Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

High satellite repeat turnover in great apes studied with short- and long-read technologies.

Identifieur interne : 000538 ( PubMed/Checkpoint ); précédent : 000537; suivant : 000539

High satellite repeat turnover in great apes studied with short- and long-read technologies.

Auteurs : Monika Cechova [États-Unis] ; Robert S. Harris [États-Unis] ; Marta Tomaszkiewicz [États-Unis] ; Barbara Arbeithuber [États-Unis] ; Francesca Chiaromonte [États-Unis] ; Kateryna D. Makova [États-Unis]

Source :

RBID : pubmed:31273383

Abstract

Satellite repeats are a structural component of centromeres and telomeres, and in some instances their divergence is known to drive speciation. Due to their highly repetitive nature, satellite sequences have been understudied and underrepresented in genome assemblies. To investigate their turnover in great apes, we studied satellite repeats of unit sizes up to 50 bp in human, chimpanzee, bonobo, gorilla, and Sumatran and Bornean orangutans, using unassembled short and long sequencing reads. The density of satellite repeats, as identified from accurate short reads (Illumina), varied greatly among great ape genomes. These were dominated by a handful of abundant repeated motifs, frequently shared among species, which formed two groups: (1) the (AATGG)n repeat (critical for heat shock response) and its derivatives; and (2) subtelomeric 32-mers involved in telomeric metabolism. Using the densities of abundant repeats, individuals could be classified into species. However clustering did not reproduce the accepted species phylogeny, suggesting rapid repeat evolution. Several abundant repeats were enriched in males vs. females; using Y chromosome assemblies or FIuorescent In Situ Hybridization, we validated their location on the Y. Finally, applying a novel computational tool, we identified many satellite repeats completely embedded within long Oxford Nanopore and Pacific Biosciences reads. Such repeats were up to 59 kb in length and consisted of perfect repeats interspersed with other similar sequences. Our results based on sequencing reads generated with three different technologies provide the first detailed characterization of great ape satellite repeats, and open new avenues for exploring their functions.

DOI: 10.1093/molbev/msz156
PubMed: 31273383


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:31273383

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">High satellite repeat turnover in great apes studied with short- and long-read technologies.</title>
<author>
<name sortKey="Cechova, Monika" sort="Cechova, Monika" uniqKey="Cechova M" first="Monika" last="Cechova">Monika Cechova</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Pennsylvania State University, University Park, PA USA.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Department of Biology, Pennsylvania State University, University Park</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Harris, Robert S" sort="Harris, Robert S" uniqKey="Harris R" first="Robert S" last="Harris">Robert S. Harris</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Pennsylvania State University, University Park, PA USA.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Department of Biology, Pennsylvania State University, University Park</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Tomaszkiewicz, Marta" sort="Tomaszkiewicz, Marta" uniqKey="Tomaszkiewicz M" first="Marta" last="Tomaszkiewicz">Marta Tomaszkiewicz</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Pennsylvania State University, University Park, PA USA.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Department of Biology, Pennsylvania State University, University Park</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Arbeithuber, Barbara" sort="Arbeithuber, Barbara" uniqKey="Arbeithuber B" first="Barbara" last="Arbeithuber">Barbara Arbeithuber</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Pennsylvania State University, University Park, PA USA.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Department of Biology, Pennsylvania State University, University Park</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Chiaromonte, Francesca" sort="Chiaromonte, Francesca" uniqKey="Chiaromonte F" first="Francesca" last="Chiaromonte">Francesca Chiaromonte</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Statistics, Pennsylvania State University, University Park, PA USA.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Department of Statistics, Pennsylvania State University, University Park</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Makova, Kateryna D" sort="Makova, Kateryna D" uniqKey="Makova K" first="Kateryna D" last="Makova">Kateryna D. Makova</name>
<affiliation wicri:level="2">
<nlm:affiliation>Center for Medical Genomics, Penn State, University Park, PA USA.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Center for Medical Genomics, Penn State, University Park</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31273383</idno>
<idno type="pmid">31273383</idno>
<idno type="doi">10.1093/molbev/msz156</idno>
<idno type="wicri:Area/PubMed/Corpus">000489</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000489</idno>
<idno type="wicri:Area/PubMed/Curation">000489</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000489</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000538</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000538</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">High satellite repeat turnover in great apes studied with short- and long-read technologies.</title>
<author>
<name sortKey="Cechova, Monika" sort="Cechova, Monika" uniqKey="Cechova M" first="Monika" last="Cechova">Monika Cechova</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Pennsylvania State University, University Park, PA USA.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Department of Biology, Pennsylvania State University, University Park</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Harris, Robert S" sort="Harris, Robert S" uniqKey="Harris R" first="Robert S" last="Harris">Robert S. Harris</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Pennsylvania State University, University Park, PA USA.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Department of Biology, Pennsylvania State University, University Park</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Tomaszkiewicz, Marta" sort="Tomaszkiewicz, Marta" uniqKey="Tomaszkiewicz M" first="Marta" last="Tomaszkiewicz">Marta Tomaszkiewicz</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Pennsylvania State University, University Park, PA USA.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Department of Biology, Pennsylvania State University, University Park</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Arbeithuber, Barbara" sort="Arbeithuber, Barbara" uniqKey="Arbeithuber B" first="Barbara" last="Arbeithuber">Barbara Arbeithuber</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Pennsylvania State University, University Park, PA USA.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Department of Biology, Pennsylvania State University, University Park</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Chiaromonte, Francesca" sort="Chiaromonte, Francesca" uniqKey="Chiaromonte F" first="Francesca" last="Chiaromonte">Francesca Chiaromonte</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Statistics, Pennsylvania State University, University Park, PA USA.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Department of Statistics, Pennsylvania State University, University Park</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Makova, Kateryna D" sort="Makova, Kateryna D" uniqKey="Makova K" first="Kateryna D" last="Makova">Kateryna D. Makova</name>
<affiliation wicri:level="2">
<nlm:affiliation>Center for Medical Genomics, Penn State, University Park, PA USA.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Center for Medical Genomics, Penn State, University Park</wicri:cityArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Molecular biology and evolution</title>
<idno type="eISSN">1537-1719</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Satellite repeats are a structural component of centromeres and telomeres, and in some instances their divergence is known to drive speciation. Due to their highly repetitive nature, satellite sequences have been understudied and underrepresented in genome assemblies. To investigate their turnover in great apes, we studied satellite repeats of unit sizes up to 50 bp in human, chimpanzee, bonobo, gorilla, and Sumatran and Bornean orangutans, using unassembled short and long sequencing reads. The density of satellite repeats, as identified from accurate short reads (Illumina), varied greatly among great ape genomes. These were dominated by a handful of abundant repeated motifs, frequently shared among species, which formed two groups: (1) the (AATGG)n repeat (critical for heat shock response) and its derivatives; and (2) subtelomeric 32-mers involved in telomeric metabolism. Using the densities of abundant repeats, individuals could be classified into species. However clustering did not reproduce the accepted species phylogeny, suggesting rapid repeat evolution. Several abundant repeats were enriched in males vs. females; using Y chromosome assemblies or FIuorescent In Situ Hybridization, we validated their location on the Y. Finally, applying a novel computational tool, we identified many satellite repeats completely embedded within long Oxford Nanopore and Pacific Biosciences reads. Such repeats were up to 59 kb in length and consisted of perfect repeats interspersed with other similar sequences. Our results based on sequencing reads generated with three different technologies provide the first detailed characterization of great ape satellite repeats, and open new avenues for exploring their functions.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">31273383</PMID>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>18</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1537-1719</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2019</Year>
<Month>Jul</Month>
<Day>02</Day>
</PubDate>
</JournalIssue>
<Title>Molecular biology and evolution</Title>
<ISOAbbreviation>Mol. Biol. Evol.</ISOAbbreviation>
</Journal>
<ArticleTitle>High satellite repeat turnover in great apes studied with short- and long-read technologies.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">msz156</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/molbev/msz156</ELocationID>
<Abstract>
<AbstractText>Satellite repeats are a structural component of centromeres and telomeres, and in some instances their divergence is known to drive speciation. Due to their highly repetitive nature, satellite sequences have been understudied and underrepresented in genome assemblies. To investigate their turnover in great apes, we studied satellite repeats of unit sizes up to 50 bp in human, chimpanzee, bonobo, gorilla, and Sumatran and Bornean orangutans, using unassembled short and long sequencing reads. The density of satellite repeats, as identified from accurate short reads (Illumina), varied greatly among great ape genomes. These were dominated by a handful of abundant repeated motifs, frequently shared among species, which formed two groups: (1) the (AATGG)n repeat (critical for heat shock response) and its derivatives; and (2) subtelomeric 32-mers involved in telomeric metabolism. Using the densities of abundant repeats, individuals could be classified into species. However clustering did not reproduce the accepted species phylogeny, suggesting rapid repeat evolution. Several abundant repeats were enriched in males vs. females; using Y chromosome assemblies or FIuorescent In Situ Hybridization, we validated their location on the Y. Finally, applying a novel computational tool, we identified many satellite repeats completely embedded within long Oxford Nanopore and Pacific Biosciences reads. Such repeats were up to 59 kb in length and consisted of perfect repeats interspersed with other similar sequences. Our results based on sequencing reads generated with three different technologies provide the first detailed characterization of great ape satellite repeats, and open new avenues for exploring their functions.</AbstractText>
<CopyrightInformation>© The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Cechova</LastName>
<ForeName>Monika</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Pennsylvania State University, University Park, PA USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Harris</LastName>
<ForeName>Robert S</ForeName>
<Initials>RS</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Pennsylvania State University, University Park, PA USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tomaszkiewicz</LastName>
<ForeName>Marta</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Pennsylvania State University, University Park, PA USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Arbeithuber</LastName>
<ForeName>Barbara</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Pennsylvania State University, University Park, PA USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chiaromonte</LastName>
<ForeName>Francesca</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Department of Statistics, Pennsylvania State University, University Park, PA USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>EMbeDS, Sant'Anna School of Advanced Studies, Pisa, Italy.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Center for Medical Genomics, Penn State, University Park, PA USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Makova</LastName>
<ForeName>Kateryna D</ForeName>
<Initials>KD</Initials>
<AffiliationInfo>
<Affiliation>Center for Medical Genomics, Penn State, University Park, PA USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM130691</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>07</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mol Biol Evol</MedlineTA>
<NlmUniqueID>8501455</NlmUniqueID>
<ISSNLinking>0737-4038</ISSNLinking>
</MedlineJournalInfo>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>03</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>06</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>06</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>7</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>7</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>7</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31273383</ArticleId>
<ArticleId IdType="pii">5526925</ArticleId>
<ArticleId IdType="doi">10.1093/molbev/msz156</ArticleId>
<ArticleId IdType="pmc">PMC6805231</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Cell Sci. 2000 Mar;113 ( Pt 6):1033-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10683151</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Dec 30;111(52):18793-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25512552</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Hum Genet. 1994 Apr;93(4):383-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8168808</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Genet. 2010 Oct 28;6(10):e1001175</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21060865</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genome Biol. 2013 Jan 30;14(1):R10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23363705</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Gene. 2008 Feb 15;409(1-2):72-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18182173</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Sci Rep. 2015 May 14;5:10315</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25974220</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2016 Apr 1;352(6281):aae0344</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27034376</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Genet. 2013 Feb;14(2):113-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23329112</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2000 Nov 29;355(1403):1563-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11127901</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2008 Jan 4;319(5859):91-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18174442</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 1971 Jan 29;229(5283):306-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4925781</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Curr Aging Sci. 2014;7(3):161-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25612739</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2012 Oct 12;338(6104):222-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22936568</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Biol Evol. 2004 Jan;21(1):36-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12949132</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Sep 7;107(36):15826-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20798037</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Genet. 1994 Jan;6(1):52-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8136835</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2000 Apr 28;288(5466):665-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10784448</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2012 May;40(10):e72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22323520</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mamm Genome. 1998 Mar;9(3):226-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9501307</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>BMC Genomics. 2019 Feb 22;20(1):153</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30795733</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Biotechnol. 2018 Apr;36(4):321-323</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29553574</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Comput Biol. 2014 May 15;10(5):e1003628</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24831296</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2003 Jun 19;423(6942):825-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12815422</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2003 May 15;31(10):2461-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12736295</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cold Spring Harb Perspect Biol. 2010 Jun;2(6):a000695</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20516127</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Cell Biol. 2004 Jan 5;164(1):25-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14699086</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Biol. 2009 Oct;7(10):e1000234</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19859525</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2002 Apr 12;296(5566):261-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11954565</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Biol Evol. 2017 Apr 1;35(4):925-941</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29361128</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2015 Jun 5;348(6239):1160-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25931448</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genome Res. 2014 Apr;24(4):697-707</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24501022</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Cell Biol. 2013 Feb;33(4):763-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23230266</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 1961 Dec;3:711-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14456492</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Chromosoma. 1971;33(3):319-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5088497</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2018 Jun 8;360(6393):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29880660</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Genet. 2014 Jun 19;10(6):e1004418</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24945355</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genome Res. 2016 Apr;26(4):530-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26934921</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 1999 Jan 15;27(2):573-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9862982</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 1987 Mar 20;194(2):161-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3112413</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Chromosoma. 1978 Mar 22;66(1):23-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">639625</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genome Biol. 2003;4(2):R13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12620123</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell. 2012 Nov 21;151(5):994-1004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23159369</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 1971 Dec 17;174(4015):1200-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4943851</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nonlinear Dynamics Psychol Life Sci. 2003 Oct;7(4):329-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14523268</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genomics Proteomics Bioinformatics. 2016 Oct;14(5):265-279</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27646134</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Curr Opin Genet Dev. 2018 Apr;49:70-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29579574</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Vis Exp. 2014 Jan 28;(83):e50203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24513647</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2015 Jan 29;517(7536):608-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25383537</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Cell Biol. 2014 Nov 10;207(3):335-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25365994</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Bioinformatics. 2019 Jul 10;:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31290946</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genome Res. 2018 Dec;28(12):1767-1778</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30401733</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genetica. 2011 Feb;139(2):167-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21136140</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Cell Sci. 2016 Oct 1;129(19):3541-3552</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27528402</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 1986 Oct 10;14(19):7569-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3774538</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genetics. 2017 Oct;207(2):697-710</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28811387</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Epigenetics Chromatin. 2010 Mar 08;3(1):6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20210998</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Trends Genet. 2005 Sep;21(9):511-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16009448</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Biol Evol. 2003 Mar;20(3):424-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12644563</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2015 Oct 1;526(7571):68-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26432245</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Sci Rep. 2014 Oct 01;4:6488</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25270583</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1695-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1542662</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Trends Genet. 2016 Jan;32(1):29-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26675384</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2002 Dec 20;298(5602):2381-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12493913</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Biol Cell. 2004 Feb;15(2):543-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14617804</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Biotechnol. 2018 Apr;36(4):338-345</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29431738</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12159-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8901550</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell. 2011 Jun 24;145(7):1049-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21703449</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Sci Data. 2016 Jun 07;3:160025</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27271295</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genome Res. 2015 Nov;25(11):1591-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26290536</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>F1000Res. 2015 Oct 15;4:1075</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26834992</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Hum Genet. 1997 Sep;100(3-4):291-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9272147</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Genet. 1980;14:121-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6260016</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Am J Hum Genet. 2007 Mar;80(3):495-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17273970</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2013 Jul 25;499(7459):471-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23823723</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Biol Evol. 2016 Jul;33(7):1870-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27004904</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genomics Proteomics Bioinformatics. 2015 Oct;13(5):278-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26542840</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genome Biol Evol. 2018 Jul 1;10(7):1673-1686</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29931069</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2016 May 5;44(8):3750-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27060133</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 1933 Mar 24;77(1995):312</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17820329</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2010 Jan 28;463(7280):536-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20072128</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genome Res. 2012 Jun;22(6):1036-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22419167</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 1976 Mar 19;191(4232):1189-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1257744</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2013 May;41(9):4792-801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23519615</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Pennsylvanie</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Pennsylvanie">
<name sortKey="Cechova, Monika" sort="Cechova, Monika" uniqKey="Cechova M" first="Monika" last="Cechova">Monika Cechova</name>
</region>
<name sortKey="Arbeithuber, Barbara" sort="Arbeithuber, Barbara" uniqKey="Arbeithuber B" first="Barbara" last="Arbeithuber">Barbara Arbeithuber</name>
<name sortKey="Chiaromonte, Francesca" sort="Chiaromonte, Francesca" uniqKey="Chiaromonte F" first="Francesca" last="Chiaromonte">Francesca Chiaromonte</name>
<name sortKey="Harris, Robert S" sort="Harris, Robert S" uniqKey="Harris R" first="Robert S" last="Harris">Robert S. Harris</name>
<name sortKey="Makova, Kateryna D" sort="Makova, Kateryna D" uniqKey="Makova K" first="Kateryna D" last="Makova">Kateryna D. Makova</name>
<name sortKey="Tomaszkiewicz, Marta" sort="Tomaszkiewicz, Marta" uniqKey="Tomaszkiewicz M" first="Marta" last="Tomaszkiewicz">Marta Tomaszkiewicz</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000538 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000538 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:31273383
   |texte=   High satellite repeat turnover in great apes studied with short- and long-read technologies.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:31273383" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021