Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Survival of the Enveloped Virus Phi6 in Droplets as a Function of Relative Humidity, Absolute Humidity, and Temperature.

Identifieur interne : 000752 ( PubMed/Checkpoint ); précédent : 000751; suivant : 000753

Survival of the Enveloped Virus Phi6 in Droplets as a Function of Relative Humidity, Absolute Humidity, and Temperature.

Auteurs : Aaron J. Prussin [États-Unis] ; David Otto Schwake [États-Unis] ; Kaisen Lin [États-Unis] ; Daniel L. Gallagher [États-Unis] ; Lauren Buttling [États-Unis] ; Linsey C. Marr [États-Unis]

Source :

RBID : pubmed:29625986

Descripteurs français

English descriptors

Abstract

Infectious diseases caused by enveloped viruses, such as influenza, severe acute respiratory syndrome (SARS), and Middle East respiratory syndrome (MERS), cause thousands of deaths and billions of dollars of economic losses per year. Studies have found a relationship among temperature, humidity, and influenza virus incidence, transmission, or survival; however, there are contradictory claims about whether absolute humidity (AH) or relative humidity (RH) is most important in mediating virus infectivity. Using the enveloped bacteriophage Phi6, which has been suggested as a surrogate for influenza viruses and coronaviruses, we designed a study to discern whether AH, RH, or temperature is a better predictor of virus survival in droplets. Our results show that Phi6 survived best at high (>85%) and low (<60%) RHs, with a significant decrease in infectivity at mid-range RHs (∼60 to 85%). At an AH of less than 22 g · m-3, the loss in infectivity was less than 2 orders of magnitude; however, when the AH was greater than 22 g · m-3, the loss in infectivity was typically greater than 6 orders of magnitude. At a fixed RH of 75%, infectivity was very sensitive to temperature, decreasing two orders of magnitude between 19°C and 25°C. We used random forest modeling to identify the best environmental predictors for modulating virus infectivity. The model explained 83% of variation in Phi6 infectivity and suggested that RH is the most important factor in controlling virus infectivity in droplets. This research provides novel information about the complex interplay between temperature, humidity, and the survival of viruses in droplets.IMPORTANCE Enveloped viruses are responsible for a number of infectious diseases resulting in thousands of deaths and billions of dollars of economic losses per year in the United States. There has been a lively debate in the literature over whether absolute humidity (AH) or relative humidity (RH) modulates virus infectivity. We designed a controlled study and used advanced statistical modeling techniques specifically to address this question. By providing an improved understanding of the relationship between environmental conditions and virus infectivity, our work will ultimately lead to improved strategies for predicting and controlling disease transmission.

DOI: 10.1128/AEM.00551-18
PubMed: 29625986


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:29625986

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Survival of the Enveloped Virus Phi6 in Droplets as a Function of Relative Humidity, Absolute Humidity, and Temperature.</title>
<author>
<name sortKey="Prussin, Aaron J" sort="Prussin, Aaron J" uniqKey="Prussin A" first="Aaron J" last="Prussin">Aaron J. Prussin</name>
<affiliation wicri:level="2">
<nlm:affiliation>Via Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA aprussin@vt.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Via Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schwake, David Otto" sort="Schwake, David Otto" uniqKey="Schwake D" first="David Otto" last="Schwake">David Otto Schwake</name>
<affiliation wicri:level="2">
<nlm:affiliation>Via Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Via Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lin, Kaisen" sort="Lin, Kaisen" uniqKey="Lin K" first="Kaisen" last="Lin">Kaisen Lin</name>
<affiliation wicri:level="2">
<nlm:affiliation>Via Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Via Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gallagher, Daniel L" sort="Gallagher, Daniel L" uniqKey="Gallagher D" first="Daniel L" last="Gallagher">Daniel L. Gallagher</name>
<affiliation wicri:level="2">
<nlm:affiliation>Via Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Via Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Buttling, Lauren" sort="Buttling, Lauren" uniqKey="Buttling L" first="Lauren" last="Buttling">Lauren Buttling</name>
<affiliation wicri:level="2">
<nlm:affiliation>Via Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Via Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Marr, Linsey C" sort="Marr, Linsey C" uniqKey="Marr L" first="Linsey C" last="Marr">Linsey C. Marr</name>
<affiliation wicri:level="2">
<nlm:affiliation>Via Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Via Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29625986</idno>
<idno type="pmid">29625986</idno>
<idno type="doi">10.1128/AEM.00551-18</idno>
<idno type="wicri:Area/PubMed/Corpus">000942</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000942</idno>
<idno type="wicri:Area/PubMed/Curation">000942</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000942</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000752</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000752</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Survival of the Enveloped Virus Phi6 in Droplets as a Function of Relative Humidity, Absolute Humidity, and Temperature.</title>
<author>
<name sortKey="Prussin, Aaron J" sort="Prussin, Aaron J" uniqKey="Prussin A" first="Aaron J" last="Prussin">Aaron J. Prussin</name>
<affiliation wicri:level="2">
<nlm:affiliation>Via Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA aprussin@vt.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Via Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schwake, David Otto" sort="Schwake, David Otto" uniqKey="Schwake D" first="David Otto" last="Schwake">David Otto Schwake</name>
<affiliation wicri:level="2">
<nlm:affiliation>Via Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Via Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lin, Kaisen" sort="Lin, Kaisen" uniqKey="Lin K" first="Kaisen" last="Lin">Kaisen Lin</name>
<affiliation wicri:level="2">
<nlm:affiliation>Via Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Via Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gallagher, Daniel L" sort="Gallagher, Daniel L" uniqKey="Gallagher D" first="Daniel L" last="Gallagher">Daniel L. Gallagher</name>
<affiliation wicri:level="2">
<nlm:affiliation>Via Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Via Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Buttling, Lauren" sort="Buttling, Lauren" uniqKey="Buttling L" first="Lauren" last="Buttling">Lauren Buttling</name>
<affiliation wicri:level="2">
<nlm:affiliation>Via Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Via Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Marr, Linsey C" sort="Marr, Linsey C" uniqKey="Marr L" first="Linsey C" last="Marr">Linsey C. Marr</name>
<affiliation wicri:level="2">
<nlm:affiliation>Via Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Via Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Applied and environmental microbiology</title>
<idno type="eISSN">1098-5336</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bacteriophages (physiology)</term>
<term>Humidity</term>
<term>Lipid Droplets (virology)</term>
<term>Temperature</term>
<term>Virus Inactivation</term>
<term>Virus Physiological Phenomena</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Bactériophages (physiologie)</term>
<term>Gouttelettes lipidiques (virologie)</term>
<term>Humidité</term>
<term>Inactivation virale</term>
<term>Phénomènes physiologiques viraux</term>
<term>Température</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Bactériophages</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Bacteriophages</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Gouttelettes lipidiques</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Lipid Droplets</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Humidity</term>
<term>Temperature</term>
<term>Virus Inactivation</term>
<term>Virus Physiological Phenomena</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Humidité</term>
<term>Inactivation virale</term>
<term>Phénomènes physiologiques viraux</term>
<term>Température</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Infectious diseases caused by enveloped viruses, such as influenza, severe acute respiratory syndrome (SARS), and Middle East respiratory syndrome (MERS), cause thousands of deaths and billions of dollars of economic losses per year. Studies have found a relationship among temperature, humidity, and influenza virus incidence, transmission, or survival; however, there are contradictory claims about whether absolute humidity (AH) or relative humidity (RH) is most important in mediating virus infectivity. Using the enveloped bacteriophage Phi6, which has been suggested as a surrogate for influenza viruses and coronaviruses, we designed a study to discern whether AH, RH, or temperature is a better predictor of virus survival in droplets. Our results show that Phi6 survived best at high (>85%) and low (<60%) RHs, with a significant decrease in infectivity at mid-range RHs (∼60 to 85%). At an AH of less than 22 g · m
<sup>-3</sup>
, the loss in infectivity was less than 2 orders of magnitude; however, when the AH was greater than 22 g · m
<sup>-3</sup>
, the loss in infectivity was typically greater than 6 orders of magnitude. At a fixed RH of 75%, infectivity was very sensitive to temperature, decreasing two orders of magnitude between 19°C and 25°C. We used random forest modeling to identify the best environmental predictors for modulating virus infectivity. The model explained 83% of variation in Phi6 infectivity and suggested that RH is the most important factor in controlling virus infectivity in droplets. This research provides novel information about the complex interplay between temperature, humidity, and the survival of viruses in droplets.
<b>IMPORTANCE</b>
Enveloped viruses are responsible for a number of infectious diseases resulting in thousands of deaths and billions of dollars of economic losses per year in the United States. There has been a lively debate in the literature over whether absolute humidity (AH) or relative humidity (RH) modulates virus infectivity. We designed a controlled study and used advanced statistical modeling techniques specifically to address this question. By providing an improved understanding of the relationship between environmental conditions and virus infectivity, our work will ultimately lead to improved strategies for predicting and controlling disease transmission.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29625986</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>09</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>09</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">1098-5336</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>84</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2018</Year>
<Month>06</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Applied and environmental microbiology</Title>
<ISOAbbreviation>Appl. Environ. Microbiol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Survival of the Enveloped Virus Phi6 in Droplets as a Function of Relative Humidity, Absolute Humidity, and Temperature.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e00551-18</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/AEM.00551-18</ELocationID>
<Abstract>
<AbstractText>Infectious diseases caused by enveloped viruses, such as influenza, severe acute respiratory syndrome (SARS), and Middle East respiratory syndrome (MERS), cause thousands of deaths and billions of dollars of economic losses per year. Studies have found a relationship among temperature, humidity, and influenza virus incidence, transmission, or survival; however, there are contradictory claims about whether absolute humidity (AH) or relative humidity (RH) is most important in mediating virus infectivity. Using the enveloped bacteriophage Phi6, which has been suggested as a surrogate for influenza viruses and coronaviruses, we designed a study to discern whether AH, RH, or temperature is a better predictor of virus survival in droplets. Our results show that Phi6 survived best at high (>85%) and low (<60%) RHs, with a significant decrease in infectivity at mid-range RHs (∼60 to 85%). At an AH of less than 22 g · m
<sup>-3</sup>
, the loss in infectivity was less than 2 orders of magnitude; however, when the AH was greater than 22 g · m
<sup>-3</sup>
, the loss in infectivity was typically greater than 6 orders of magnitude. At a fixed RH of 75%, infectivity was very sensitive to temperature, decreasing two orders of magnitude between 19°C and 25°C. We used random forest modeling to identify the best environmental predictors for modulating virus infectivity. The model explained 83% of variation in Phi6 infectivity and suggested that RH is the most important factor in controlling virus infectivity in droplets. This research provides novel information about the complex interplay between temperature, humidity, and the survival of viruses in droplets.
<b>IMPORTANCE</b>
Enveloped viruses are responsible for a number of infectious diseases resulting in thousands of deaths and billions of dollars of economic losses per year in the United States. There has been a lively debate in the literature over whether absolute humidity (AH) or relative humidity (RH) modulates virus infectivity. We designed a controlled study and used advanced statistical modeling techniques specifically to address this question. By providing an improved understanding of the relationship between environmental conditions and virus infectivity, our work will ultimately lead to improved strategies for predicting and controlling disease transmission.</AbstractText>
<CopyrightInformation>Copyright © 2018 Prussin et al.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Prussin</LastName>
<ForeName>Aaron J</ForeName>
<Initials>AJ</Initials>
<Suffix>2nd</Suffix>
<Identifier Source="ORCID">0000-0002-9991-8537</Identifier>
<AffiliationInfo>
<Affiliation>Via Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA aprussin@vt.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schwake</LastName>
<ForeName>David Otto</ForeName>
<Initials>DO</Initials>
<AffiliationInfo>
<Affiliation>Via Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lin</LastName>
<ForeName>Kaisen</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Via Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gallagher</LastName>
<ForeName>Daniel L</ForeName>
<Initials>DL</Initials>
<AffiliationInfo>
<Affiliation>Via Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Buttling</LastName>
<ForeName>Lauren</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Via Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Marr</LastName>
<ForeName>Linsey C</ForeName>
<Initials>LC</Initials>
<Identifier Source="ORCID">0000-0003-3628-6891</Identifier>
<AffiliationInfo>
<Affiliation>Via Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>DP2 AI112243</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>05</Month>
<Day>31</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Appl Environ Microbiol</MedlineTA>
<NlmUniqueID>7605801</NlmUniqueID>
<ISSNLinking>0099-2240</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001435" MajorTopicYN="N">Bacteriophages</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006813" MajorTopicYN="Y">Humidity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D066292" MajorTopicYN="N">Lipid Droplets</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013696" MajorTopicYN="Y">Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038301" MajorTopicYN="Y">Virus Inactivation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018406" MajorTopicYN="Y">Virus Physiological Phenomena</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">MERS</Keyword>
<Keyword MajorTopicYN="Y">SARS</Keyword>
<Keyword MajorTopicYN="Y">coronavirus</Keyword>
<Keyword MajorTopicYN="Y">humidity</Keyword>
<Keyword MajorTopicYN="Y">influenza</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>03</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>04</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>4</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>9</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>4</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29625986</ArticleId>
<ArticleId IdType="pii">AEM.00551-18</ArticleId>
<ArticleId IdType="doi">10.1128/AEM.00551-18</ArticleId>
<ArticleId IdType="pmc">PMC5981065</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>PLoS Biol. 2010 Feb 23;8(2):e1000316</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20186267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Infect Dis. 2004 Nov;4(11):704-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15522683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(10):e46789</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23056454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2013 Mar;9(3):e1003205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23505369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2014 Jul;80(14):4242-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24795379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1993 Aug;59(8):2589-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8368846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Indoor Air. 2014 Feb;24(1):103-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23710826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Occup Environ Hyg. 2012;9(7):443-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22651099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol. 1968 Jun;16(6):835-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5664106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Health Perspect. 2011 Apr;119(4):439-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21097384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Mar 10;106(10):3645-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19276125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microbiol Methods. 2006 Aug;66(2):183-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16632005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3243-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19204283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2007 Jun 28;25(27):5086-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17544181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect. 2008 Nov;57(5):361-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18848358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Food Sci Nutr. 1997 Apr;37(3):287-309</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9143821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 1948 Sep 1;88(3):361-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18881494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Health Policy. 2008 Oct;88(1):110-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18436332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2011 Feb;77(3):1049-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21148699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Virol. 2011;2011:734690</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22312351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1960 Oct 29;188:430-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13713229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Expo Anal Environ Epidemiol. 2001 May-Jun;11(3):231-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11477521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(6):e21481</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21731764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2017 Jul 18;51(14 ):7759-7774</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28677960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2010 May;76(9):2712-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20228108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2010 Jun;76(12):3943-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20435770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Virol. 1976;51(4):263-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">987765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Microbiol. 2015 May;118(5):1210-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25693048</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Environ Res Public Health. 2015 Jan 28;12(2):1560-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25635916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Future Virol. 2014 Jan;9(1):41-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25067941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hyg (Lond). 1961 Dec;59:479-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13904777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2012 Oct;78(19):6781-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22820337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Med. 2006 Apr;3(4):e89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16509764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Trop Med Hyg. 2009 Jul;81(1):180-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19556586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Jun;81(11):5429-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17182688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Nov 15;113(46):13081-13086</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27799563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 1950 Sep-Oct;87(2):128-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14774528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Mar 04;10(3):e0118369</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25738736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Environ Sci Health A Tox Hazard Subst Environ Eng. 2009 Nov;44(13):1362-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20183493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2015 Oct 06;11(10):e1005204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26440404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Nov 30;101(48):16915-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15557003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Occup Environ Hyg. 2001 Nov;16(11):1065-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11757903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2017 Aug 1;51(15):8692-8700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28657725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2007 Oct 19;3(10):1470-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17953482</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Virginie</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Virginie">
<name sortKey="Prussin, Aaron J" sort="Prussin, Aaron J" uniqKey="Prussin A" first="Aaron J" last="Prussin">Aaron J. Prussin</name>
</region>
<name sortKey="Buttling, Lauren" sort="Buttling, Lauren" uniqKey="Buttling L" first="Lauren" last="Buttling">Lauren Buttling</name>
<name sortKey="Gallagher, Daniel L" sort="Gallagher, Daniel L" uniqKey="Gallagher D" first="Daniel L" last="Gallagher">Daniel L. Gallagher</name>
<name sortKey="Lin, Kaisen" sort="Lin, Kaisen" uniqKey="Lin K" first="Kaisen" last="Lin">Kaisen Lin</name>
<name sortKey="Marr, Linsey C" sort="Marr, Linsey C" uniqKey="Marr L" first="Linsey C" last="Marr">Linsey C. Marr</name>
<name sortKey="Schwake, David Otto" sort="Schwake, David Otto" uniqKey="Schwake D" first="David Otto" last="Schwake">David Otto Schwake</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000752 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000752 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:29625986
   |texte=   Survival of the Enveloped Virus Phi6 in Droplets as a Function of Relative Humidity, Absolute Humidity, and Temperature.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:29625986" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021