Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Structural insights into the Middle East respiratory syndrome coronavirus 4a protein and its dsRNA binding mechanism.

Identifieur interne : 000B16 ( PubMed/Checkpoint ); précédent : 000B15; suivant : 000B17

Structural insights into the Middle East respiratory syndrome coronavirus 4a protein and its dsRNA binding mechanism.

Auteurs : Maria Batool [Corée du Sud] ; Masaud Shah [Corée du Sud] ; Mahesh Chandra Patra [Corée du Sud] ; Dhanusha Yesudhas [Corée du Sud] ; Sangdun Choi [Corée du Sud]

Source :

RBID : pubmed:28900197

Descripteurs français

English descriptors

Abstract

Middle East respiratory syndrome coronavirus (MERS-CoV) has evolved to navigate through the sophisticated network of a host's immune system. The immune evasion mechanism including type 1 interferon and protein kinase R-mediated antiviral stress responses has been recently attributed to the involvement of MERS-CoV protein 4a (p4a) that masks the viral dsRNA. However, the structural mechanism of how p4a recognizes and establishes contacts with dsRNA is not well explained. In this study, we report a dynamic mechanism deployed by p4a to engage the viral dsRNA and make it unavailable to the host immune system. Multiple variants of p4a-dsRNA were created and investigated through extensive molecular dynamics procedures to highlight crucial interfacial residues that may be used as potential pharmacophores for future drug development. The structural analysis revealed that p4a exhibits a typical αβββα fold structure, as found in other dsRNA-binding proteins. The α1 helix and the β1-β2 loop play a crucial role in recognizing and establishing contacts with the minor grooves of dsRNA. Further, mutational and binding free energy analyses suggested that in addition to K63 and K67, two other residues, K27 and W45, might also be crucial for p4a-dsRNA stability.

DOI: 10.1038/s41598-017-11736-6
PubMed: 28900197


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:28900197

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Structural insights into the Middle East respiratory syndrome coronavirus 4a protein and its dsRNA binding mechanism.</title>
<author>
<name sortKey="Batool, Maria" sort="Batool, Maria" uniqKey="Batool M" first="Maria" last="Batool">Maria Batool</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Molecular Science and Technology, Ajou University, Suwon, 16499</wicri:regionArea>
<wicri:noRegion>16499</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shah, Masaud" sort="Shah, Masaud" uniqKey="Shah M" first="Masaud" last="Shah">Masaud Shah</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Molecular Science and Technology, Ajou University, Suwon, 16499</wicri:regionArea>
<wicri:noRegion>16499</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Patra, Mahesh Chandra" sort="Patra, Mahesh Chandra" uniqKey="Patra M" first="Mahesh Chandra" last="Patra">Mahesh Chandra Patra</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Molecular Science and Technology, Ajou University, Suwon, 16499</wicri:regionArea>
<wicri:noRegion>16499</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yesudhas, Dhanusha" sort="Yesudhas, Dhanusha" uniqKey="Yesudhas D" first="Dhanusha" last="Yesudhas">Dhanusha Yesudhas</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Molecular Science and Technology, Ajou University, Suwon, 16499</wicri:regionArea>
<wicri:noRegion>16499</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Choi, Sangdun" sort="Choi, Sangdun" uniqKey="Choi S" first="Sangdun" last="Choi">Sangdun Choi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea. sangdunchoi@ajou.ac.kr.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Molecular Science and Technology, Ajou University, Suwon, 16499</wicri:regionArea>
<wicri:noRegion>16499</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28900197</idno>
<idno type="pmid">28900197</idno>
<idno type="doi">10.1038/s41598-017-11736-6</idno>
<idno type="wicri:Area/PubMed/Corpus">000B57</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000B57</idno>
<idno type="wicri:Area/PubMed/Curation">000B57</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000B57</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000B16</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000B16</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Structural insights into the Middle East respiratory syndrome coronavirus 4a protein and its dsRNA binding mechanism.</title>
<author>
<name sortKey="Batool, Maria" sort="Batool, Maria" uniqKey="Batool M" first="Maria" last="Batool">Maria Batool</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Molecular Science and Technology, Ajou University, Suwon, 16499</wicri:regionArea>
<wicri:noRegion>16499</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shah, Masaud" sort="Shah, Masaud" uniqKey="Shah M" first="Masaud" last="Shah">Masaud Shah</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Molecular Science and Technology, Ajou University, Suwon, 16499</wicri:regionArea>
<wicri:noRegion>16499</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Patra, Mahesh Chandra" sort="Patra, Mahesh Chandra" uniqKey="Patra M" first="Mahesh Chandra" last="Patra">Mahesh Chandra Patra</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Molecular Science and Technology, Ajou University, Suwon, 16499</wicri:regionArea>
<wicri:noRegion>16499</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yesudhas, Dhanusha" sort="Yesudhas, Dhanusha" uniqKey="Yesudhas D" first="Dhanusha" last="Yesudhas">Dhanusha Yesudhas</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Molecular Science and Technology, Ajou University, Suwon, 16499</wicri:regionArea>
<wicri:noRegion>16499</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Choi, Sangdun" sort="Choi, Sangdun" uniqKey="Choi S" first="Sangdun" last="Choi">Sangdun Choi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea. sangdunchoi@ajou.ac.kr.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Molecular Science and Technology, Ajou University, Suwon, 16499</wicri:regionArea>
<wicri:noRegion>16499</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Scientific reports</title>
<idno type="eISSN">2045-2322</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Coronavirus Infections (virology)</term>
<term>Hydrogen Bonding</term>
<term>Middle East Respiratory Syndrome Coronavirus (physiology)</term>
<term>Models, Molecular</term>
<term>Molecular Conformation</term>
<term>Mutagenesis</term>
<term>Protein Binding</term>
<term>RNA, Double-Stranded (genetics)</term>
<term>RNA, Double-Stranded (metabolism)</term>
<term>RNA, Viral (genetics)</term>
<term>RNA, Viral (metabolism)</term>
<term>Structure-Activity Relationship</term>
<term>Viral Proteins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN double brin (génétique)</term>
<term>ARN double brin (métabolisme)</term>
<term>ARN viral (génétique)</term>
<term>ARN viral (métabolisme)</term>
<term>Conformation moléculaire</term>
<term>Coronavirus du syndrome respiratoire du Moyen-Orient (physiologie)</term>
<term>Infections à coronavirus (virologie)</term>
<term>Liaison aux protéines</term>
<term>Liaison hydrogène</term>
<term>Modèles moléculaires</term>
<term>Mutagenèse</term>
<term>Protéines virales (métabolisme)</term>
<term>Relation structure-activité</term>
<term>Séquence d'acides aminés</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>RNA, Double-Stranded</term>
<term>RNA, Viral</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>RNA, Double-Stranded</term>
<term>RNA, Viral</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN double brin</term>
<term>ARN viral</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ARN double brin</term>
<term>ARN viral</term>
<term>Protéines virales</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Coronavirus du syndrome respiratoire du Moyen-Orient</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Middle East Respiratory Syndrome Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Infections à coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Coronavirus Infections</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Hydrogen Bonding</term>
<term>Models, Molecular</term>
<term>Molecular Conformation</term>
<term>Mutagenesis</term>
<term>Protein Binding</term>
<term>Structure-Activity Relationship</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Conformation moléculaire</term>
<term>Liaison aux protéines</term>
<term>Liaison hydrogène</term>
<term>Modèles moléculaires</term>
<term>Mutagenèse</term>
<term>Relation structure-activité</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Middle East respiratory syndrome coronavirus (MERS-CoV) has evolved to navigate through the sophisticated network of a host's immune system. The immune evasion mechanism including type 1 interferon and protein kinase R-mediated antiviral stress responses has been recently attributed to the involvement of MERS-CoV protein 4a (p4a) that masks the viral dsRNA. However, the structural mechanism of how p4a recognizes and establishes contacts with dsRNA is not well explained. In this study, we report a dynamic mechanism deployed by p4a to engage the viral dsRNA and make it unavailable to the host immune system. Multiple variants of p4a-dsRNA were created and investigated through extensive molecular dynamics procedures to highlight crucial interfacial residues that may be used as potential pharmacophores for future drug development. The structural analysis revealed that p4a exhibits a typical αβββα fold structure, as found in other dsRNA-binding proteins. The α1 helix and the β1-β2 loop play a crucial role in recognizing and establishing contacts with the minor grooves of dsRNA. Further, mutational and binding free energy analyses suggested that in addition to K63 and K67, two other residues, K27 and W45, might also be crucial for p4a-dsRNA stability.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28900197</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>06</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>06</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2045-2322</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2017</Year>
<Month>09</Month>
<Day>12</Day>
</PubDate>
</JournalIssue>
<Title>Scientific reports</Title>
<ISOAbbreviation>Sci Rep</ISOAbbreviation>
</Journal>
<ArticleTitle>Structural insights into the Middle East respiratory syndrome coronavirus 4a protein and its dsRNA binding mechanism.</ArticleTitle>
<Pagination>
<MedlinePgn>11362</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/s41598-017-11736-6</ELocationID>
<Abstract>
<AbstractText>Middle East respiratory syndrome coronavirus (MERS-CoV) has evolved to navigate through the sophisticated network of a host's immune system. The immune evasion mechanism including type 1 interferon and protein kinase R-mediated antiviral stress responses has been recently attributed to the involvement of MERS-CoV protein 4a (p4a) that masks the viral dsRNA. However, the structural mechanism of how p4a recognizes and establishes contacts with dsRNA is not well explained. In this study, we report a dynamic mechanism deployed by p4a to engage the viral dsRNA and make it unavailable to the host immune system. Multiple variants of p4a-dsRNA were created and investigated through extensive molecular dynamics procedures to highlight crucial interfacial residues that may be used as potential pharmacophores for future drug development. The structural analysis revealed that p4a exhibits a typical αβββα fold structure, as found in other dsRNA-binding proteins. The α1 helix and the β1-β2 loop play a crucial role in recognizing and establishing contacts with the minor grooves of dsRNA. Further, mutational and binding free energy analyses suggested that in addition to K63 and K67, two other residues, K27 and W45, might also be crucial for p4a-dsRNA stability.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Batool</LastName>
<ForeName>Maria</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shah</LastName>
<ForeName>Masaud</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Patra</LastName>
<ForeName>Mahesh Chandra</ForeName>
<Initials>MC</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yesudhas</LastName>
<ForeName>Dhanusha</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Choi</LastName>
<ForeName>Sangdun</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea. sangdunchoi@ajou.ac.kr.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>09</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Sci Rep</MedlineTA>
<NlmUniqueID>101563288</NlmUniqueID>
<ISSNLinking>2045-2322</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012330">RNA, Double-Stranded</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012367">RNA, Viral</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014764">Viral Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018352" MajorTopicYN="N">Coronavirus Infections</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006860" MajorTopicYN="N">Hydrogen Bonding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D065207" MajorTopicYN="N">Middle East Respiratory Syndrome Coronavirus</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008968" MajorTopicYN="N">Molecular Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016296" MajorTopicYN="N">Mutagenesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012330" MajorTopicYN="N">RNA, Double-Stranded</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012367" MajorTopicYN="N">RNA, Viral</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013329" MajorTopicYN="N">Structure-Activity Relationship</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014764" MajorTopicYN="N">Viral Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>01</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>08</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>9</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>9</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>6</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28900197</ArticleId>
<ArticleId IdType="doi">10.1038/s41598-017-11736-6</ArticleId>
<ArticleId IdType="pii">10.1038/s41598-017-11736-6</ArticleId>
<ArticleId IdType="pmc">PMC5596018</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 May 25;101(21):7960-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15148372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Inform. 2012 Feb;31(2):114-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27476956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2010 Jun;78(8):1950-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20408171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2009;4(3):363-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19247286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2013 May 23;38(5):855-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23706667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2005 Dec;5(12):917-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16322745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2013 Apr 1;29(7):845-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23407358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2016 Nov 22;7:13473</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27874853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2015 Apr;16(4):343-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25789684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Recognit. 2017 Jun 13;:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28608547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Transl Med. 2017 Jun 28;9(396):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28659436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2014 Dec;95(Pt 12):2594-611</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25182164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2012 Dec 11;3(6):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23232719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Apr 18;320(5874):379-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18420935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2013 Dec;100(3):615-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24129118</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformation. 2011;7(8):384-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22347779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2016 Aug;22(8):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27439020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Model. 2004 Feb;10(1):44-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14634848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Chem. 2011 Apr 15;32(5):866-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20949517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jul;38(Web Server issue):W445-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20444869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Inf Model. 2014 Jul 28;54(7):1951-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24850022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2007 Mar 1;66(4):778-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17186527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Chem. 2004 Oct;25(13):1605-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15264254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 Aug 20;5:13446</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26289783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2001 Jul 15;29(14):2994-3005</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11452024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jul;38(Web Server issue):W576-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20542909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Mol Med. 2015 Aug 28;47:e181</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26315600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rev Med Virol. 2017 Mar;27(2):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27786402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2017 Jan 15;228:7-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27840112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2010 Apr;5(4):725-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20360767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Feb 24;124(4):783-801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16497588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2013;9(9):e1003595</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24039577</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Theory Comput. 2012 Sep 11;8(9):3314-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26605738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2013 Apr 30;4(3):e00165-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23631916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2013 Oct 15;29(20):2588-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23975762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2014 Apr;95(Pt 4):874-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24443473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1990 Oct 5;215(3):403-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2231712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Nov;87(22):12489-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24027320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2014;1084:193-226</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24061923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Jul;84(13):6472-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20427526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005 Apr 22;33(7):2302-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15849316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2010 Oct 15;143(2):225-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20946981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Mar 14;495(7440):251-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23486063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jul;35(Web Server issue):W407-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17517781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2017 Jan 3;35(1):10-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27899228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Chem. 2015 Oct 5;36(26):1990-2008</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26238484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Feb 24;124(4):767-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16497587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Phys. 2010 Jul 21;133(3):034117</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20649318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Oct;36(17):5645-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18765473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2013 Jun;70(11):1875-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22918483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Cell. 2013 Dec;4(12):951-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24318862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomol Concepts. 2010 Oct;1(3-4):271-283</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21436958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Jun;87(12):6604-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23552422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2012 Nov 20;3(6):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23170002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biosyst. 2014 Dec;10(12):3120-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25220841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2017 May;141:101-106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28216367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Oct;84(19):9760-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20660196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jul;38(Web Server issue):W633-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20460469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Expert Rev Vaccines. 2016 Sep;15(9):1123-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26985862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2016 Dec;499:375-382</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27750111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 May;87(9):5300-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23449793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2005 Oct;13(10):1435-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16216575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2009 Jan 9;385(1):312-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18952103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W306-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15980478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jul 1;31(13):3381-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12824332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2013 Feb 19;4(1):e00611-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23422412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2014 May;88(9):4866-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24522921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Virol. 2015 Jan;62:69-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25542475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jul;37(Web Server issue):W510-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19429685</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Corée du Sud</li>
</country>
</list>
<tree>
<country name="Corée du Sud">
<noRegion>
<name sortKey="Batool, Maria" sort="Batool, Maria" uniqKey="Batool M" first="Maria" last="Batool">Maria Batool</name>
</noRegion>
<name sortKey="Choi, Sangdun" sort="Choi, Sangdun" uniqKey="Choi S" first="Sangdun" last="Choi">Sangdun Choi</name>
<name sortKey="Patra, Mahesh Chandra" sort="Patra, Mahesh Chandra" uniqKey="Patra M" first="Mahesh Chandra" last="Patra">Mahesh Chandra Patra</name>
<name sortKey="Shah, Masaud" sort="Shah, Masaud" uniqKey="Shah M" first="Masaud" last="Shah">Masaud Shah</name>
<name sortKey="Yesudhas, Dhanusha" sort="Yesudhas, Dhanusha" uniqKey="Yesudhas D" first="Dhanusha" last="Yesudhas">Dhanusha Yesudhas</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B16 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000B16 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:28900197
   |texte=   Structural insights into the Middle East respiratory syndrome coronavirus 4a protein and its dsRNA binding mechanism.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:28900197" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021