Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Best hits of 11110110111: model-free selection and parameter-free sensitivity calculation of spaced seeds.

Identifieur interne : 000D81 ( PubMed/Checkpoint ); précédent : 000D80; suivant : 000D82

Best hits of 11110110111: model-free selection and parameter-free sensitivity calculation of spaced seeds.

Auteurs : Laurent Noé [France]

Source :

RBID : pubmed:28289437

Abstract

Spaced seeds, also named gapped q-grams, gapped k-mers, spaced q-grams, have been proven to be more sensitive than contiguous seeds (contiguous q-grams, contiguous k-mers) in nucleic and amino-acid sequences analysis. Initially proposed to detect sequence similarities and to anchor sequence alignments, spaced seeds have more recently been applied in several alignment-free related methods. Unfortunately, spaced seeds need to be initially designed. This task is known to be time-consuming due to the number of spaced seed candidates. Moreover, it can be altered by a set of arbitrary chosen parameters from the probabilistic alignment models used. In this general context, Dominant seeds have been introduced by Mak and Benson (Bioinformatics 25:302-308, 2009) on the Bernoulli model, in order to reduce the number of spaced seed candidates that are further processed in a parameter-free calculation of the sensitivity.

DOI: 10.1186/s13015-017-0092-1
PubMed: 28289437


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:28289437

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Best hits of 11110110111: model-free selection and parameter-free sensitivity calculation of spaced seeds.</title>
<author>
<name sortKey="Noe, Laurent" sort="Noe, Laurent" uniqKey="Noe L" first="Laurent" last="Noé">Laurent Noé</name>
<affiliation wicri:level="3">
<nlm:affiliation>CRIStAL (UMR 9189 Lille University/CNRS)-Inria Lille, Bat M3 ext, Université Lille 1, 59655 Villeneuve d'Ascq, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>CRIStAL (UMR 9189 Lille University/CNRS)-Inria Lille, Bat M3 ext, Université Lille 1, 59655 Villeneuve d'Ascq</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Hauts-de-France</region>
<region type="old region" nuts="2">Nord-Pas-de-Calais</region>
<settlement type="city">Villeneuve d'Ascq</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28289437</idno>
<idno type="pmid">28289437</idno>
<idno type="doi">10.1186/s13015-017-0092-1</idno>
<idno type="wicri:Area/PubMed/Corpus">000D54</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000D54</idno>
<idno type="wicri:Area/PubMed/Curation">000D54</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000D54</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000D81</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000D81</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Best hits of 11110110111: model-free selection and parameter-free sensitivity calculation of spaced seeds.</title>
<author>
<name sortKey="Noe, Laurent" sort="Noe, Laurent" uniqKey="Noe L" first="Laurent" last="Noé">Laurent Noé</name>
<affiliation wicri:level="3">
<nlm:affiliation>CRIStAL (UMR 9189 Lille University/CNRS)-Inria Lille, Bat M3 ext, Université Lille 1, 59655 Villeneuve d'Ascq, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>CRIStAL (UMR 9189 Lille University/CNRS)-Inria Lille, Bat M3 ext, Université Lille 1, 59655 Villeneuve d'Ascq</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Hauts-de-France</region>
<region type="old region" nuts="2">Nord-Pas-de-Calais</region>
<settlement type="city">Villeneuve d'Ascq</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Algorithms for molecular biology : AMB</title>
<idno type="ISSN">1748-7188</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<i>Spaced seeds</i>
, also named
<i>gapped q-grams, gapped k-mers, spaced q-grams</i>
, have been proven to be more sensitive than contiguous seeds (
<i>contiguous q-grams, contiguous k-mers</i>
) in nucleic and amino-acid sequences analysis. Initially proposed to detect sequence similarities and to anchor sequence alignments, spaced seeds have more recently been applied in several
<i>alignment-free</i>
related methods. Unfortunately, spaced seeds need to be initially designed. This task is known to be time-consuming due to the number of spaced seed candidates. Moreover, it can be altered by a set of
<i>arbitrary chosen</i>
parameters from the probabilistic alignment models used. In this general context,
<i>Dominant seeds</i>
have been introduced by Mak and Benson (Bioinformatics 25:302-308, 2009) on the Bernoulli model, in order to reduce the number of spaced seed candidates that are further processed in a
<i>parameter-free</i>
calculation of the sensitivity.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">28289437</PMID>
<DateRevised>
<Year>2019</Year>
<Month>11</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1748-7188</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>12</Volume>
<PubDate>
<Year>2017</Year>
</PubDate>
</JournalIssue>
<Title>Algorithms for molecular biology : AMB</Title>
<ISOAbbreviation>Algorithms Mol Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Best hits of 11110110111: model-free selection and parameter-free sensitivity calculation of spaced seeds.</ArticleTitle>
<Pagination>
<MedlinePgn>1</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s13015-017-0092-1</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">
<i>Spaced seeds</i>
, also named
<i>gapped q-grams, gapped k-mers, spaced q-grams</i>
, have been proven to be more sensitive than contiguous seeds (
<i>contiguous q-grams, contiguous k-mers</i>
) in nucleic and amino-acid sequences analysis. Initially proposed to detect sequence similarities and to anchor sequence alignments, spaced seeds have more recently been applied in several
<i>alignment-free</i>
related methods. Unfortunately, spaced seeds need to be initially designed. This task is known to be time-consuming due to the number of spaced seed candidates. Moreover, it can be altered by a set of
<i>arbitrary chosen</i>
parameters from the probabilistic alignment models used. In this general context,
<i>Dominant seeds</i>
have been introduced by Mak and Benson (Bioinformatics 25:302-308, 2009) on the Bernoulli model, in order to reduce the number of spaced seed candidates that are further processed in a
<i>parameter-free</i>
calculation of the sensitivity.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">We expand the scope of work of Mak and Benson on single and multiple seeds by considering the Hit Integration model of Chung and Park (BMC Bioinform 11:31, 2010), demonstrate that the same dominance definition can be applied, and that a parameter-free study can be performed without any significant additional cost. We also consider two new discrete models, namely the Heaviside and the Dirac models, where lossless seeds can be integrated. From a theoretical standpoint, we establish a generic framework on all the proposed models, by applying a
<i>counting semi-ring</i>
to quickly compute large polynomial coefficients needed by the
<i>dominance</i>
filter. From a practical standpoint, we confirm that
<i>dominant seeds</i>
reduce the set of, either single seeds to thoroughly analyse, or multiple seeds to store. Moreover, in http://bioinfo.cristal.univ-lille.fr/yass/iedera_dominance, we provide a full list of spaced seeds computed on the four aforementioned models, with one (continuous) parameter left free for each model, and with several (discrete) alignment lengths.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Noé</LastName>
<ForeName>Laurent</ForeName>
<Initials>L</Initials>
<Identifier Source="ORCID">0000-0002-1170-8376</Identifier>
<AffiliationInfo>
<Affiliation>CRIStAL (UMR 9189 Lille University/CNRS)-Inria Lille, Bat M3 ext, Université Lille 1, 59655 Villeneuve d'Ascq, France.</Affiliation>
<Identifier Source="ISNI">0000 0001 2186 1211</Identifier>
<Identifier Source="GRID">grid.4461.7</Identifier>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>02</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Algorithms Mol Biol</MedlineTA>
<NlmUniqueID>101265088</NlmUniqueID>
<ISSNLinking>1748-7188</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Bernoulli</Keyword>
<Keyword MajorTopicYN="N">Counting semi-ring</Keyword>
<Keyword MajorTopicYN="N">DFA</Keyword>
<Keyword MajorTopicYN="N">Dirac</Keyword>
<Keyword MajorTopicYN="N">Dominant seeds</Keyword>
<Keyword MajorTopicYN="N">Heaviside</Keyword>
<Keyword MajorTopicYN="N">Hit Integration</Keyword>
<Keyword MajorTopicYN="N">Polynomial form</Keyword>
<Keyword MajorTopicYN="N">Spaced seeds</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>09</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>01</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>3</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>3</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>3</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28289437</ArticleId>
<ArticleId IdType="doi">10.1186/s13015-017-0092-1</ArticleId>
<ArticleId IdType="pii">92</ArticleId>
<ArticleId IdType="pmc">PMC5310094</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>PLoS Comput Biol. 2016 Oct 19;12 (10 ):e1005107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27760124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2010 Jan 18;11 Suppl 1:S37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20122210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2004 Oct 14;5:149</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15485572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2013 Feb 27;14:69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23444904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Feb 15;21(4):542-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15374861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Biol. 2007 Mar;14(2):238-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17456017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IEEE/ACM Trans Comput Biol Bioinform. 2005 Jan-Mar;2(1):51-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17044164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2008 Nov 1;24(21):2431-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18684737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2016 Dec 15;32(24):3823-3825</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27540266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2003 Jan;13(1):103-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12529312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Biol. 2010 Oct;17(10):1397-1411</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20937014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2009 Dec 03;10 Suppl 3:S3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19958494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Math Biol. 2014 Aug;69(2):469-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23861010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brief Bioinform. 2014 Mar;15(2):138-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24413184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Feb 1;25(3):302-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19095701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Biol. 2005 Jul-Aug;12(6):847-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16108721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Biol. 2004;11(4):753-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15579243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Genomics. 2015;2015:196591</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26539459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2002 Mar;18(3):440-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11934743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Mar 15;25(6):822-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19176560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IEEE/ACM Trans Comput Biol Bioinform. 2005 Jan-Mar;2(1):29-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17044162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2015 Jul 1;43(W1):W24-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25855811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IEEE/ACM Trans Comput Biol Bioinform. 2014 Mar-Apr;11(2):398-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26355786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IEEE/ACM Trans Comput Biol Bioinform. 2007 Jul-Sep;4(3):496-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17666769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Oct 1;25(19):2514-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19675096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2004 May 1;20(7):1053-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14764573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IEEE/ACM Trans Comput Biol Bioinform. 2012 Nov-Dec;9(6):1737-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22868683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2009 Oct 12;10:329</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19821978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Biol. 2014 Dec;21(12):947-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25393923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bioinform Comput Biol. 2006 Apr;4(2):553-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16819802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Biol. 2008 Dec;15(10):1295-313</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19040365</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2009 May;5(5):e1000386</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19461883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bioinform Comput Biol. 2004 Sep;2(3):417-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15359419</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2015 Nov 15;31(22):3584-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26209798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2007 May 15;23(10):1195-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17392329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bioinform Comput Biol. 2004 Jan;1(4):595-610</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15290755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Bioinformatics. 2010;:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20936175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jul;42(Web Server issue):W7-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24829447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Apr 1;27(7):1011-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21278192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2006 Jul 15;22(14):e341-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16873491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Inform. 2003;14:176-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15706532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Res Notes. 2012 Feb 28;5:123</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22373455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2007 Nov 15;23(22):2969-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17804438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Apr;42(7):e59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24493737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2015 Jan;12(1):59-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25402007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Algorithms Mol Biol. 2015 Feb 11;10:5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25685176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 Jul 15;30(14):1991-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24700317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Sep 1;27(17):2433-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21690104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2008 Jan 23;9:36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18215286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2011 Jun 01;12:280</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21627845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bioinform Comput Biol. 2015 Aug;13(4):1550011</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25747382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Biol. 2005 Nov;12(9):1137-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16305325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2011 Mar;21(3):487-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21209072</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IEEE/ACM Trans Comput Biol Bioinform. 2009 Jul-Sep;6(3):483-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19644175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2016 Apr 15;7:11307</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27079541</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Hauts-de-France</li>
<li>Nord-Pas-de-Calais</li>
</region>
<settlement>
<li>Villeneuve d'Ascq</li>
</settlement>
</list>
<tree>
<country name="France">
<region name="Hauts-de-France">
<name sortKey="Noe, Laurent" sort="Noe, Laurent" uniqKey="Noe L" first="Laurent" last="Noé">Laurent Noé</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D81 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000D81 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:28289437
   |texte=   Best hits of 11110110111: model-free selection and parameter-free sensitivity calculation of spaced seeds.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:28289437" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021