Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Identifying splicing regulatory elements with de Bruijn graphs.

Identifieur interne : 001880 ( PubMed/Checkpoint ); précédent : 001879; suivant : 001881

Identifying splicing regulatory elements with de Bruijn graphs.

Auteurs : Eman Badr [États-Unis] ; Lenwood S. Heath

Source :

RBID : pubmed:25393830

Descripteurs français

English descriptors

Abstract

Splicing regulatory elements (SREs) are short, degenerate sequences on pre-mRNA molecules that enhance or inhibit the splicing process via the binding of splicing factors, proteins that regulate the functioning of the spliceosome. Existing methods for identifying SREs in a genome are either experimental or computational. Here, we propose a formalism based on de Bruijn graphs that combines genomic structure, word count enrichment analysis, and experimental evidence to identify SREs found in exons. In our approach, SREs are not restricted to a fixed length (i.e., k-mers, for a fixed k). As a result, we identify 2001 putative exonic enhancers and 3080 putative exonic silencers for human genes, with lengths varying from 6 to 15 nucleotides. Many of the predicted SREs overlap with experimentally verified binding sites. Our model provides a novel method to predict variable length putative regulatory elements computationally for further experimental investigation.

DOI: 10.1089/cmb.2014.0183
PubMed: 25393830


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:25393830

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Identifying splicing regulatory elements with de Bruijn graphs.</title>
<author>
<name sortKey="Badr, Eman" sort="Badr, Eman" uniqKey="Badr E" first="Eman" last="Badr">Eman Badr</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Computer Science, Virginia Tech , Blacksburg, Virginia.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Virginie</region>
</placeName>
<wicri:cityArea>Department of Computer Science, Virginia Tech , Blacksburg</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Heath, Lenwood S" sort="Heath, Lenwood S" uniqKey="Heath L" first="Lenwood S" last="Heath">Lenwood S. Heath</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25393830</idno>
<idno type="pmid">25393830</idno>
<idno type="doi">10.1089/cmb.2014.0183</idno>
<idno type="wicri:Area/PubMed/Corpus">001791</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001791</idno>
<idno type="wicri:Area/PubMed/Curation">001791</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001791</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001880</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001880</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Identifying splicing regulatory elements with de Bruijn graphs.</title>
<author>
<name sortKey="Badr, Eman" sort="Badr, Eman" uniqKey="Badr E" first="Eman" last="Badr">Eman Badr</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Computer Science, Virginia Tech , Blacksburg, Virginia.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Virginie</region>
</placeName>
<wicri:cityArea>Department of Computer Science, Virginia Tech , Blacksburg</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Heath, Lenwood S" sort="Heath, Lenwood S" uniqKey="Heath L" first="Lenwood S" last="Heath">Lenwood S. Heath</name>
</author>
</analytic>
<series>
<title level="j">Journal of computational biology : a journal of computational molecular cell biology</title>
<idno type="eISSN">1557-8666</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alternative Splicing (genetics)</term>
<term>Base Sequence</term>
<term>Computational Biology</term>
<term>Exons (genetics)</term>
<term>Genome</term>
<term>Humans</term>
<term>Introns</term>
<term>RNA Splicing (genetics)</term>
<term>Regulatory Sequences, Nucleic Acid (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Biologie informatique</term>
<term>Exons (génétique)</term>
<term>Génome</term>
<term>Humains</term>
<term>Introns</term>
<term>Séquence nucléotidique</term>
<term>Séquences d'acides nucléiques régulatrices (génétique)</term>
<term>Épissage alternatif (génétique)</term>
<term>Épissage des ARN (génétique)</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Alternative Splicing</term>
<term>Exons</term>
<term>RNA Splicing</term>
<term>Regulatory Sequences, Nucleic Acid</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Exons</term>
<term>Séquences d'acides nucléiques régulatrices</term>
<term>Épissage alternatif</term>
<term>Épissage des ARN</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Sequence</term>
<term>Computational Biology</term>
<term>Genome</term>
<term>Humans</term>
<term>Introns</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Biologie informatique</term>
<term>Génome</term>
<term>Humains</term>
<term>Introns</term>
<term>Séquence nucléotidique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Splicing regulatory elements (SREs) are short, degenerate sequences on pre-mRNA molecules that enhance or inhibit the splicing process via the binding of splicing factors, proteins that regulate the functioning of the spliceosome. Existing methods for identifying SREs in a genome are either experimental or computational. Here, we propose a formalism based on de Bruijn graphs that combines genomic structure, word count enrichment analysis, and experimental evidence to identify SREs found in exons. In our approach, SREs are not restricted to a fixed length (i.e., k-mers, for a fixed k). As a result, we identify 2001 putative exonic enhancers and 3080 putative exonic silencers for human genes, with lengths varying from 6 to 15 nucleotides. Many of the predicted SREs overlap with experimentally verified binding sites. Our model provides a novel method to predict variable length putative regulatory elements computationally for further experimental investigation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25393830</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>07</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1557-8666</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>21</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2014</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Journal of computational biology : a journal of computational molecular cell biology</Title>
<ISOAbbreviation>J. Comput. Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Identifying splicing regulatory elements with de Bruijn graphs.</ArticleTitle>
<Pagination>
<MedlinePgn>880-97</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1089/cmb.2014.0183</ELocationID>
<Abstract>
<AbstractText>Splicing regulatory elements (SREs) are short, degenerate sequences on pre-mRNA molecules that enhance or inhibit the splicing process via the binding of splicing factors, proteins that regulate the functioning of the spliceosome. Existing methods for identifying SREs in a genome are either experimental or computational. Here, we propose a formalism based on de Bruijn graphs that combines genomic structure, word count enrichment analysis, and experimental evidence to identify SREs found in exons. In our approach, SREs are not restricted to a fixed length (i.e., k-mers, for a fixed k). As a result, we identify 2001 putative exonic enhancers and 3080 putative exonic silencers for human genes, with lengths varying from 6 to 15 nucleotides. Many of the predicted SREs overlap with experimentally verified binding sites. Our model provides a novel method to predict variable length putative regulatory elements computationally for further experimental investigation.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Badr</LastName>
<ForeName>Eman</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Department of Computer Science, Virginia Tech , Blacksburg, Virginia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Heath</LastName>
<ForeName>Lenwood S</ForeName>
<Initials>LS</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Comput Biol</MedlineTA>
<NlmUniqueID>9433358</NlmUniqueID>
<ISSNLinking>1066-5277</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017398" MajorTopicYN="N">Alternative Splicing</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019295" MajorTopicYN="Y">Computational Biology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005091" MajorTopicYN="N">Exons</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016678" MajorTopicYN="N">Genome</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007438" MajorTopicYN="N">Introns</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012326" MajorTopicYN="N">RNA Splicing</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012045" MajorTopicYN="N">Regulatory Sequences, Nucleic Acid</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">algorithms</Keyword>
<Keyword MajorTopicYN="N">combinatorics</Keyword>
<Keyword MajorTopicYN="N">computational molecular biology</Keyword>
<Keyword MajorTopicYN="N">graphs and networks</Keyword>
<Keyword MajorTopicYN="N">literature data mining</Keyword>
<Keyword MajorTopicYN="N">machine learning</Keyword>
<Keyword MajorTopicYN="N">probability</Keyword>
<Keyword MajorTopicYN="N">sequences</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>11</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>11</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>7</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25393830</ArticleId>
<ArticleId IdType="doi">10.1089/cmb.2014.0183</ArticleId>
<ArticleId IdType="pmc">PMC4253301</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2001 Apr 1;29(7):1464-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11266547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics. 2013 Oct;102(4):229-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23676619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Nov 14;302(5648):1212-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14615540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2003 Dec;13(12):2637-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14656968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Jan 1;32(Database issue):D493-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14681465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mutat. 2003 Jun;21(6):656</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14961560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2004 May;10(5):757-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15100430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2004 May;22(5):535-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15122293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2004 Jun 1;18(11):1241-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15145827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1995 Jul 17;14(14):3540-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7543047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 1999 Mar;5(3):378-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10094307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2004 Dec 17;119(6):831-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15607979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2005 May;6(5):386-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15956978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2005 Aug;25(16):7323-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16055740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006 Jan 1;34(Database issue):D46-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16381912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2006 Jun 23;22(6):769-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16793546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2007;8:59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17324281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomol Eng. 2007 Jun;24(2):179-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17428731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2007;8:159</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17517127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biosyst. 2007 Jul;3(7):473-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17579772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2007 Jul;14(7):591-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17558416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2007 Nov;3(11):e204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18020710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 2007;623:85-106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18380342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2008 May;14(5):802-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18369186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2008 May;15(5):444-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18425143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2008 Jul 15;24(14):1650-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18511468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008;3(10):e3369</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18841201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2009 Mar;29(5):1107-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19103745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Breast Cancer Res Treat. 2010 Apr;120(2):391-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19404736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Perspect Biol. 2010 Mar;2(3):a001784</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20300212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2010 May;11(5):345-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20376054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 May 6;465(7294):53-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20445623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Jun 15;26(12):i325-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20529924</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2010;11(8):R84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20704715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Dec;38(22):7895-907</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20685814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2011;12:90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21281513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2011;12:55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21324185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Neurosci. 2011 Apr;14(4):452-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21358640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2011 Aug;21(8):1360-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21659425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2012;13 Suppl 2:S1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22537296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Biol. 2012 Jun;19(6):855-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22651811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Neurobiol. 2012 Oct;22(5):837-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22398400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2013 Jan;41(Database issue):D125-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23118479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(1):e54885</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23382993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2013 Feb;54(2):e10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23299413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 2013 Apr;76(4):228-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23529588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMB Rep. 2013 Sep;46(9):439-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24064058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Aug 9;297(5583):1007-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12114529</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Virginie</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Heath, Lenwood S" sort="Heath, Lenwood S" uniqKey="Heath L" first="Lenwood S" last="Heath">Lenwood S. Heath</name>
</noCountry>
<country name="États-Unis">
<region name="Virginie">
<name sortKey="Badr, Eman" sort="Badr, Eman" uniqKey="Badr E" first="Eman" last="Badr">Eman Badr</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001880 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 001880 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:25393830
   |texte=   Identifying splicing regulatory elements with de Bruijn graphs.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:25393830" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021