Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Adaptive evolution influences the infectious dose of MERS-CoV necessary to achieve severe respiratory disease.

Identifieur interne : 000A23 ( PubMed/Checkpoint ); précédent : 000A22; suivant : 000A24

Adaptive evolution influences the infectious dose of MERS-CoV necessary to achieve severe respiratory disease.

Auteurs : Madeline G. Douglas [États-Unis] ; Jacob F. Kocher [États-Unis] ; Trevor Scobey [États-Unis] ; Ralph S. Baric [États-Unis] ; Adam S. Cockrell [États-Unis]

Source :

RBID : pubmed:29277291

Descripteurs français

English descriptors

Abstract

We recently established a mouse model (288-330+/+) that developed acute respiratory disease resembling human pathology following infection with a high dose (5 × 106 PFU) of mouse-adapted MERS-CoV (icMERSma1). Although this high dose conferred fatal respiratory disease in mice, achieving similar pathology at lower viral doses may more closely reflect naturally acquired infections. Through continued adaptive evolution of icMERSma1 we generated a novel mouse-adapted MERS-CoV (maM35c4) capable of achieving severe respiratory disease at doses between 103 and 105 PFU. Novel mutations were identified in the maM35c4 genome that may be responsible for eliciting etiologies of acute respiratory distress syndrome at 10-1000 fold lower viral doses. Importantly, comparative genetics of the two mouse-adapted MERS strains allowed us to identify specific mutations that remained fixed through an additional 20 cycles of adaptive evolution. Our data indicate that the extent of MERS-CoV adaptation determines the minimal infectious dose required to achieve severe respiratory disease.

DOI: 10.1016/j.virol.2017.12.006
PubMed: 29277291


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:29277291

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Adaptive evolution influences the infectious dose of MERS-CoV necessary to achieve severe respiratory disease.</title>
<author>
<name sortKey="Douglas, Madeline G" sort="Douglas, Madeline G" uniqKey="Douglas M" first="Madeline G" last="Douglas">Madeline G. Douglas</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kocher, Jacob F" sort="Kocher, Jacob F" uniqKey="Kocher J" first="Jacob F" last="Kocher">Jacob F. Kocher</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Scobey, Trevor" sort="Scobey, Trevor" uniqKey="Scobey T" first="Trevor" last="Scobey">Trevor Scobey</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Baric, Ralph S" sort="Baric, Ralph S" uniqKey="Baric R" first="Ralph S" last="Baric">Ralph S. Baric</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Cockrell, Adam S" sort="Cockrell, Adam S" uniqKey="Cockrell A" first="Adam S" last="Cockrell">Adam S. Cockrell</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29277291</idno>
<idno type="pmid">29277291</idno>
<idno type="doi">10.1016/j.virol.2017.12.006</idno>
<idno type="wicri:Area/PubMed/Corpus">000A37</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000A37</idno>
<idno type="wicri:Area/PubMed/Curation">000A37</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000A37</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000A23</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000A23</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Adaptive evolution influences the infectious dose of MERS-CoV necessary to achieve severe respiratory disease.</title>
<author>
<name sortKey="Douglas, Madeline G" sort="Douglas, Madeline G" uniqKey="Douglas M" first="Madeline G" last="Douglas">Madeline G. Douglas</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kocher, Jacob F" sort="Kocher, Jacob F" uniqKey="Kocher J" first="Jacob F" last="Kocher">Jacob F. Kocher</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Scobey, Trevor" sort="Scobey, Trevor" uniqKey="Scobey T" first="Trevor" last="Scobey">Trevor Scobey</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Baric, Ralph S" sort="Baric, Ralph S" uniqKey="Baric R" first="Ralph S" last="Baric">Ralph S. Baric</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Cockrell, Adam S" sort="Cockrell, Adam S" uniqKey="Cockrell A" first="Adam S" last="Cockrell">Adam S. Cockrell</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Virology</title>
<idno type="eISSN">1096-0341</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Biological Evolution</term>
<term>Coronavirus Infections (pathology)</term>
<term>Coronavirus Infections (virology)</term>
<term>Lung (virology)</term>
<term>Mice</term>
<term>Middle East Respiratory Syndrome Coronavirus (physiology)</term>
<term>Organisms, Genetically Modified</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Coronavirus du syndrome respiratoire du Moyen-Orient (physiologie)</term>
<term>Infections à coronavirus (anatomopathologie)</term>
<term>Infections à coronavirus (virologie)</term>
<term>Organismes génétiquement modifiés</term>
<term>Poumon (virologie)</term>
<term>Souris</term>
<term>Évolution biologique</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomopathologie" xml:lang="fr">
<term>Infections à coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Coronavirus Infections</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Coronavirus du syndrome respiratoire du Moyen-Orient</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Middle East Respiratory Syndrome Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Infections à coronavirus</term>
<term>Poumon</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Lung</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Biological Evolution</term>
<term>Mice</term>
<term>Organisms, Genetically Modified</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Organismes génétiquement modifiés</term>
<term>Souris</term>
<term>Évolution biologique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We recently established a mouse model (288-330
<sup>+/+</sup>
) that developed acute respiratory disease resembling human pathology following infection with a high dose (5 × 10
<sup>6</sup>
PFU) of mouse-adapted MERS-CoV (icMERSma1). Although this high dose conferred fatal respiratory disease in mice, achieving similar pathology at lower viral doses may more closely reflect naturally acquired infections. Through continued adaptive evolution of icMERSma1 we generated a novel mouse-adapted MERS-CoV (maM35c4) capable of achieving severe respiratory disease at doses between 10
<sup>3</sup>
and 10
<sup>5</sup>
PFU. Novel mutations were identified in the maM35c4 genome that may be responsible for eliciting etiologies of acute respiratory distress syndrome at 10-1000 fold lower viral doses. Importantly, comparative genetics of the two mouse-adapted MERS strains allowed us to identify specific mutations that remained fixed through an additional 20 cycles of adaptive evolution. Our data indicate that the extent of MERS-CoV adaptation determines the minimal infectious dose required to achieve severe respiratory disease.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29277291</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>04</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>07</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1096-0341</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>517</Volume>
<PubDate>
<Year>2018</Year>
<Month>04</Month>
</PubDate>
</JournalIssue>
<Title>Virology</Title>
<ISOAbbreviation>Virology</ISOAbbreviation>
</Journal>
<ArticleTitle>Adaptive evolution influences the infectious dose of MERS-CoV necessary to achieve severe respiratory disease.</ArticleTitle>
<Pagination>
<MedlinePgn>98-107</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S0042-6822(17)30411-7</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.virol.2017.12.006</ELocationID>
<Abstract>
<AbstractText>We recently established a mouse model (288-330
<sup>+/+</sup>
) that developed acute respiratory disease resembling human pathology following infection with a high dose (5 × 10
<sup>6</sup>
PFU) of mouse-adapted MERS-CoV (icMERSma1). Although this high dose conferred fatal respiratory disease in mice, achieving similar pathology at lower viral doses may more closely reflect naturally acquired infections. Through continued adaptive evolution of icMERSma1 we generated a novel mouse-adapted MERS-CoV (maM35c4) capable of achieving severe respiratory disease at doses between 10
<sup>3</sup>
and 10
<sup>5</sup>
PFU. Novel mutations were identified in the maM35c4 genome that may be responsible for eliciting etiologies of acute respiratory distress syndrome at 10-1000 fold lower viral doses. Importantly, comparative genetics of the two mouse-adapted MERS strains allowed us to identify specific mutations that remained fixed through an additional 20 cycles of adaptive evolution. Our data indicate that the extent of MERS-CoV adaptation determines the minimal infectious dose required to achieve severe respiratory disease.</AbstractText>
<CopyrightInformation>Copyright © 2017 Elsevier Inc. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Douglas</LastName>
<ForeName>Madeline G</ForeName>
<Initials>MG</Initials>
<AffiliationInfo>
<Affiliation>Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kocher</LastName>
<ForeName>Jacob F</ForeName>
<Initials>JF</Initials>
<AffiliationInfo>
<Affiliation>Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Scobey</LastName>
<ForeName>Trevor</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Baric</LastName>
<ForeName>Ralph S</ForeName>
<Initials>RS</Initials>
<AffiliationInfo>
<Affiliation>Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cockrell</LastName>
<ForeName>Adam S</ForeName>
<Initials>AS</Initials>
<AffiliationInfo>
<Affiliation>Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>HHSN272201000019I</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI089728</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI110700</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>12</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Virology</MedlineTA>
<NlmUniqueID>0110674</NlmUniqueID>
<ISSNLinking>0042-6822</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005075" MajorTopicYN="Y">Biological Evolution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018352" MajorTopicYN="N">Coronavirus Infections</DescriptorName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008168" MajorTopicYN="N">Lung</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D065207" MajorTopicYN="N">Middle East Respiratory Syndrome Coronavirus</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030781" MajorTopicYN="N">Organisms, Genetically Modified</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Acute respiratory distress syndrome</Keyword>
<Keyword MajorTopicYN="Y">Coronavirus</Keyword>
<Keyword MajorTopicYN="Y">MERS-CoV</Keyword>
<Keyword MajorTopicYN="Y">Middle East respiratory syndrome</Keyword>
<Keyword MajorTopicYN="Y">Respiratory disease</Keyword>
<Keyword MajorTopicYN="Y">Spike protein</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>09</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2017</Year>
<Month>12</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>12</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>12</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>4</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>12</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29277291</ArticleId>
<ArticleId IdType="pii">S0042-6822(17)30411-7</ArticleId>
<ArticleId IdType="doi">10.1016/j.virol.2017.12.006</ArticleId>
<ArticleId IdType="pmc">PMC5869108</ArticleId>
<ArticleId IdType="mid">NIHMS930518</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Protoc. 2015 Jun;10(6):845-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25950237</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Protein Cell. 2013 Dec;4(12):951-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24318862</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Antiviral Res. 2015 Mar;115:21-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25554382</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Am J Pathol. 2016 Mar;186(3):652-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26857507</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2016 Mar 3;531(7592):118-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26935699</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Adv Virus Res. 2016;96:29-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27712627</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Pathog. 2007 Jan;3(1):e5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17222058</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Pathog. 2016 Oct 26;12(10):e1005982</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27783669</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2015 Feb;89(3):1523-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25428866</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Sep 16;111(37):E3900-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25197083</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Oct 21;111(42):15214-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25288733</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2006 Sep;80(17):8493-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16912299</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2008 Jun;82(11):5137-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18367528</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Trends Immunol. 2008 Jun;29(6):295-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18456553</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Emerg Infect Dis. 2016 Apr;22(4):716-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26981770</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2016 Dec 16;91(1):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27795435</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Infect Dis. 2015 Dec 15;212(12):1904-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26198719</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2015 Nov;485:422-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26342468</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Oct 3;114(40):E8508-E8517</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28923942</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Emerg Microbes Infect. 2016 Apr 20;5:e39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27094905</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Front Immunol. 2015 Jul 27;6:386</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26284071</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>mBio. 2016 Mar 29;7(2):e00258</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27025250</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Histopathology. 2018 Feb;72(3):516-524</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28858401</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>mBio. 2013 Aug 13;4(4):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23943763</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2013 Apr 18;368(16):1560-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23550601</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Apr 11;114(15):E3119-E3128</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28348219</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2017 Feb 9;376(6):584-594</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28177862</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Pathog. 2014 May 29;10(5):e1004166</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24874215</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Adv Virus Res. 2016;96:59-126</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27712628</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2016 Apr 14;90(9):4838-4842</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26889022</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2016 Mar 3;531(7592):114-117</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26855426</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Structure. 2005 Nov;13(11):1665-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16271890</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Microbiol. 2016 Nov 28;2:16226</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27892925</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Infect Public Health. 2017 Mar - Apr;10(2):191-194</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27140697</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Pathog. 2014 Aug 21;10(8):e1004250</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25144235</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>mBio. 2017 Aug 22;8(4):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28830941</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2016 Mar;490:49-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26828465</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Prev Med Public Health. 2015 Nov;48(6):274-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26639740</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2016 Sep 29;375(13):1303-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27682053</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Commun. 2017 Apr 10;8:15092</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28393837</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell Mol Immunol. 2014 Mar;11(2):141-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24509444</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 2014 Apr;95(Pt 4):874-882</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24443473</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Clin Infect Dis. 2016 Mar 15;62(6):755-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26679623</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Sci Rep. 2015 Dec 03;5:17554</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26631542</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Am J Pathol. 2016 Jan;186(1):78-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26597880</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Caroline du Nord</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Caroline du Nord">
<name sortKey="Douglas, Madeline G" sort="Douglas, Madeline G" uniqKey="Douglas M" first="Madeline G" last="Douglas">Madeline G. Douglas</name>
</region>
<name sortKey="Baric, Ralph S" sort="Baric, Ralph S" uniqKey="Baric R" first="Ralph S" last="Baric">Ralph S. Baric</name>
<name sortKey="Cockrell, Adam S" sort="Cockrell, Adam S" uniqKey="Cockrell A" first="Adam S" last="Cockrell">Adam S. Cockrell</name>
<name sortKey="Kocher, Jacob F" sort="Kocher, Jacob F" uniqKey="Kocher J" first="Jacob F" last="Kocher">Jacob F. Kocher</name>
<name sortKey="Scobey, Trevor" sort="Scobey, Trevor" uniqKey="Scobey T" first="Trevor" last="Scobey">Trevor Scobey</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A23 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000A23 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:29277291
   |texte=   Adaptive evolution influences the infectious dose of MERS-CoV necessary to achieve severe respiratory disease.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:29277291" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021