Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

ERAP1 enzyme-mediated trimming and structural analyses of MHC I-bound precursor peptides yield novel insights into antigen processing and presentation.

Identifieur interne : 000595 ( PubMed/Checkpoint ); précédent : 000594; suivant : 000596

ERAP1 enzyme-mediated trimming and structural analyses of MHC I-bound precursor peptides yield novel insights into antigen processing and presentation.

Auteurs : Lenong Li [États-Unis] ; Mansoor Batliwala [États-Unis] ; Marlene Bouvier [États-Unis]

Source :

RBID : pubmed:31601650

Abstract

Endoplasmic reticulum aminopeptidase 1 (ERAP1) and ERAP2 critically shape the major histocompatibility complex I (MHC I) immunopeptidome. The ERAPs remove N-terminal residues from antigenic precursor peptides and generate optimal-length peptides (i.e. 8-10-mers) to fit into the MHC class I groove. It is therefore intriguing that MHC class I molecules can present N-terminally extended peptides on the cell surface that can elicit CD8+ T-cell responses. This observation likely reflects gaps in our understanding of how antigens are processed by the ERAP enzymes. To better understand ERAPs' function in antigen processing, here we generated a nested set of N-terminally extended 10-20-mer peptides (RA) n AAKKKYCL covalently bound to the human leukocyte antigen (HLA)-B*0801. We used X-ray crystallography, thermostability assessments, and an ERAP1-trimming assay to characterize these complexes. The X-ray structures determined at 1.40-1.65 Å resolutions revealed that the residue extensions (RA) n unexpectedly protrude out of the A pocket of HLA-B*0801, whereas the AAKKKYCL core of all peptides adopts similar, bound conformations. HLA-B*0801 residue 62 was critical to open the A pocket. We also show that HLA-B*0801 and antigenic precursor peptides form stable complexes. Finally, ERAP1-mediated trimming of the MHC I-bound peptides required a minimal length of 14 amino acids. We propose a mechanistic model explaining how ERAP1-mediated trimming of MHC I-bound peptides in cells can generate peptides of canonical as well as noncanonical lengths that still serve as stable MHC I ligands. Our results provide a framework to better understand how the ERAP enzymes influence the MHC I immunopeptidome.

DOI: 10.1074/jbc.RA119.010102
PubMed: 31601650


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:31601650

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">ERAP1 enzyme-mediated trimming and structural analyses of MHC I-bound precursor peptides yield novel insights into antigen processing and presentation.</title>
<author>
<name sortKey="Li, Lenong" sort="Li, Lenong" uniqKey="Li L" first="Lenong" last="Li">Lenong Li</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology, University of Illinois, Chicago, Illinois 60612.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Illinois</region>
</placeName>
<wicri:cityArea>Department of Microbiology and Immunology, University of Illinois, Chicago</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Batliwala, Mansoor" sort="Batliwala, Mansoor" uniqKey="Batliwala M" first="Mansoor" last="Batliwala">Mansoor Batliwala</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology, University of Illinois, Chicago, Illinois 60612.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Illinois</region>
</placeName>
<wicri:cityArea>Department of Microbiology and Immunology, University of Illinois, Chicago</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Bouvier, Marlene" sort="Bouvier, Marlene" uniqKey="Bouvier M" first="Marlene" last="Bouvier">Marlene Bouvier</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Microbiology and Immunology, University of Illinois, Chicago, Illinois 60612 mbouvier@uic.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Illinois, Chicago</wicri:regionArea>
<placeName>
<settlement type="city">Chicago</settlement>
<region type="state">Illinois</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31601650</idno>
<idno type="pmid">31601650</idno>
<idno type="doi">10.1074/jbc.RA119.010102</idno>
<idno type="wicri:Area/PubMed/Corpus">000398</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000398</idno>
<idno type="wicri:Area/PubMed/Curation">000398</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000398</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000595</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000595</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">ERAP1 enzyme-mediated trimming and structural analyses of MHC I-bound precursor peptides yield novel insights into antigen processing and presentation.</title>
<author>
<name sortKey="Li, Lenong" sort="Li, Lenong" uniqKey="Li L" first="Lenong" last="Li">Lenong Li</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology, University of Illinois, Chicago, Illinois 60612.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Illinois</region>
</placeName>
<wicri:cityArea>Department of Microbiology and Immunology, University of Illinois, Chicago</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Batliwala, Mansoor" sort="Batliwala, Mansoor" uniqKey="Batliwala M" first="Mansoor" last="Batliwala">Mansoor Batliwala</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology, University of Illinois, Chicago, Illinois 60612.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Illinois</region>
</placeName>
<wicri:cityArea>Department of Microbiology and Immunology, University of Illinois, Chicago</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Bouvier, Marlene" sort="Bouvier, Marlene" uniqKey="Bouvier M" first="Marlene" last="Bouvier">Marlene Bouvier</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Microbiology and Immunology, University of Illinois, Chicago, Illinois 60612 mbouvier@uic.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Illinois, Chicago</wicri:regionArea>
<placeName>
<settlement type="city">Chicago</settlement>
<region type="state">Illinois</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="eISSN">1083-351X</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Endoplasmic reticulum aminopeptidase 1 (ERAP1) and ERAP2 critically shape the major histocompatibility complex I (MHC I) immunopeptidome. The ERAPs remove N-terminal residues from antigenic precursor peptides and generate optimal-length peptides (
<i>i.e.</i>
8-10-mers) to fit into the MHC class I groove. It is therefore intriguing that MHC class I molecules can present N-terminally extended peptides on the cell surface that can elicit CD8+ T-cell responses. This observation likely reflects gaps in our understanding of how antigens are processed by the ERAP enzymes. To better understand ERAPs' function in antigen processing, here we generated a nested set of N-terminally extended 10-20-mer peptides (RA)
<i>
<sub>n</sub>
</i>
AAKKKYCL covalently bound to the human leukocyte antigen (HLA)-B*0801. We used X-ray crystallography, thermostability assessments, and an ERAP1-trimming assay to characterize these complexes. The X-ray structures determined at 1.40-1.65 Å resolutions revealed that the residue extensions (RA)
<i>
<sub>n</sub>
</i>
unexpectedly protrude out of the A pocket of HLA-B*0801, whereas the AAKKKYCL core of all peptides adopts similar, bound conformations. HLA-B*0801 residue 62 was critical to open the A pocket. We also show that HLA-B*0801 and antigenic precursor peptides form stable complexes. Finally, ERAP1-mediated trimming of the MHC I-bound peptides required a minimal length of 14 amino acids. We propose a mechanistic model explaining how ERAP1-mediated trimming of MHC I-bound peptides in cells can generate peptides of canonical as well as noncanonical lengths that still serve as stable MHC I ligands. Our results provide a framework to better understand how the ERAP enzymes influence the MHC I immunopeptidome.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Data-Review" Owner="NLM">
<PMID Version="1">31601650</PMID>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1083-351X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>294</Volume>
<Issue>49</Issue>
<PubDate>
<Year>2019</Year>
<Month>Dec</Month>
<Day>06</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J. Biol. Chem.</ISOAbbreviation>
</Journal>
<ArticleTitle>ERAP1 enzyme-mediated trimming and structural analyses of MHC I-bound precursor peptides yield novel insights into antigen processing and presentation.</ArticleTitle>
<Pagination>
<MedlinePgn>18534-18544</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/jbc.RA119.010102</ELocationID>
<Abstract>
<AbstractText>Endoplasmic reticulum aminopeptidase 1 (ERAP1) and ERAP2 critically shape the major histocompatibility complex I (MHC I) immunopeptidome. The ERAPs remove N-terminal residues from antigenic precursor peptides and generate optimal-length peptides (
<i>i.e.</i>
8-10-mers) to fit into the MHC class I groove. It is therefore intriguing that MHC class I molecules can present N-terminally extended peptides on the cell surface that can elicit CD8+ T-cell responses. This observation likely reflects gaps in our understanding of how antigens are processed by the ERAP enzymes. To better understand ERAPs' function in antigen processing, here we generated a nested set of N-terminally extended 10-20-mer peptides (RA)
<i>
<sub>n</sub>
</i>
AAKKKYCL covalently bound to the human leukocyte antigen (HLA)-B*0801. We used X-ray crystallography, thermostability assessments, and an ERAP1-trimming assay to characterize these complexes. The X-ray structures determined at 1.40-1.65 Å resolutions revealed that the residue extensions (RA)
<i>
<sub>n</sub>
</i>
unexpectedly protrude out of the A pocket of HLA-B*0801, whereas the AAKKKYCL core of all peptides adopts similar, bound conformations. HLA-B*0801 residue 62 was critical to open the A pocket. We also show that HLA-B*0801 and antigenic precursor peptides form stable complexes. Finally, ERAP1-mediated trimming of the MHC I-bound peptides required a minimal length of 14 amino acids. We propose a mechanistic model explaining how ERAP1-mediated trimming of MHC I-bound peptides in cells can generate peptides of canonical as well as noncanonical lengths that still serve as stable MHC I ligands. Our results provide a framework to better understand how the ERAP enzymes influence the MHC I immunopeptidome.</AbstractText>
<CopyrightInformation>© 2019 Li et al.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Lenong</ForeName>
<Initials>L</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0003-0489-8869</Identifier>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, University of Illinois, Chicago, Illinois 60612.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Batliwala</LastName>
<ForeName>Mansoor</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, University of Illinois, Chicago, Illinois 60612.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bouvier</LastName>
<ForeName>Marlene</ForeName>
<Initials>M</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-9965-9096</Identifier>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, University of Illinois, Chicago, Illinois 60612 mbouvier@uic.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>PDB</DataBankName>
<AccessionNumberList>
<AccessionNumber>1AGD</AccessionNumber>
<AccessionNumber>1AGB</AccessionNumber>
<AccessionNumber>6P2S</AccessionNumber>
<AccessionNumber>6P23</AccessionNumber>
<AccessionNumber>6P27</AccessionNumber>
<AccessionNumber>6P2C</AccessionNumber>
<AccessionNumber>6P2F</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>10</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">CD8+ T cells</Keyword>
<Keyword MajorTopicYN="N">HLA-B*0801</Keyword>
<Keyword MajorTopicYN="N">adaptive immunity</Keyword>
<Keyword MajorTopicYN="N">antigen presentation</Keyword>
<Keyword MajorTopicYN="N">antigen processing</Keyword>
<Keyword MajorTopicYN="N">endoplasmic reticulum (ER)</Keyword>
<Keyword MajorTopicYN="N">endoplasmic reticulum aminopeptidase (ERAP)</Keyword>
<Keyword MajorTopicYN="N">immunology</Keyword>
<Keyword MajorTopicYN="N">immunopeptidome</Keyword>
<Keyword MajorTopicYN="N">major histocompatibility complex I (MHC I)</Keyword>
<Keyword MajorTopicYN="N">structural biology</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>07</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>09</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>10</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>10</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>10</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31601650</ArticleId>
<ArticleId IdType="pii">RA119.010102</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.RA119.010102</ArticleId>
<ArticleId IdType="pmc">PMC6901306</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biophys J. 2004 Oct;87(4):2203-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15454423</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 1994 Jul 15;265(5170):398-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8023162</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2018 May 18;293(20):7538-7548</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29599287</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>EMBO J. 2007 Mar 21;26(6):1681-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17332746</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Immunol. 2013 Jul 1;191(1):35-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23733883</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 1991 Dec 12;354(6353):453-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1721107</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20124702</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):125-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20124692</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Immunity. 2002 Dec;17(6):757-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12479822</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Immunity. 2017 Jun 20;46(6):1018-1029.e7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28636952</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2015 Aug 13;10(8):e0135421</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26270965</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Eur J Immunol. 2019 Sep;49(9):1399-1414</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31135967</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):235-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21460441</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Traffic. 2010 Mar;11(3):332-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20070606</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2017 Nov 23;551(7681):525-528</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29107940</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell Mol Immunol. 2017 Jul;14(7):631-634</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28552904</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Trends Immunol. 2016 Nov;37(11):724-737</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27614798</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Feb 3;112(5):1505-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25605945</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Struct Mol Biol. 2011 May;18(5):604-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21478864</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Exp Med. 1996 Dec 1;184(6):2279-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8976183</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Immunol. 1995;13:587-622</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7612235</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2004 Jan 9;279(2):1151-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14583622</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 1994 Oct 13;371(6498):626-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7935798</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Aug 10;101(32):11737-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15286279</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Immunol. 2008 Oct 1;181(7):4874-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18802091</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2014 Feb 20;9(2):e89657</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24586943</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Methods Enzymol. 1997;276:307-326</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27799103</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3429-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1565634</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proteins. 1998 Oct 1;33(1):97-106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9741848</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Sci Rep. 2016 Aug 12;6:28902</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27514473</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Immunol. 2007 Aug;8(8):873-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17603487</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2012 Apr 6;287(15):12267-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22343629</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Immunol. 2014 Jul 15;193(2):901-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24928998</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Immunol. 2016 Feb 15;196(4):1480-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26783342</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2017 Nov 24;358(6366):1060-1064</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29025996</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 1992 Nov 26;360(6402):364-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1448153</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Immunol. 2013 Aug 15;191(4):1547-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23863903</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Immunol. 2004 Nov 1;173(9):5610-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15494511</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2014 Nov;88(22):12992-3004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25165114</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Immunity. 2006 Nov;25(5):795-806</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17088086</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2005 Jun 24;280(25):23900-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15849183</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Trends Immunol. 2006 Jan;27(1):11-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16297661</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2017 Nov 24;358(6366):1064-1068</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29025991</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2016 Sep 12;90(19):8605-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27440904</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15572765</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 1990 Nov 15;348(6298):248-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2234092</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Hum Immunol. 2019 May;80(5):290-295</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30682405</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Methods Enzymol. 2003;374:300-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14696379</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Genet. 2010 Oct 14;6(10):e1001157</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20976248</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Front Immunol. 2018 Oct 30;9:2463</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30425713</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2018 May 15;115(20):5083-5088</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29712860</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Immunol. 2013 Jul 15;191(2):561-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23749632</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Elife. 2016 Jan 29;5:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26824387</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Immunol. 2006 Jan;7(1):103-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16299505</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2015 Jan 30;290(5):2593-603</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25505266</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Struct Mol Biol. 2017 Apr;24(4):387-394</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28218747</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2017 Mar 31;292(13):5262-5270</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28179428</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Immunol. 2009 Jun;10(6):636-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19412183</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19461840</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Immunol. 2005 Jul;6(7):689-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15908954</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Front Immunol. 2017 Feb 08;8:65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28228754</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Haematologica. 2011 Jan;96(1):110-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20934997</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Illinois</li>
</region>
<settlement>
<li>Chicago</li>
</settlement>
</list>
<tree>
<country name="États-Unis">
<region name="Illinois">
<name sortKey="Li, Lenong" sort="Li, Lenong" uniqKey="Li L" first="Lenong" last="Li">Lenong Li</name>
</region>
<name sortKey="Batliwala, Mansoor" sort="Batliwala, Mansoor" uniqKey="Batliwala M" first="Mansoor" last="Batliwala">Mansoor Batliwala</name>
<name sortKey="Bouvier, Marlene" sort="Bouvier, Marlene" uniqKey="Bouvier M" first="Marlene" last="Bouvier">Marlene Bouvier</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000595 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000595 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:31601650
   |texte=   ERAP1 enzyme-mediated trimming and structural analyses of MHC I-bound precursor peptides yield novel insights into antigen processing and presentation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:31601650" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021