trend towards improved control, there is not enough statistical evidence to indicate that R eff has declined with time. Meanwhile, chain size data for measles in the United States and Canada reveal statistically significant geographic variation in R eff, suggesting that the timing and coverage of national vaccination programs, as well as contact tracing procedures, may shape the size distribution of observed infection clusters. Infection source data for smallpox suggests that primary cases transmitted more than secondary cases, and provides a quantitative assessment of the effectiveness of control interventions. Human monkeypox, on the other hand, does not show evidence of differential transmission between animals in contact with humans, primary cases, or secondary cases, which assuages the concern that social mixing can amplify transmission by secondary cases. Lastly, we evaluate surveillance requirements for detecting a change in the human-to-human transmission of monkeypox since the cessation of cross-protective smallpox vaccination. Our studies lay the foundation for future investigations regarding how infection source, vaccination status or other putative transmissibility traits may affect self-limited transmission.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25356657</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>04</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>06</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1553-7374</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>10</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2014</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>PLoS pathogens</Title>
<ISOAbbreviation>PLoS Pathog.</ISOAbbreviation>
</Journal>
<ArticleTitle>Detecting differential transmissibilities that affect the size of self-limited outbreaks.</ArticleTitle>
<Pagination>
<MedlinePgn>e1004452</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.ppat.1004452</ELocationID>
<Abstract>
<AbstractText>Our ability to respond appropriately to infectious diseases is enhanced by identifying differences in the potential for transmitting infection between individuals. Here, we identify epidemiological traits of self-limited infections (i.e. infections with an effective reproduction number satisfying [0 < R eff < 1) that correlate with transmissibility. Our analysis is based on a branching process model that permits statistical comparison of both the strength and heterogeneity of transmission for two distinct types of cases. Our approach provides insight into a variety of scenarios, including the transmission of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in the Arabian peninsula, measles in North America, pre-eradication smallpox in Europe, and human monkeypox in the Democratic Republic of the Congo. When applied to chain size data for MERS-CoV transmission before 2014, our method indicates that despite an apparent trend towards improved control, there is not enough statistical evidence to indicate that R eff has declined with time. Meanwhile, chain size data for measles in the United States and Canada reveal statistically significant geographic variation in R eff, suggesting that the timing and coverage of national vaccination programs, as well as contact tracing procedures, may shape the size distribution of observed infection clusters. Infection source data for smallpox suggests that primary cases transmitted more than secondary cases, and provides a quantitative assessment of the effectiveness of control interventions. Human monkeypox, on the other hand, does not show evidence of differential transmission between animals in contact with humans, primary cases, or secondary cases, which assuages the concern that social mixing can amplify transmission by secondary cases. Lastly, we evaluate surveillance requirements for detecting a change in the human-to-human transmission of monkeypox since the cessation of cross-protective smallpox vaccination. Our studies lay the foundation for future investigations regarding how infection source, vaccination status or other putative transmissibility traits may affect self-limited transmission.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Blumberg</LastName>
<ForeName>Seth</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Francis I. Proctor Foundation, University of California San Francisco, San Francisco, California, United States of America; Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Funk</LastName>
<ForeName>Sebastian</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom; Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pulliam</LastName>
<ForeName>Juliet R C</ForeName>
<Initials>JR</Initials>
<AffiliationInfo>
<Affiliation>Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America; Department of Biology, University of Florida, Gainesville, Florida, United States of America; Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>MR/K021680/1</GrantID>
<Agency>Medical Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>U01 GM087728</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>1-U01-GM087728</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>10</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS Pathog</MedlineTA>
<NlmUniqueID>101238921</NlmUniqueID>
<ISSNLinking>1553-7366</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D018352" MajorTopicYN="N">Coronavirus Infections</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="Y">epidemiology</QualifierName>
<QualifierName UI="Q000517" MajorTopicYN="N">prevention & control</QualifierName>
<QualifierName UI="Q000635" MajorTopicYN="N">transmission</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015023" MajorTopicYN="N" Type="Geographic">Democratic Republic of the Congo</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004196" MajorTopicYN="Y">Disease Outbreaks</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005060" MajorTopicYN="N" Type="Geographic">Europe</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008457" MajorTopicYN="N">Measles</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="Y">epidemiology</QualifierName>
<QualifierName UI="Q000517" MajorTopicYN="N">prevention & control</QualifierName>
<QualifierName UI="Q000635" MajorTopicYN="N">transmission</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008877" MajorTopicYN="N" Type="Geographic">Middle East</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D065207" MajorTopicYN="Y">Middle East Respiratory Syndrome Coronavirus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045908" MajorTopicYN="N">Monkeypox</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="Y">epidemiology</QualifierName>
<QualifierName UI="Q000517" MajorTopicYN="N">prevention & control</QualifierName>
<QualifierName UI="Q000635" MajorTopicYN="N">transmission</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009656" MajorTopicYN="N" Type="Geographic">North America</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012899" MajorTopicYN="N">Smallpox</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="Y">epidemiology</QualifierName>
<QualifierName UI="Q000517" MajorTopicYN="N">prevention & control</QualifierName>
<QualifierName UI="Q000635" MajorTopicYN="N">transmission</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013269" MajorTopicYN="N">Stochastic Processes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014611" MajorTopicYN="N">Vaccination</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>01</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>09</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>10</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>10</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>4</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25356657</ArticleId>
<ArticleId IdType="doi">10.1371/journal.ppat.1004452</ArticleId>
<ArticleId IdType="pii">PPATHOGENS-D-14-00229</ArticleId>
<ArticleId IdType="pmc">PMC4214794</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Science. 2003 Jun 20;300(5627):1966-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12766207</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biostatistics. 2003 Apr;4(2):279-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12925522</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Infect Dis. 2004 May 1;189 Suppl 1:S191-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15106110</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Int J Epidemiol. 1988 Sep;17(3):643-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2850277</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Interdiscip Perspect Infect Dis. 2011;2011:284909</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21437001</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Feb 15;108(7):2825-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21282645</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Comput Biol. 2011 Jun;7(6):e1002042</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21673864</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Am J Epidemiol. 2014 Jun 1;179(11):1375-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24786800</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Trends Microbiol. 2002;10(10 Suppl):S3-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12377561</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Infect Dis. 2004 May 1;189 Suppl 1:S177-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15106108</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Lancet Infect Dis. 2014 Feb;14(2):93-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24355867</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2009 Dec 4;326(5958):1362-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19965751</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2008 Feb 21;451(7181):990-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18288193</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Lancet. 2012 Aug 4;380(9840):454-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22766208</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Emerg Infect Dis. 2005 Jun;11(6):794-801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15963271</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Comput Biol. 2007 Jul;3(7):e145</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17676981</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Epidemics. 2013 Sep;5(3):131-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24021520</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Sep 14;107(37):16262-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20805472</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Lancet Infect Dis. 2014 Jan;14(1):50-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24239323</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2012;7(1):e29971</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22238686</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2013 Jun 24;368(1623):20120150</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23798698</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Comput Biol. 2013;9(5):e1002993</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23658504</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Am J Epidemiol. 2004 Sep 15;160(6):509-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15353409</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J R Soc Interface. 2012 Mar 7;9(68):456-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21831890</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J R Soc Interface. 2010 Oct 6;7(51):1455-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20410190</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Emerg Infect Dis. 2007 Sep;13(9):1348-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18252106</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Infect Dis. 2011 Sep 1;204 Suppl 2:S683-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21954267</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Lancet. 2013 Aug 24;382(9893):694-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23831141</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Emerg Infect Dis. 2005 Dec;11(12):1842-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16485468</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Microbiol. 2008 Jun;6(6):477-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18533288</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Negl Trop Dis. 2011 Oct;5(10):e1259</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22022621</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Infect Dis. 2013 Mar 15;207(6):990-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23264672</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2005 Nov 17;438(7066):355-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16292310</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Microbiol. 2010 Nov;8(11):802-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20938453</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Infect Dis. 2004 May 1;189 Suppl 1:S36-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15106087</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Lancet. 2012 Aug 4;380(9840):491-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22766207</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2010 Aug 6;329(5992):676-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20689015</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Biol Sci. 2009 Nov 22;276(1675):3937-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19692402</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2003 Dec 11;426(6967):658-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14668863</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Microbiol. 2005 Jul;3(7):529-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15995653</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2007 Jan 31;2(1):e176</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17268575</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2004 May 14;304(5673):968-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15143265</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2003 Aug 8;301(5634):804</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12907792</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Ecohealth. 2011 Mar;8(1):14-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21069425</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J R Soc Interface. 2010 Sep 6;7(50):1247-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20504800</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Comput Biol. 2013;9(1):e1002855</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23341760</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>MMWR Recomm Rep. 1998 May 22;47(RR-8):1-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9639369</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2009 May 7;360(19):1981-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19420367</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Infect Dis. 2004 May 1;189 Suppl 1:S236-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15106117</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2013 Aug 1;369(5):407-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23782161</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2013 Jul 31;8(7):e66071</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23935820</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Am J Epidemiol. 1987 Dec;126(6):1082-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2825518</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2010 Nov 12;330(6006):982-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21071671</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Theor Biol. 2012 Feb 7;294:48-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22079419</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Am J Epidemiol. 2000 Jun 1;151(11):1039-48; discussion 1049-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10873127</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Floride</li>
<li>Maryland</li>
<li>New Jersey</li>
</region>
<settlement>
<li>Princeton (New Jersey)</li>
</settlement>
<orgName>
<li>Université de Princeton</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="Maryland">
<name sortKey="Blumberg, Seth" sort="Blumberg, Seth" uniqKey="Blumberg S" first="Seth" last="Blumberg">Seth Blumberg</name>
</region>
<name sortKey="Funk, Sebastian" sort="Funk, Sebastian" uniqKey="Funk S" first="Sebastian" last="Funk">Sebastian Funk</name>
<name sortKey="Pulliam, Juliet R C" sort="Pulliam, Juliet R C" uniqKey="Pulliam J" first="Juliet R C" last="Pulliam">Juliet R C. Pulliam</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001939 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 001939 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:25356657
   |texte=   Detecting differential transmissibilities that affect the size of self-limited outbreaks.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:25356657" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021