Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A benchmark study of k-mer counting methods for high-throughput sequencing.

Identifieur interne : 000A43 ( PubMed/Checkpoint ); précédent : 000A42; suivant : 000A44

A benchmark study of k-mer counting methods for high-throughput sequencing.

Auteurs : Swati C. Manekar [Inde] ; Shailesh R. Sathe [Inde]

Source :

RBID : pubmed:30346548

Descripteurs français

English descriptors

Abstract

The rapid development of high-throughput sequencing technologies means that hundreds of gigabytes of sequencing data can be produced in a single study. Many bioinformatics tools require counts of substrings of length k in DNA/RNA sequencing reads obtained for applications such as genome and transcriptome assembly, error correction, multiple sequence alignment, and repeat detection. Recently, several techniques have been developed to count k-mers in large sequencing datasets, with a trade-off between the time and memory required to perform this function. We assessed several k-mer counting programs and evaluated their relative performance, primarily on the basis of runtime and memory usage. We also considered additional parameters such as disk usage, accuracy, parallelism, the impact of compressed input, performance in terms of counting large k values and the scalability of the application to larger datasets.We make specific recommendations for the setup of a current state-of-the-art program and suggestions for further development.

DOI: 10.1093/gigascience/giy125
PubMed: 30346548


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:30346548

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A benchmark study of k-mer counting methods for high-throughput sequencing.</title>
<author>
<name sortKey="Manekar, Swati C" sort="Manekar, Swati C" uniqKey="Manekar S" first="Swati C" last="Manekar">Swati C. Manekar</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Computer Science and Engineering, Visvesvaraya National Institute of Technology, Nagpur 440 010, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Computer Science and Engineering, Visvesvaraya National Institute of Technology, Nagpur 440 010</wicri:regionArea>
<wicri:noRegion>Nagpur 440 010</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sathe, Shailesh R" sort="Sathe, Shailesh R" uniqKey="Sathe S" first="Shailesh R" last="Sathe">Shailesh R. Sathe</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Computer Science and Engineering, Visvesvaraya National Institute of Technology, Nagpur 440 010, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Computer Science and Engineering, Visvesvaraya National Institute of Technology, Nagpur 440 010</wicri:regionArea>
<wicri:noRegion>Nagpur 440 010</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30346548</idno>
<idno type="pmid">30346548</idno>
<idno type="doi">10.1093/gigascience/giy125</idno>
<idno type="wicri:Area/PubMed/Corpus">000751</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000751</idno>
<idno type="wicri:Area/PubMed/Curation">000751</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000751</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000A43</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000A43</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A benchmark study of k-mer counting methods for high-throughput sequencing.</title>
<author>
<name sortKey="Manekar, Swati C" sort="Manekar, Swati C" uniqKey="Manekar S" first="Swati C" last="Manekar">Swati C. Manekar</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Computer Science and Engineering, Visvesvaraya National Institute of Technology, Nagpur 440 010, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Computer Science and Engineering, Visvesvaraya National Institute of Technology, Nagpur 440 010</wicri:regionArea>
<wicri:noRegion>Nagpur 440 010</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sathe, Shailesh R" sort="Sathe, Shailesh R" uniqKey="Sathe S" first="Shailesh R" last="Sathe">Shailesh R. Sathe</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Computer Science and Engineering, Visvesvaraya National Institute of Technology, Nagpur 440 010, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Computer Science and Engineering, Visvesvaraya National Institute of Technology, Nagpur 440 010</wicri:regionArea>
<wicri:noRegion>Nagpur 440 010</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">GigaScience</title>
<idno type="eISSN">2047-217X</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Arabidopsis (genetics)</term>
<term>Computational Biology (methods)</term>
<term>Databases, Genetic</term>
<term>Genome</term>
<term>High-Throughput Nucleotide Sequencing</term>
<term>Humans</term>
<term>Sequence Alignment</term>
<term>Sequence Analysis, DNA</term>
<term>Software</term>
<term>Transcriptome</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alignement de séquences</term>
<term>Analyse de séquence d'ADN</term>
<term>Animaux</term>
<term>Arabidopsis (génétique)</term>
<term>Bases de données génétiques</term>
<term>Biologie informatique ()</term>
<term>Génome</term>
<term>Humains</term>
<term>Logiciel</term>
<term>Séquençage nucléotidique à haut débit</term>
<term>Transcriptome</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arabidopsis</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Computational Biology</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Databases, Genetic</term>
<term>Genome</term>
<term>High-Throughput Nucleotide Sequencing</term>
<term>Humans</term>
<term>Sequence Alignment</term>
<term>Sequence Analysis, DNA</term>
<term>Software</term>
<term>Transcriptome</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Alignement de séquences</term>
<term>Analyse de séquence d'ADN</term>
<term>Animaux</term>
<term>Bases de données génétiques</term>
<term>Biologie informatique</term>
<term>Génome</term>
<term>Humains</term>
<term>Logiciel</term>
<term>Séquençage nucléotidique à haut débit</term>
<term>Transcriptome</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The rapid development of high-throughput sequencing technologies means that hundreds of gigabytes of sequencing data can be produced in a single study. Many bioinformatics tools require counts of substrings of length k in DNA/RNA sequencing reads obtained for applications such as genome and transcriptome assembly, error correction, multiple sequence alignment, and repeat detection. Recently, several techniques have been developed to count k-mers in large sequencing datasets, with a trade-off between the time and memory required to perform this function. We assessed several k-mer counting programs and evaluated their relative performance, primarily on the basis of runtime and memory usage. We also considered additional parameters such as disk usage, accuracy, parallelism, the impact of compressed input, performance in terms of counting large k values and the scalability of the application to larger datasets.We make specific recommendations for the setup of a current state-of-the-art program and suggestions for further development.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30346548</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>04</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>04</Month>
<Day>11</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2047-217X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2018</Year>
<Month>12</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>GigaScience</Title>
<ISOAbbreviation>Gigascience</ISOAbbreviation>
</Journal>
<ArticleTitle>A benchmark study of k-mer counting methods for high-throughput sequencing.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/gigascience/giy125</ELocationID>
<Abstract>
<AbstractText>The rapid development of high-throughput sequencing technologies means that hundreds of gigabytes of sequencing data can be produced in a single study. Many bioinformatics tools require counts of substrings of length k in DNA/RNA sequencing reads obtained for applications such as genome and transcriptome assembly, error correction, multiple sequence alignment, and repeat detection. Recently, several techniques have been developed to count k-mers in large sequencing datasets, with a trade-off between the time and memory required to perform this function. We assessed several k-mer counting programs and evaluated their relative performance, primarily on the basis of runtime and memory usage. We also considered additional parameters such as disk usage, accuracy, parallelism, the impact of compressed input, performance in terms of counting large k values and the scalability of the application to larger datasets.We make specific recommendations for the setup of a current state-of-the-art program and suggestions for further development.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Manekar</LastName>
<ForeName>Swati C</ForeName>
<Initials>SC</Initials>
<AffiliationInfo>
<Affiliation>Department of Computer Science and Engineering, Visvesvaraya National Institute of Technology, Nagpur 440 010, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sathe</LastName>
<ForeName>Shailesh R</ForeName>
<Initials>SR</Initials>
<AffiliationInfo>
<Affiliation>Department of Computer Science and Engineering, Visvesvaraya National Institute of Technology, Nagpur 440 010, India.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>12</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Gigascience</MedlineTA>
<NlmUniqueID>101596872</NlmUniqueID>
<ISSNLinking>2047-217X</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019295" MajorTopicYN="N">Computational Biology</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030541" MajorTopicYN="N">Databases, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016678" MajorTopicYN="N">Genome</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059014" MajorTopicYN="N">High-Throughput Nucleotide Sequencing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012984" MajorTopicYN="Y">Software</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059467" MajorTopicYN="N">Transcriptome</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>09</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>10</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>10</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>4</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>10</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30346548</ArticleId>
<ArticleId IdType="pii">5140149</ArticleId>
<ArticleId IdType="doi">10.1093/gigascience/giy125</ArticleId>
<ArticleId IdType="pmc">PMC6280066</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genome Biol. 2010;11(11):R116</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21114842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2005 Sep;1(4):e43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16184192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2015 May 21;58(4):586-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26000844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2008 Dec 15;24(24):2818-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18952627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2017 Feb 15;33(4):574-576</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27797770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Mar 1;21(5):582-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15374857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Algorithms Mol Biol. 2017 Mar 31;12:9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28373894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2013 Jul 03;14(7):405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23822731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 Jul 15;30(14):1950-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24618471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2016 Sep 15;32(18):2783-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27283950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 May;18(5):821-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18349386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Dec;78(6 Pt 1):061912</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19256873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 May 31;7(1):2537</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28566690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Mar 15;27(6):764-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21217122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2011 Aug 10;12:333</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21831268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brief Bioinform. 2017 Jan;18(1):1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26868358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Mar 19;32(5):1792-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15034147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Mar 24;287(5461):2196-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10731133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 Jul 15;30(14):2070-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24642064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2009 Jun;19(6):1117-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19251739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2013 Mar 1;29(5):652-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23325618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gigascience. 2015 Dec 03;4:58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26640690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Jun 1;27(11):1455-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21471014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Biol. 2010 Apr;17(4):603-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20426693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 Dec 15;30(24):3541-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25355787</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Biol. 2016 Apr;23(4):248-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26982880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Res Notes. 2014 Jul 30;7:484</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25077983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Aug 14;98(17):9748-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11504945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2008 Oct 31;9:517</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18976482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2017 Sep 1;33(17):2759-2761</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28472236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brief Bioinform. 2016 Jan;17(1):154-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26026159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2003 Oct;13(10):2306-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12975312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Jul 1;27(13):i137-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21685062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2015 May 15;31(10):1569-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25609798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2017 May 1;33(9):1324-1330</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28453674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 Jan 1;30(1):31-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23732276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2013 Feb 1;29(3):308-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23202746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Jun;21 Suppl 1:i351-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15961478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2013 May 16;14:160</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23679007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2018 Feb 15;34(4):568-575</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29444235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2003 Feb 12;19(3):319-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12584116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brief Bioinform. 2015 Jul;16(4):588-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25183248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2003 Jan;13(1):91-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12529310</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics. 2010 Jun;95(6):315-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20211242</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Inde</li>
</country>
</list>
<tree>
<country name="Inde">
<noRegion>
<name sortKey="Manekar, Swati C" sort="Manekar, Swati C" uniqKey="Manekar S" first="Swati C" last="Manekar">Swati C. Manekar</name>
</noRegion>
<name sortKey="Sathe, Shailesh R" sort="Sathe, Shailesh R" uniqKey="Sathe S" first="Shailesh R" last="Sathe">Shailesh R. Sathe</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A43 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000A43 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:30346548
   |texte=   A benchmark study of k-mer counting methods for high-throughput sequencing.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:30346548" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021