Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A human behavior integrated hierarchical model of airborne disease transmission in a large city.

Identifieur interne : 000A37 ( PubMed/Checkpoint ); précédent : 000A36; suivant : 000A38

A human behavior integrated hierarchical model of airborne disease transmission in a large city.

Auteurs : Nan Zhang [République populaire de Chine] ; Hong Huang [République populaire de Chine] ; Boni Su [République populaire de Chine] ; Xun Ma [République populaire de Chine] ; Yuguo Li [République populaire de Chine]

Source :

RBID : pubmed:32287976

Abstract

Epidemics of infectious diseases such as SARS, H1N1, and MERS threaten public health, particularly in large cities such as Hong Kong. We constructed a human behavior integrated hierarchical (HiHi) model based on the SIR (Susceptible, Infectious, and Recovered) model, the Wells-Riley equation, and population movement considering both spatial and temporal dimensions. The model considers more than 7 million people, 3 million indoor environments, and 2566 public transport routes in Hong Kong. Smallpox, which could be spread through airborne routes, is studied as an example. The simulation is based on people's daily commutes and indoor human behaviors, which were summarized by mathematical patterns. We found that 59.6%, 18.1%, and 13.4% of patients become infected in their homes, offices, and schools, respectively. If both work stoppage and school closure measures are taken when the number of infected people is greater than 1000, an infectious disease will be effectively controlled after 2 months. The peak number of infected people will be reduced by 25% compared to taking no action, and the time of peak infections will be delayed by about 40 days if 90% of the infected people go to hospital during the infectious period. When ventilation rates in indoor environments increase to five times their default settings, smallpox will be naturally controlled. Residents of Kowloon and the north part of Hong Kong Island have a high risk of infection from airborne infectious diseases. Our HiHi model reduces the calculation time for infection rates to an acceptable level while preserving accuracy.

DOI: 10.1016/j.buildenv.2017.11.011
PubMed: 32287976


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:32287976

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A human behavior integrated hierarchical model of airborne disease transmission in a large city.</title>
<author>
<name sortKey="Zhang, Nan" sort="Zhang, Nan" uniqKey="Zhang N" first="Nan" last="Zhang">Nan Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR</wicri:regionArea>
<wicri:noRegion>Hong Kong SAR</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Huang, Hong" sort="Huang, Hong" uniqKey="Huang H" first="Hong" last="Huang">Hong Huang</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Su, Boni" sort="Su, Boni" uniqKey="Su B" first="Boni" last="Su">Boni Su</name>
<affiliation wicri:level="3">
<nlm:affiliation>Electric Power Planning & Engineering Institute, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Electric Power Planning & Engineering Institute, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ma, Xun" sort="Ma, Xun" uniqKey="Ma X" first="Xun" last="Ma">Xun Ma</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Li, Yuguo" sort="Li, Yuguo" uniqKey="Li Y" first="Yuguo" last="Li">Yuguo Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR</wicri:regionArea>
<wicri:noRegion>Hong Kong SAR</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:32287976</idno>
<idno type="pmid">32287976</idno>
<idno type="doi">10.1016/j.buildenv.2017.11.011</idno>
<idno type="wicri:Area/PubMed/Corpus">000A32</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000A32</idno>
<idno type="wicri:Area/PubMed/Curation">000A32</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000A32</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000A37</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000A37</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A human behavior integrated hierarchical model of airborne disease transmission in a large city.</title>
<author>
<name sortKey="Zhang, Nan" sort="Zhang, Nan" uniqKey="Zhang N" first="Nan" last="Zhang">Nan Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR</wicri:regionArea>
<wicri:noRegion>Hong Kong SAR</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Huang, Hong" sort="Huang, Hong" uniqKey="Huang H" first="Hong" last="Huang">Hong Huang</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Su, Boni" sort="Su, Boni" uniqKey="Su B" first="Boni" last="Su">Boni Su</name>
<affiliation wicri:level="3">
<nlm:affiliation>Electric Power Planning & Engineering Institute, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Electric Power Planning & Engineering Institute, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ma, Xun" sort="Ma, Xun" uniqKey="Ma X" first="Xun" last="Ma">Xun Ma</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Li, Yuguo" sort="Li, Yuguo" uniqKey="Li Y" first="Yuguo" last="Li">Yuguo Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR</wicri:regionArea>
<wicri:noRegion>Hong Kong SAR</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Building and environment</title>
<idno type="ISSN">0360-1323</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Epidemics of infectious diseases such as SARS, H1N1, and MERS threaten public health, particularly in large cities such as Hong Kong. We constructed a human behavior integrated hierarchical (HiHi) model based on the SIR (Susceptible, Infectious, and Recovered) model, the Wells-Riley equation, and population movement considering both spatial and temporal dimensions. The model considers more than 7 million people, 3 million indoor environments, and 2566 public transport routes in Hong Kong. Smallpox, which could be spread through airborne routes, is studied as an example. The simulation is based on people's daily commutes and indoor human behaviors, which were summarized by mathematical patterns. We found that 59.6%, 18.1%, and 13.4% of patients become infected in their homes, offices, and schools, respectively. If both work stoppage and school closure measures are taken when the number of infected people is greater than 1000, an infectious disease will be effectively controlled after 2 months. The peak number of infected people will be reduced by 25% compared to taking no action, and the time of peak infections will be delayed by about 40 days if 90% of the infected people go to hospital during the infectious period. When ventilation rates in indoor environments increase to five times their default settings, smallpox will be naturally controlled. Residents of Kowloon and the north part of Hong Kong Island have a high risk of infection from airborne infectious diseases. Our HiHi model reduces the calculation time for infection rates to an acceptable level while preserving accuracy.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32287976</PMID>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>18</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0360-1323</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>127</Volume>
<PubDate>
<Year>2018</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Building and environment</Title>
<ISOAbbreviation>Build Environ</ISOAbbreviation>
</Journal>
<ArticleTitle>A human behavior integrated hierarchical model of airborne disease transmission in a large city.</ArticleTitle>
<Pagination>
<MedlinePgn>211-220</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.buildenv.2017.11.011</ELocationID>
<Abstract>
<AbstractText>Epidemics of infectious diseases such as SARS, H1N1, and MERS threaten public health, particularly in large cities such as Hong Kong. We constructed a human behavior integrated hierarchical (HiHi) model based on the SIR (Susceptible, Infectious, and Recovered) model, the Wells-Riley equation, and population movement considering both spatial and temporal dimensions. The model considers more than 7 million people, 3 million indoor environments, and 2566 public transport routes in Hong Kong. Smallpox, which could be spread through airborne routes, is studied as an example. The simulation is based on people's daily commutes and indoor human behaviors, which were summarized by mathematical patterns. We found that 59.6%, 18.1%, and 13.4% of patients become infected in their homes, offices, and schools, respectively. If both work stoppage and school closure measures are taken when the number of infected people is greater than 1000, an infectious disease will be effectively controlled after 2 months. The peak number of infected people will be reduced by 25% compared to taking no action, and the time of peak infections will be delayed by about 40 days if 90% of the infected people go to hospital during the infectious period. When ventilation rates in indoor environments increase to five times their default settings, smallpox will be naturally controlled. Residents of Kowloon and the north part of Hong Kong Island have a high risk of infection from airborne infectious diseases. Our HiHi model reduces the calculation time for infection rates to an acceptable level while preserving accuracy.</AbstractText>
<CopyrightInformation>© 2017 Elsevier Ltd. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Nan</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Huang</LastName>
<ForeName>Hong</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Su</LastName>
<ForeName>Boni</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Electric Power Planning & Engineering Institute, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ma</LastName>
<ForeName>Xun</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Yuguo</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>11</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Build Environ</MedlineTA>
<NlmUniqueID>101562928</NlmUniqueID>
<ISSNLinking>0360-1323</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Airborne infectious disease</Keyword>
<Keyword MajorTopicYN="N">Human behavior</Keyword>
<Keyword MajorTopicYN="N">Infection risk</Keyword>
<Keyword MajorTopicYN="N">Population movement</Keyword>
<Keyword MajorTopicYN="N">Transmission</Keyword>
<Keyword MajorTopicYN="N">Wells-Riley equation</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>08</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2017</Year>
<Month>10</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>11</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>4</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>1</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>1</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32287976</ArticleId>
<ArticleId IdType="doi">10.1016/j.buildenv.2017.11.011</ArticleId>
<ArticleId IdType="pii">S0360-1323(17)30518-8</ArticleId>
<ArticleId IdType="pmc">PMC7115769</ArticleId>
</ArticleIdList>
<pmc-dir>pmcsd</pmc-dir>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2013 May 16;368(20):1888-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23577628</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Endod. 2013 Sep;39(9):1179-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23953295</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Eur Phys J Spec Top. 2017;226(9):1845-1856</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32215191</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Environ Int. 2016 Sep;94:369-379</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27107973</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Sci Total Environ. 2016 Nov 1;569-570:373-381</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27351145</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2004 Apr 22;350(17):1731-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15102999</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Health Care Manag Sci. 2005 Nov;8(4):277-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16379411</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2016 Sep 09;11(9):e0162481</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27611368</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Pediatr Rev. 2015 Nov;36(11):511-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26527633</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>BMC Health Serv Res. 2011 Aug 10;11:186</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21831287</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>BMC Infect Dis. 2017 Apr 11;17(1):258</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28399801</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Sci Rep. 2016 Dec 08;6:38790</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27929141</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Lancet. 2009 Dec 19;374(9707):2072-2079</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19913290</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>BMC Infect Dis. 2017 May 11;17(1):337</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28494805</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>BMC Infect Dis. 2017 Jan 5;17(1):23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28056850</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Emerg Infect Dis. 2014 May;20(5):882-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24750988</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Indoor Air. 2006 Dec;16(6):469-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17100668</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Lancet. 2003 May 3;361(9368):1486-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12737853</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2003 Oct 16;425(6959):681-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14562094</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<settlement>
<li>Pékin</li>
</settlement>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Zhang, Nan" sort="Zhang, Nan" uniqKey="Zhang N" first="Nan" last="Zhang">Nan Zhang</name>
</noRegion>
<name sortKey="Huang, Hong" sort="Huang, Hong" uniqKey="Huang H" first="Hong" last="Huang">Hong Huang</name>
<name sortKey="Li, Yuguo" sort="Li, Yuguo" uniqKey="Li Y" first="Yuguo" last="Li">Yuguo Li</name>
<name sortKey="Ma, Xun" sort="Ma, Xun" uniqKey="Ma X" first="Xun" last="Ma">Xun Ma</name>
<name sortKey="Su, Boni" sort="Su, Boni" uniqKey="Su B" first="Boni" last="Su">Boni Su</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A37 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000A37 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:32287976
   |texte=   A human behavior integrated hierarchical model of airborne disease transmission in a large city.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:32287976" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021