Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Identifying Group-Specific Sequences for Microbial Communities Using Long k-mer Sequence Signatures.

Identifieur interne : 000892 ( PubMed/Checkpoint ); précédent : 000891; suivant : 000893

Identifying Group-Specific Sequences for Microbial Communities Using Long k-mer Sequence Signatures.

Auteurs : Ying Wang [République populaire de Chine] ; Lei Fu [République populaire de Chine] ; Jie Ren [États-Unis] ; Zhaoxia Yu [États-Unis] ; Ting Chen [États-Unis] ; Fengzhu Sun [États-Unis]

Source :

RBID : pubmed:29774017

Abstract

Comparing metagenomic samples is crucial for understanding microbial communities. For different groups of microbial communities, such as human gut metagenomic samples from patients with a certain disease and healthy controls, identifying group-specific sequences offers essential information for potential biomarker discovery. A sequence that is present, or rich, in one group, but absent, or scarce, in another group is considered "group-specific" in our study. Our main purpose is to discover group-specific sequence regions between control and case groups as disease-associated markers. We developed a long k-mer (k ≥ 30 bps)-based computational pipeline to detect group-specific sequences at strain resolution free from reference sequences, sequence alignments, and metagenome-wide de novo assembly. We called our method MetaGO: Group-specific oligonucleotide analysis for metagenomic samples. An open-source pipeline on Apache Spark was developed with parallel computing. We applied MetaGO to one simulated and three real metagenomic datasets to evaluate the discriminative capability of identified group-specific markers. In the simulated dataset, 99.11% of group-specific logical 40-mers covered 98.89% disease-specific regions from the disease-associated strain. In addition, 97.90% of group-specific numerical 40-mers covered 99.61 and 96.39% of differentially abundant genome and regions between two groups, respectively. For a large-scale metagenomic liver cirrhosis (LC)-associated dataset, we identified 37,647 group-specific 40-mer features. Any one of the features can predict disease status of the training samples with the average of sensitivity and specificity higher than 0.8. The random forests classification using the top 10 group-specific features yielded a higher AUC (from ∼0.8 to ∼0.9) than that of previous studies. All group-specific 40-mers were present in LC patients, but not healthy controls. All the assembled 11 LC-specific sequences can be mapped to two strains of Veillonella parvula: UTDB1-3 and DSM2008. The experiments on the other two real datasets related to Inflammatory Bowel Disease and Type 2 Diabetes in Women consistently demonstrated that MetaGO achieved better prediction accuracy with fewer features compared to previous studies. The experiments showed that MetaGO is a powerful tool for identifying group-specific k-mers, which would be clinically applicable for disease prediction. MetaGO is available at https://github.com/VVsmileyx/MetaGO.

DOI: 10.3389/fmicb.2018.00872
PubMed: 29774017


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:29774017

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Identifying
<i>Group-Specific</i>
Sequences for Microbial Communities Using Long
<i>k</i>
-mer Sequence Signatures.</title>
<author>
<name sortKey="Wang, Ying" sort="Wang, Ying" uniqKey="Wang Y" first="Ying" last="Wang">Ying Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Automation, Xiamen University, Xiamen, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Automation, Xiamen University, Xiamen</wicri:regionArea>
<wicri:noRegion>Xiamen</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fu, Lei" sort="Fu, Lei" uniqKey="Fu L" first="Lei" last="Fu">Lei Fu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Automation, Xiamen University, Xiamen, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Automation, Xiamen University, Xiamen</wicri:regionArea>
<wicri:noRegion>Xiamen</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ren, Jie" sort="Ren, Jie" uniqKey="Ren J" first="Jie" last="Ren">Jie Ren</name>
<affiliation wicri:level="4">
<nlm:affiliation>Molecular and Computational Biology Program, University of Southern California, Los Angeles, CA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Molecular and Computational Biology Program, University of Southern California, Los Angeles, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
<settlement type="city">Los Angeles</settlement>
</placeName>
<orgName type="university">Université de Californie du Sud</orgName>
</affiliation>
</author>
<author>
<name sortKey="Yu, Zhaoxia" sort="Yu, Zhaoxia" uniqKey="Yu Z" first="Zhaoxia" last="Yu">Zhaoxia Yu</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Statistics, University of California, Irvine, Irvine, CA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Statistics, University of California, Irvine, Irvine, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chen, Ting" sort="Chen, Ting" uniqKey="Chen T" first="Ting" last="Chen">Ting Chen</name>
<affiliation wicri:level="4">
<nlm:affiliation>Molecular and Computational Biology Program, University of Southern California, Los Angeles, CA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Molecular and Computational Biology Program, University of Southern California, Los Angeles, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
<settlement type="city">Los Angeles</settlement>
</placeName>
<orgName type="university">Université de Californie du Sud</orgName>
</affiliation>
</author>
<author>
<name sortKey="Sun, Fengzhu" sort="Sun, Fengzhu" uniqKey="Sun F" first="Fengzhu" last="Sun">Fengzhu Sun</name>
<affiliation wicri:level="4">
<nlm:affiliation>Molecular and Computational Biology Program, University of Southern California, Los Angeles, CA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Molecular and Computational Biology Program, University of Southern California, Los Angeles, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
<settlement type="city">Los Angeles</settlement>
</placeName>
<orgName type="university">Université de Californie du Sud</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29774017</idno>
<idno type="pmid">29774017</idno>
<idno type="doi">10.3389/fmicb.2018.00872</idno>
<idno type="wicri:Area/PubMed/Corpus">000897</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000897</idno>
<idno type="wicri:Area/PubMed/Curation">000897</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000897</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000892</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000892</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Identifying
<i>Group-Specific</i>
Sequences for Microbial Communities Using Long
<i>k</i>
-mer Sequence Signatures.</title>
<author>
<name sortKey="Wang, Ying" sort="Wang, Ying" uniqKey="Wang Y" first="Ying" last="Wang">Ying Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Automation, Xiamen University, Xiamen, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Automation, Xiamen University, Xiamen</wicri:regionArea>
<wicri:noRegion>Xiamen</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fu, Lei" sort="Fu, Lei" uniqKey="Fu L" first="Lei" last="Fu">Lei Fu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Automation, Xiamen University, Xiamen, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Automation, Xiamen University, Xiamen</wicri:regionArea>
<wicri:noRegion>Xiamen</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ren, Jie" sort="Ren, Jie" uniqKey="Ren J" first="Jie" last="Ren">Jie Ren</name>
<affiliation wicri:level="4">
<nlm:affiliation>Molecular and Computational Biology Program, University of Southern California, Los Angeles, CA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Molecular and Computational Biology Program, University of Southern California, Los Angeles, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
<settlement type="city">Los Angeles</settlement>
</placeName>
<orgName type="university">Université de Californie du Sud</orgName>
</affiliation>
</author>
<author>
<name sortKey="Yu, Zhaoxia" sort="Yu, Zhaoxia" uniqKey="Yu Z" first="Zhaoxia" last="Yu">Zhaoxia Yu</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Statistics, University of California, Irvine, Irvine, CA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Statistics, University of California, Irvine, Irvine, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chen, Ting" sort="Chen, Ting" uniqKey="Chen T" first="Ting" last="Chen">Ting Chen</name>
<affiliation wicri:level="4">
<nlm:affiliation>Molecular and Computational Biology Program, University of Southern California, Los Angeles, CA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Molecular and Computational Biology Program, University of Southern California, Los Angeles, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
<settlement type="city">Los Angeles</settlement>
</placeName>
<orgName type="university">Université de Californie du Sud</orgName>
</affiliation>
</author>
<author>
<name sortKey="Sun, Fengzhu" sort="Sun, Fengzhu" uniqKey="Sun F" first="Fengzhu" last="Sun">Fengzhu Sun</name>
<affiliation wicri:level="4">
<nlm:affiliation>Molecular and Computational Biology Program, University of Southern California, Los Angeles, CA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Molecular and Computational Biology Program, University of Southern California, Los Angeles, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
<settlement type="city">Los Angeles</settlement>
</placeName>
<orgName type="university">Université de Californie du Sud</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in microbiology</title>
<idno type="ISSN">1664-302X</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Comparing metagenomic samples is crucial for understanding microbial communities. For different groups of microbial communities, such as human gut metagenomic samples from patients with a certain disease and healthy controls, identifying
<i>group-specific</i>
sequences offers essential information for potential biomarker discovery. A sequence that is present, or rich, in one group, but absent, or scarce, in another group is considered "
<i>group-specific</i>
" in our study. Our main purpose is to discover
<i>group-specific</i>
sequence regions between control and case groups as disease-associated markers. We developed a long
<i>k</i>
-mer (
<i>k</i>
≥ 30 bps)-based computational pipeline to detect
<i>group-specific</i>
sequences at strain resolution free from reference sequences, sequence alignments, and metagenome-wide
<i>de novo</i>
assembly. We called our method MetaGO:
<i>Group-specific</i>
oligonucleotide analysis for metagenomic samples. An open-source pipeline on
<i>Apache Spark</i>
was developed with parallel computing. We applied MetaGO to one simulated and three real metagenomic datasets to evaluate the discriminative capability of identified
<i>group-specific</i>
markers. In the simulated dataset, 99.11% of
<i>group-specific</i>
logical
<i>40</i>
-mers covered 98.89%
<i>disease-specific</i>
regions from the disease-associated strain. In addition, 97.90% of
<i>group-specific</i>
numerical
<i>40</i>
-mers covered 99.61 and 96.39% of differentially abundant genome and regions between two groups, respectively. For a large-scale metagenomic liver cirrhosis (LC)-associated dataset, we identified 37,647
<i>group-specific 40-</i>
mer features. Any one of the features can predict disease status of the training samples with the average of sensitivity and specificity higher than 0.8. The random forests classification using the top 10
<i>group-specific</i>
features yielded a higher AUC (from ∼0.8 to ∼0.9) than that of previous studies. All
<i>group-specific 40-</i>
mers were present in LC patients, but not healthy controls. All the assembled 11
<i>LC-specific</i>
sequences can be mapped to two strains of
<i>Veillonella parvula</i>
: UTDB1-3 and DSM2008. The experiments on the other two real datasets related to Inflammatory Bowel Disease and Type 2 Diabetes in Women consistently demonstrated that MetaGO achieved better prediction accuracy with fewer features compared to previous studies. The experiments showed that MetaGO is a powerful tool for identifying
<i>group-specific k</i>
-mers, which would be clinically applicable for disease prediction. MetaGO is available at https://github.com/VVsmileyx/MetaGO.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">29774017</PMID>
<DateRevised>
<Year>2019</Year>
<Month>11</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-302X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>9</Volume>
<PubDate>
<Year>2018</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in microbiology</Title>
<ISOAbbreviation>Front Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Identifying
<i>Group-Specific</i>
Sequences for Microbial Communities Using Long
<i>k</i>
-mer Sequence Signatures.</ArticleTitle>
<Pagination>
<MedlinePgn>872</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fmicb.2018.00872</ELocationID>
<Abstract>
<AbstractText>Comparing metagenomic samples is crucial for understanding microbial communities. For different groups of microbial communities, such as human gut metagenomic samples from patients with a certain disease and healthy controls, identifying
<i>group-specific</i>
sequences offers essential information for potential biomarker discovery. A sequence that is present, or rich, in one group, but absent, or scarce, in another group is considered "
<i>group-specific</i>
" in our study. Our main purpose is to discover
<i>group-specific</i>
sequence regions between control and case groups as disease-associated markers. We developed a long
<i>k</i>
-mer (
<i>k</i>
≥ 30 bps)-based computational pipeline to detect
<i>group-specific</i>
sequences at strain resolution free from reference sequences, sequence alignments, and metagenome-wide
<i>de novo</i>
assembly. We called our method MetaGO:
<i>Group-specific</i>
oligonucleotide analysis for metagenomic samples. An open-source pipeline on
<i>Apache Spark</i>
was developed with parallel computing. We applied MetaGO to one simulated and three real metagenomic datasets to evaluate the discriminative capability of identified
<i>group-specific</i>
markers. In the simulated dataset, 99.11% of
<i>group-specific</i>
logical
<i>40</i>
-mers covered 98.89%
<i>disease-specific</i>
regions from the disease-associated strain. In addition, 97.90% of
<i>group-specific</i>
numerical
<i>40</i>
-mers covered 99.61 and 96.39% of differentially abundant genome and regions between two groups, respectively. For a large-scale metagenomic liver cirrhosis (LC)-associated dataset, we identified 37,647
<i>group-specific 40-</i>
mer features. Any one of the features can predict disease status of the training samples with the average of sensitivity and specificity higher than 0.8. The random forests classification using the top 10
<i>group-specific</i>
features yielded a higher AUC (from ∼0.8 to ∼0.9) than that of previous studies. All
<i>group-specific 40-</i>
mers were present in LC patients, but not healthy controls. All the assembled 11
<i>LC-specific</i>
sequences can be mapped to two strains of
<i>Veillonella parvula</i>
: UTDB1-3 and DSM2008. The experiments on the other two real datasets related to Inflammatory Bowel Disease and Type 2 Diabetes in Women consistently demonstrated that MetaGO achieved better prediction accuracy with fewer features compared to previous studies. The experiments showed that MetaGO is a powerful tool for identifying
<i>group-specific k</i>
-mers, which would be clinically applicable for disease prediction. MetaGO is available at https://github.com/VVsmileyx/MetaGO.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Ying</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Department of Automation, Xiamen University, Xiamen, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fu</LastName>
<ForeName>Lei</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Department of Automation, Xiamen University, Xiamen, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ren</LastName>
<ForeName>Jie</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Molecular and Computational Biology Program, University of Southern California, Los Angeles, CA, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yu</LastName>
<ForeName>Zhaoxia</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Department of Statistics, University of California, Irvine, Irvine, CA, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Ting</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Molecular and Computational Biology Program, University of Southern California, Los Angeles, CA, United States.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Bioinformatics Division, Tsinghua National Laboratory of Information Science and Technology, Tsinghua University, Beijing, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Computer Science and Technology, Tsinghua University, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sun</LastName>
<ForeName>Fengzhu</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Molecular and Computational Biology Program, University of Southern California, Los Angeles, CA, United States.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Center for Computational Systems Biology, Fudan University, Shanghai, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>05</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Microbiol</MedlineTA>
<NlmUniqueID>101548977</NlmUniqueID>
<ISSNLinking>1664-302X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">classification</Keyword>
<Keyword MajorTopicYN="N">disease prediction</Keyword>
<Keyword MajorTopicYN="N">group-specific sequence</Keyword>
<Keyword MajorTopicYN="N">long k-mer</Keyword>
<Keyword MajorTopicYN="N">metagenomics</Keyword>
<Keyword MajorTopicYN="N">microbial community</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>11</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>04</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>5</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>5</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>5</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29774017</ArticleId>
<ArticleId IdType="doi">10.3389/fmicb.2018.00872</ArticleId>
<ArticleId IdType="pmc">PMC5943621</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>BMC Genomics. 2017 Nov 28;18(1):915</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29183281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2011 Jun 24;12(6):R60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21702898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2016 Feb 15;32(4):605-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26515820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hepatol. 2014 Jan;60(1):197-209</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23993913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008 Oct 08;3(10):e3373</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18841204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Dec 18;326(5960):1694-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19892944</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Oct 4;490(7418):55-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23023125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2009 Apr;5(4):e1000352</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19360128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2015 Mar 11;6:6528</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25758642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2017 Jul 27;18(1):142</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28750650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2008 Dec;72(4):557-78, Table of Contents</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19052320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Jun 13;486(7402):207-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22699609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 May 09;486(7402):222-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22699611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Mar 15;27(6):764-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21217122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2013 Sep 22;14:641</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24053649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Algorithms Mol Biol. 2015 Jan 16;10(1):2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25648210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2014 Aug;32(8):822-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24997787</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23193283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2011 May 15;29(7):644-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21572440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2017 Oct 3;18(1):187</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28974263</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2016 Jul 11;12 (7):e1004977</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27400279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiome. 2017 Jul 6;5(1):69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28683828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2015 May 15;31(10):1674-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25609793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2017 Mar 15;33(6):791-798</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27256312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Nov 23;6:37243</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27876823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2013 Mar 1;29(5):652-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23325618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2017 Nov;14 (11):1063-1071</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28967888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2014 Sep 4;513(7516):59-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25079328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Cell Biol. 2015 Jun;7(3):214-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25681405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Res Comput Mol Biol. 2017;2017:18-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29177251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2016 Jan 22;469(4):1021-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26721429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Mar 4;464(7285):59-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20203603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Jan 02;9(1):e84348</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24392128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2012 Dec 27;13:730</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23268604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiome. 2016 Mar 08;4:8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26951112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2013 Oct;23(10):1704-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23861384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2006 Apr 10;7:197</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16606446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2004 Oct 12;20(15):2421-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15087315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2014 Nov;11(11):1144-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25218180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2017 Oct 31;14 (11):1023-1024</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29088129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neuropathol Exp Neurol. 1991 Nov;50(6):743-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1748881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 1999 Sep;9(9):868-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10508846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2017 Sep 20;18(1):425</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28931373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Jun 6;498(7452):99-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23719380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Sep 1;25(17):3389-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9254694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2010 Feb;20(2):265-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20019144</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
<settlement>
<li>Los Angeles</li>
</settlement>
<orgName>
<li>Université de Californie du Sud</li>
</orgName>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Wang, Ying" sort="Wang, Ying" uniqKey="Wang Y" first="Ying" last="Wang">Ying Wang</name>
</noRegion>
<name sortKey="Fu, Lei" sort="Fu, Lei" uniqKey="Fu L" first="Lei" last="Fu">Lei Fu</name>
</country>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Ren, Jie" sort="Ren, Jie" uniqKey="Ren J" first="Jie" last="Ren">Jie Ren</name>
</region>
<name sortKey="Chen, Ting" sort="Chen, Ting" uniqKey="Chen T" first="Ting" last="Chen">Ting Chen</name>
<name sortKey="Sun, Fengzhu" sort="Sun, Fengzhu" uniqKey="Sun F" first="Fengzhu" last="Sun">Fengzhu Sun</name>
<name sortKey="Yu, Zhaoxia" sort="Yu, Zhaoxia" uniqKey="Yu Z" first="Zhaoxia" last="Yu">Zhaoxia Yu</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000892 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000892 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:29774017
   |texte=   Identifying Group-Specific Sequences for Microbial Communities Using Long k-mer Sequence Signatures.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:29774017" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021