Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Exclusion of small terminase mediated DNA threading models for genome packaging in bacteriophage T4.

Identifieur interne : 001112 ( PubMed/Checkpoint ); précédent : 001111; suivant : 001113

Exclusion of small terminase mediated DNA threading models for genome packaging in bacteriophage T4.

Auteurs : Song Gao [République populaire de Chine] ; Liang Zhang [États-Unis] ; Venigalla B. Rao [États-Unis]

Source :

RBID : pubmed:26984529

Descripteurs français

English descriptors

Abstract

Tailed bacteriophages and herpes viruses use powerful molecular machines to package their genomes. The packaging machine consists of three components: portal, motor (large terminase; TerL) and regulator (small terminase; TerS). Portal, a dodecamer, and motor, a pentamer, form two concentric rings at the special five-fold vertex of the icosahedral capsid. Powered by ATPase, the motor ratchets DNA into the capsid through the portal channel. TerS is essential for packaging, particularly for genome recognition, but its mechanism is unknown and controversial. Structures of gear-shaped TerS rings inspired models that invoke DNA threading through the central channel. Here, we report that mutations of basic residues that line phage T4 TerS (gp16) channel do not disrupt DNA binding. Even deletion of the entire channel helix retained DNA binding and produced progeny phage in vivo On the other hand, large oligomers of TerS (11-mers/12-mers), but not small oligomers (trimers to hexamers), bind DNA. These results suggest that TerS oligomerization creates a large outer surface, which, but not the interior of the channel, is critical for function, probably to wrap viral genome around the ring during packaging initiation. Hence, models involving TerS-mediated DNA threading may be excluded as an essential mechanism for viral genome packaging.

DOI: 10.1093/nar/gkw184
PubMed: 26984529


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:26984529

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Exclusion of small terminase mediated DNA threading models for genome packaging in bacteriophage T4.</title>
<author>
<name sortKey="Gao, Song" sort="Gao, Song" uniqKey="Gao S" first="Song" last="Gao">Song Gao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, The Catholic University of America, 620 Michigan Avenue Northeast, Washington, DC 20064, USA Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Huaihai Institute of Technology, Lianyungang 222005, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Biology, The Catholic University of America, 620 Michigan Avenue Northeast, Washington, DC 20064, USA Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Huaihai Institute of Technology, Lianyungang 222005</wicri:regionArea>
<wicri:noRegion>Lianyungang 222005</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Liang" sort="Zhang, Liang" uniqKey="Zhang L" first="Liang" last="Zhang">Liang Zhang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, The Catholic University of America, 620 Michigan Avenue Northeast, Washington, DC 20064, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, The Catholic University of America, 620 Michigan Avenue Northeast, Washington, DC 20064</wicri:regionArea>
<placeName>
<region type="state">District de Columbia</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rao, Venigalla B" sort="Rao, Venigalla B" uniqKey="Rao V" first="Venigalla B" last="Rao">Venigalla B. Rao</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, The Catholic University of America, 620 Michigan Avenue Northeast, Washington, DC 20064, USA rao@cua.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Biology, The Catholic University of America, 620 Michigan Avenue Northeast, Washington, DC 20064</wicri:regionArea>
<placeName>
<region type="state">District de Columbia</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:26984529</idno>
<idno type="pmid">26984529</idno>
<idno type="doi">10.1093/nar/gkw184</idno>
<idno type="wicri:Area/PubMed/Corpus">001205</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001205</idno>
<idno type="wicri:Area/PubMed/Curation">001205</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001205</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001112</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001112</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Exclusion of small terminase mediated DNA threading models for genome packaging in bacteriophage T4.</title>
<author>
<name sortKey="Gao, Song" sort="Gao, Song" uniqKey="Gao S" first="Song" last="Gao">Song Gao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, The Catholic University of America, 620 Michigan Avenue Northeast, Washington, DC 20064, USA Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Huaihai Institute of Technology, Lianyungang 222005, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Biology, The Catholic University of America, 620 Michigan Avenue Northeast, Washington, DC 20064, USA Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Huaihai Institute of Technology, Lianyungang 222005</wicri:regionArea>
<wicri:noRegion>Lianyungang 222005</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Liang" sort="Zhang, Liang" uniqKey="Zhang L" first="Liang" last="Zhang">Liang Zhang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, The Catholic University of America, 620 Michigan Avenue Northeast, Washington, DC 20064, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, The Catholic University of America, 620 Michigan Avenue Northeast, Washington, DC 20064</wicri:regionArea>
<placeName>
<region type="state">District de Columbia</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rao, Venigalla B" sort="Rao, Venigalla B" uniqKey="Rao V" first="Venigalla B" last="Rao">Venigalla B. Rao</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, The Catholic University of America, 620 Michigan Avenue Northeast, Washington, DC 20064, USA rao@cua.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Biology, The Catholic University of America, 620 Michigan Avenue Northeast, Washington, DC 20064</wicri:regionArea>
<placeName>
<region type="state">District de Columbia</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Nucleic acids research</title>
<idno type="eISSN">1362-4962</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bacteriophage T4 (physiology)</term>
<term>DNA, Viral (chemistry)</term>
<term>DNA, Viral (physiology)</term>
<term>DNA-Binding Proteins (chemistry)</term>
<term>DNA-Binding Proteins (physiology)</term>
<term>Endodeoxyribonucleases (chemistry)</term>
<term>Endodeoxyribonucleases (physiology)</term>
<term>Escherichia coli (virology)</term>
<term>Genome, Viral</term>
<term>Models, Molecular</term>
<term>Protein Binding</term>
<term>Protein Conformation, alpha-Helical</term>
<term>Protein Structure, Tertiary</term>
<term>Viral Proteins (chemistry)</term>
<term>Viral Proteins (physiology)</term>
<term>Virus Assembly</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN viral ()</term>
<term>ADN viral (physiologie)</term>
<term>Assemblage viral</term>
<term>Bactériophage T4 (physiologie)</term>
<term>Endodeoxyribonucleases ()</term>
<term>Endodeoxyribonucleases (physiologie)</term>
<term>Escherichia coli (virologie)</term>
<term>Génome viral</term>
<term>Liaison aux protéines</term>
<term>Modèles moléculaires</term>
<term>Protéines de liaison à l'ADN ()</term>
<term>Protéines de liaison à l'ADN (physiologie)</term>
<term>Protéines virales ()</term>
<term>Protéines virales (physiologie)</term>
<term>Structure en hélice alpha</term>
<term>Structure tertiaire des protéines</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>DNA, Viral</term>
<term>DNA-Binding Proteins</term>
<term>Endodeoxyribonucleases</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>ADN viral</term>
<term>Bactériophage T4</term>
<term>Endodeoxyribonucleases</term>
<term>Protéines de liaison à l'ADN</term>
<term>Protéines virales</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Bacteriophage T4</term>
<term>DNA, Viral</term>
<term>DNA-Binding Proteins</term>
<term>Endodeoxyribonucleases</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Genome, Viral</term>
<term>Models, Molecular</term>
<term>Protein Binding</term>
<term>Protein Conformation, alpha-Helical</term>
<term>Protein Structure, Tertiary</term>
<term>Virus Assembly</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>ADN viral</term>
<term>Assemblage viral</term>
<term>Endodeoxyribonucleases</term>
<term>Génome viral</term>
<term>Liaison aux protéines</term>
<term>Modèles moléculaires</term>
<term>Protéines de liaison à l'ADN</term>
<term>Protéines virales</term>
<term>Structure en hélice alpha</term>
<term>Structure tertiaire des protéines</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Tailed bacteriophages and herpes viruses use powerful molecular machines to package their genomes. The packaging machine consists of three components: portal, motor (large terminase; TerL) and regulator (small terminase; TerS). Portal, a dodecamer, and motor, a pentamer, form two concentric rings at the special five-fold vertex of the icosahedral capsid. Powered by ATPase, the motor ratchets DNA into the capsid through the portal channel. TerS is essential for packaging, particularly for genome recognition, but its mechanism is unknown and controversial. Structures of gear-shaped TerS rings inspired models that invoke DNA threading through the central channel. Here, we report that mutations of basic residues that line phage T4 TerS (gp16) channel do not disrupt DNA binding. Even deletion of the entire channel helix retained DNA binding and produced progeny phage in vivo On the other hand, large oligomers of TerS (11-mers/12-mers), but not small oligomers (trimers to hexamers), bind DNA. These results suggest that TerS oligomerization creates a large outer surface, which, but not the interior of the channel, is critical for function, probably to wrap viral genome around the ring during packaging initiation. Hence, models involving TerS-mediated DNA threading may be excluded as an essential mechanism for viral genome packaging.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26984529</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>07</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1362-4962</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>44</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2016</Year>
<Month>05</Month>
<Day>19</Day>
</PubDate>
</JournalIssue>
<Title>Nucleic acids research</Title>
<ISOAbbreviation>Nucleic Acids Res.</ISOAbbreviation>
</Journal>
<ArticleTitle>Exclusion of small terminase mediated DNA threading models for genome packaging in bacteriophage T4.</ArticleTitle>
<Pagination>
<MedlinePgn>4425-39</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/nar/gkw184</ELocationID>
<Abstract>
<AbstractText>Tailed bacteriophages and herpes viruses use powerful molecular machines to package their genomes. The packaging machine consists of three components: portal, motor (large terminase; TerL) and regulator (small terminase; TerS). Portal, a dodecamer, and motor, a pentamer, form two concentric rings at the special five-fold vertex of the icosahedral capsid. Powered by ATPase, the motor ratchets DNA into the capsid through the portal channel. TerS is essential for packaging, particularly for genome recognition, but its mechanism is unknown and controversial. Structures of gear-shaped TerS rings inspired models that invoke DNA threading through the central channel. Here, we report that mutations of basic residues that line phage T4 TerS (gp16) channel do not disrupt DNA binding. Even deletion of the entire channel helix retained DNA binding and produced progeny phage in vivo On the other hand, large oligomers of TerS (11-mers/12-mers), but not small oligomers (trimers to hexamers), bind DNA. These results suggest that TerS oligomerization creates a large outer surface, which, but not the interior of the channel, is critical for function, probably to wrap viral genome around the ring during packaging initiation. Hence, models involving TerS-mediated DNA threading may be excluded as an essential mechanism for viral genome packaging.</AbstractText>
<CopyrightInformation>© The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gao</LastName>
<ForeName>Song</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, The Catholic University of America, 620 Michigan Avenue Northeast, Washington, DC 20064, USA Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Huaihai Institute of Technology, Lianyungang 222005, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Liang</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, The Catholic University of America, 620 Michigan Avenue Northeast, Washington, DC 20064, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rao</LastName>
<ForeName>Venigalla B</ForeName>
<Initials>VB</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, The Catholic University of America, 620 Michigan Avenue Northeast, Washington, DC 20064, USA rao@cua.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 AI081726</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>03</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Nucleic Acids Res</MedlineTA>
<NlmUniqueID>0411011</NlmUniqueID>
<ISSNLinking>0305-1048</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004279">DNA, Viral</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004268">DNA-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C065037">Gp16 protein, Bacteriophage T4</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014764">Viral Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.-</RegistryNumber>
<NameOfSubstance UI="D004706">Endodeoxyribonucleases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.-</RegistryNumber>
<NameOfSubstance UI="C030894">terminase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017122" MajorTopicYN="N">Bacteriophage T4</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004279" MajorTopicYN="N">DNA, Viral</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004268" MajorTopicYN="N">DNA-Binding Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004706" MajorTopicYN="N">Endodeoxyribonucleases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016679" MajorTopicYN="N">Genome, Viral</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000072756" MajorTopicYN="N">Protein Conformation, alpha-Helical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014764" MajorTopicYN="N">Viral Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019065" MajorTopicYN="N">Virus Assembly</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>03</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>02</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>3</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>3</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>7</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26984529</ArticleId>
<ArticleId IdType="pii">gkw184</ArticleId>
<ArticleId IdType="doi">10.1093/nar/gkw184</ArticleId>
<ArticleId IdType="pmc">PMC4872099</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Gene. 1988 Dec 25;74(1):203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3248724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1988 Apr 5;200(3):475-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3294420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1993 Mar 20;230(2):505-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8464062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1995 Jun;16(6):1075-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8577244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1995 Sep 29;252(4):386-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7563059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Feb 7;272(6):3495-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9013596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):2192-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10051617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2005 Mar 18;347(1):71-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15733918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2006 Jan 15;22(2):195-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16301204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2006 Apr 21;358(1):67-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16513134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2006 Jul;61(1):16-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16824092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2006 Nov 3;363(4):786-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16987527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2006 Dec 26;45(51):15259-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17176048</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2007 Apr 4;26(7):1984-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17363899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Oct 23;104(43):16868-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17942694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2007 Nov 30;374(3):817-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17945256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2008 Nov 14;383(3):494-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18775728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2008;42:647-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18687036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2008 Dec 26;135(7):1251-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19109896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20124702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):1971-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20133842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Soc Mass Spectrom. 2010 Jun;21(6):971-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20116282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jul;38(Web Server issue):W695-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20439314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Feb 4;286(5):3944-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21127059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Apr;39(7):2742-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21109524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2011 May;18(5):597-603</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21499245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2011 Sep;9(9):647-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21836625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 2012;726:549-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22297530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Jan 17;109(3):817-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22207623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Jan 17;109(3):811-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22207627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Virus Res. 2012;82:119-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22420853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2012 Aug 8;20(8):1403-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22771211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Virol. 2015 Nov;2(1):351-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26958920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Struct Biol. 2016 Feb;36:106-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26872330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2012 Oct 26;423(3):413-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22858866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Apr 9;110(15):5909-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23530228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2013 Jun 5;440(2):117-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23562538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2013 May;173(2):247-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23419885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 May 14;110(20):8075-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23630261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2013 Aug;41(14):6785-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23677618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2014 Feb;70(Pt 2):342-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24531468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Nov 24;275(47):37127-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10967092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Dec 7;408(6813):745-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11130079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2001 Nov 30;314(3):401-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 May;9(5):981-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12049735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Feb 14;278(7):4618-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12466275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2004 Apr 10;321(2):217-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15051382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1984 Dec 5;180(2):283-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6096564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2014 Mar 6;426(5):1019-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24126213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jul;42(Web Server issue):W252-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24782522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Oct 21;111(42):15096-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25288726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2015;6:7548</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26144253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2015 Oct 9;427(20):3285-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26301600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2015 Oct 7;589(20 Pt A):2914-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25980611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1989 Apr 15;77(1):61-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2744488</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
<li>États-Unis</li>
</country>
<region>
<li>District de Columbia</li>
</region>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Gao, Song" sort="Gao, Song" uniqKey="Gao S" first="Song" last="Gao">Song Gao</name>
</noRegion>
</country>
<country name="États-Unis">
<region name="District de Columbia">
<name sortKey="Zhang, Liang" sort="Zhang, Liang" uniqKey="Zhang L" first="Liang" last="Zhang">Liang Zhang</name>
</region>
<name sortKey="Rao, Venigalla B" sort="Rao, Venigalla B" uniqKey="Rao V" first="Venigalla B" last="Rao">Venigalla B. Rao</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001112 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 001112 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:26984529
   |texte=   Exclusion of small terminase mediated DNA threading models for genome packaging in bacteriophage T4.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:26984529" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021