Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Identification of Primary Antimicrobial Resistance Drivers in Agricultural Nontyphoidal Salmonella enterica Serovars by Using Machine Learning.

Identifieur interne : 000526 ( PubMed/Checkpoint ); précédent : 000525; suivant : 000527

Identification of Primary Antimicrobial Resistance Drivers in Agricultural Nontyphoidal Salmonella enterica Serovars by Using Machine Learning.

Auteurs : Finlay Maguire [Canada] ; Muhammad Attiq Rehman [Canada] ; Catherine Carrillo [Canada] ; Moussa S. Diarra [Canada] ; Robert G. Beiko [Canada]

Source :

RBID : pubmed:31387929

Abstract

Nontyphoidal Salmonella (NTS) is a leading global cause of bacterial foodborne morbidity and mortality. Our ability to treat severe NTS infections has been impaired by increasing antimicrobial resistance (AMR). To understand and mitigate the global health crisis AMR represents, we need to link the observed resistance phenotypes with their underlying genomic mechanisms. Broiler chickens represent a key reservoir and vector for NTS infections, but isolates from this setting have been characterized in only very low numbers relative to clinical isolates. In this study, we sequenced and assembled 97 genomes encompassing 7 serotypes isolated from broiler chicken in farms in British Columbia between 2005 and 2008. Through application of machine learning (ML) models to predict the observed AMR phenotype from this genomic data, we were able to generate highly (0.92 to 0.99) precise logistic regression models using known AMR gene annotations as features for 7 antibiotics (amoxicillin-clavulanic acid, ampicillin, cefoxitin, ceftiofur, ceftriaxone, streptomycin, and tetracycline). Similarly, we also trained "reference-free" k-mer-based set-covering machine phenotypic prediction models (0.91 to 1.0 precision) for these antibiotics. By combining the inferred k-mers and logistic regression weights, we identified the primary drivers of AMR for the 7 studied antibiotics in these isolates. With our research representing one of the largest studies of a diverse set of NTS isolates from broiler chicken, we can thus confirm that the AmpC-like CMY-2 β-lactamase is a primary driver of β-lactam resistance and that the phosphotransferases APH(6)-Id and APH(3″-Ib) are the principal drivers of streptomycin resistance in this important ecosystem.IMPORTANCE Antimicrobial resistance (AMR) represents an existential threat to the function of modern medicine. Genomics and machine learning methods are being increasingly used to analyze and predict AMR. This type of surveillance is very important to try to reduce the impact of AMR. Machine learning models are typically trained using genomic data, but the aspects of the genomes that they use to make predictions are rarely analyzed. In this work, we showed how, by using different types of machine learning models and performing this analysis, it is possible to identify the key genes underlying AMR in nontyphoidal Salmonella (NTS). NTS is among the leading cause of foodborne illness globally; however, AMR in NTS has not been heavily studied within the food chain itself. Therefore, in this work we performed a broad-scale analysis of the AMR in NTS isolates from commercial chicken farms and identified some priority AMR genes for surveillance.

DOI: 10.1128/mSystems.00211-19
PubMed: 31387929


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:31387929

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Identification of Primary Antimicrobial Resistance Drivers in Agricultural Nontyphoidal Salmonella enterica Serovars by Using Machine Learning.</title>
<author>
<name sortKey="Maguire, Finlay" sort="Maguire, Finlay" uniqKey="Maguire F" first="Finlay" last="Maguire">Finlay Maguire</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia</wicri:regionArea>
<wicri:noRegion>Nova Scotia</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rehman, Muhammad Attiq" sort="Rehman, Muhammad Attiq" uniqKey="Rehman M" first="Muhammad Attiq" last="Rehman">Muhammad Attiq Rehman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Guelph Research and Development Center, Agriculture and Agri-Food Canada (AAFC), Guelph, Ontario, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Guelph Research and Development Center, Agriculture and Agri-Food Canada (AAFC), Guelph, Ontario</wicri:regionArea>
<wicri:noRegion>Ontario</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Carrillo, Catherine" sort="Carrillo, Catherine" uniqKey="Carrillo C" first="Catherine" last="Carrillo">Catherine Carrillo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Canadian Food Inspection Agency (CFIA), Ottawa, Ontario, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Canadian Food Inspection Agency (CFIA), Ottawa, Ontario</wicri:regionArea>
<wicri:noRegion>Ontario</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Diarra, Moussa S" sort="Diarra, Moussa S" uniqKey="Diarra M" first="Moussa S" last="Diarra">Moussa S. Diarra</name>
<affiliation wicri:level="1">
<nlm:affiliation>Guelph Research and Development Center, Agriculture and Agri-Food Canada (AAFC), Guelph, Ontario, Canada moussa.diarra@canada.ca.</nlm:affiliation>
<country wicri:rule="url">Canada</country>
<wicri:regionArea>Guelph Research and Development Center, Agriculture and Agri-Food Canada (AAFC), Guelph, Ontario</wicri:regionArea>
<wicri:noRegion>Ontario</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Beiko, Robert G" sort="Beiko, Robert G" uniqKey="Beiko R" first="Robert G" last="Beiko">Robert G. Beiko</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia</wicri:regionArea>
<wicri:noRegion>Nova Scotia</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31387929</idno>
<idno type="pmid">31387929</idno>
<idno type="doi">10.1128/mSystems.00211-19</idno>
<idno type="wicri:Area/PubMed/Corpus">000459</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000459</idno>
<idno type="wicri:Area/PubMed/Curation">000459</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000459</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000526</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000526</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Identification of Primary Antimicrobial Resistance Drivers in Agricultural Nontyphoidal Salmonella enterica Serovars by Using Machine Learning.</title>
<author>
<name sortKey="Maguire, Finlay" sort="Maguire, Finlay" uniqKey="Maguire F" first="Finlay" last="Maguire">Finlay Maguire</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia</wicri:regionArea>
<wicri:noRegion>Nova Scotia</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rehman, Muhammad Attiq" sort="Rehman, Muhammad Attiq" uniqKey="Rehman M" first="Muhammad Attiq" last="Rehman">Muhammad Attiq Rehman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Guelph Research and Development Center, Agriculture and Agri-Food Canada (AAFC), Guelph, Ontario, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Guelph Research and Development Center, Agriculture and Agri-Food Canada (AAFC), Guelph, Ontario</wicri:regionArea>
<wicri:noRegion>Ontario</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Carrillo, Catherine" sort="Carrillo, Catherine" uniqKey="Carrillo C" first="Catherine" last="Carrillo">Catherine Carrillo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Canadian Food Inspection Agency (CFIA), Ottawa, Ontario, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Canadian Food Inspection Agency (CFIA), Ottawa, Ontario</wicri:regionArea>
<wicri:noRegion>Ontario</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Diarra, Moussa S" sort="Diarra, Moussa S" uniqKey="Diarra M" first="Moussa S" last="Diarra">Moussa S. Diarra</name>
<affiliation wicri:level="1">
<nlm:affiliation>Guelph Research and Development Center, Agriculture and Agri-Food Canada (AAFC), Guelph, Ontario, Canada moussa.diarra@canada.ca.</nlm:affiliation>
<country wicri:rule="url">Canada</country>
<wicri:regionArea>Guelph Research and Development Center, Agriculture and Agri-Food Canada (AAFC), Guelph, Ontario</wicri:regionArea>
<wicri:noRegion>Ontario</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Beiko, Robert G" sort="Beiko, Robert G" uniqKey="Beiko R" first="Robert G" last="Beiko">Robert G. Beiko</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia</wicri:regionArea>
<wicri:noRegion>Nova Scotia</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">mSystems</title>
<idno type="ISSN">2379-5077</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Nontyphoidal
<i>Salmonella</i>
(NTS) is a leading global cause of bacterial foodborne morbidity and mortality. Our ability to treat severe NTS infections has been impaired by increasing antimicrobial resistance (AMR). To understand and mitigate the global health crisis AMR represents, we need to link the observed resistance phenotypes with their underlying genomic mechanisms. Broiler chickens represent a key reservoir and vector for NTS infections, but isolates from this setting have been characterized in only very low numbers relative to clinical isolates. In this study, we sequenced and assembled 97 genomes encompassing 7 serotypes isolated from broiler chicken in farms in British Columbia between 2005 and 2008. Through application of machine learning (ML) models to predict the observed AMR phenotype from this genomic data, we were able to generate highly (0.92 to 0.99) precise logistic regression models using known AMR gene annotations as features for 7 antibiotics (amoxicillin-clavulanic acid, ampicillin, cefoxitin, ceftiofur, ceftriaxone, streptomycin, and tetracycline). Similarly, we also trained "reference-free" k-mer-based set-covering machine phenotypic prediction models (0.91 to 1.0 precision) for these antibiotics. By combining the inferred k-mers and logistic regression weights, we identified the primary drivers of AMR for the 7 studied antibiotics in these isolates. With our research representing one of the largest studies of a diverse set of NTS isolates from broiler chicken, we can thus confirm that the
<i>AmpC</i>
-like
<i>CMY-2</i>
β-lactamase is a primary driver of β-lactam resistance and that the phosphotransferases
<i>APH(6)-Id</i>
and
<i>APH(3″-Ib)</i>
are the principal drivers of streptomycin resistance in this important ecosystem.
<b>IMPORTANCE</b>
Antimicrobial resistance (AMR) represents an existential threat to the function of modern medicine. Genomics and machine learning methods are being increasingly used to analyze and predict AMR. This type of surveillance is very important to try to reduce the impact of AMR. Machine learning models are typically trained using genomic data, but the aspects of the genomes that they use to make predictions are rarely analyzed. In this work, we showed how, by using different types of machine learning models and performing this analysis, it is possible to identify the key genes underlying AMR in nontyphoidal
<i>Salmonella</i>
(NTS). NTS is among the leading cause of foodborne illness globally; however, AMR in NTS has not been heavily studied within the food chain itself. Therefore, in this work we performed a broad-scale analysis of the AMR in NTS isolates from commercial chicken farms and identified some priority AMR genes for surveillance.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">31387929</PMID>
<DateRevised>
<Year>2020</Year>
<Month>02</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Print">2379-5077</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>4</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2019</Year>
<Month>Aug</Month>
<Day>06</Day>
</PubDate>
</JournalIssue>
<Title>mSystems</Title>
<ISOAbbreviation>mSystems</ISOAbbreviation>
</Journal>
<ArticleTitle>Identification of Primary Antimicrobial Resistance Drivers in Agricultural Nontyphoidal Salmonella enterica Serovars by Using Machine Learning.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e00211-19</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/mSystems.00211-19</ELocationID>
<Abstract>
<AbstractText>Nontyphoidal
<i>Salmonella</i>
(NTS) is a leading global cause of bacterial foodborne morbidity and mortality. Our ability to treat severe NTS infections has been impaired by increasing antimicrobial resistance (AMR). To understand and mitigate the global health crisis AMR represents, we need to link the observed resistance phenotypes with their underlying genomic mechanisms. Broiler chickens represent a key reservoir and vector for NTS infections, but isolates from this setting have been characterized in only very low numbers relative to clinical isolates. In this study, we sequenced and assembled 97 genomes encompassing 7 serotypes isolated from broiler chicken in farms in British Columbia between 2005 and 2008. Through application of machine learning (ML) models to predict the observed AMR phenotype from this genomic data, we were able to generate highly (0.92 to 0.99) precise logistic regression models using known AMR gene annotations as features for 7 antibiotics (amoxicillin-clavulanic acid, ampicillin, cefoxitin, ceftiofur, ceftriaxone, streptomycin, and tetracycline). Similarly, we also trained "reference-free" k-mer-based set-covering machine phenotypic prediction models (0.91 to 1.0 precision) for these antibiotics. By combining the inferred k-mers and logistic regression weights, we identified the primary drivers of AMR for the 7 studied antibiotics in these isolates. With our research representing one of the largest studies of a diverse set of NTS isolates from broiler chicken, we can thus confirm that the
<i>AmpC</i>
-like
<i>CMY-2</i>
β-lactamase is a primary driver of β-lactam resistance and that the phosphotransferases
<i>APH(6)-Id</i>
and
<i>APH(3″-Ib)</i>
are the principal drivers of streptomycin resistance in this important ecosystem.
<b>IMPORTANCE</b>
Antimicrobial resistance (AMR) represents an existential threat to the function of modern medicine. Genomics and machine learning methods are being increasingly used to analyze and predict AMR. This type of surveillance is very important to try to reduce the impact of AMR. Machine learning models are typically trained using genomic data, but the aspects of the genomes that they use to make predictions are rarely analyzed. In this work, we showed how, by using different types of machine learning models and performing this analysis, it is possible to identify the key genes underlying AMR in nontyphoidal
<i>Salmonella</i>
(NTS). NTS is among the leading cause of foodborne illness globally; however, AMR in NTS has not been heavily studied within the food chain itself. Therefore, in this work we performed a broad-scale analysis of the AMR in NTS isolates from commercial chicken farms and identified some priority AMR genes for surveillance.</AbstractText>
<CopyrightInformation>© Crown copyright 2019.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Maguire</LastName>
<ForeName>Finlay</ForeName>
<Initials>F</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-1203-9514</Identifier>
<AffiliationInfo>
<Affiliation>Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rehman</LastName>
<ForeName>Muhammad Attiq</ForeName>
<Initials>MA</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-2062-1969</Identifier>
<AffiliationInfo>
<Affiliation>Guelph Research and Development Center, Agriculture and Agri-Food Canada (AAFC), Guelph, Ontario, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Carrillo</LastName>
<ForeName>Catherine</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Canadian Food Inspection Agency (CFIA), Ottawa, Ontario, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Diarra</LastName>
<ForeName>Moussa S</ForeName>
<Initials>MS</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0003-2966-345X</Identifier>
<AffiliationInfo>
<Affiliation>Guelph Research and Development Center, Agriculture and Agri-Food Canada (AAFC), Guelph, Ontario, Canada moussa.diarra@canada.ca.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Beiko</LastName>
<ForeName>Robert G</ForeName>
<Initials>RG</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-5065-4980</Identifier>
<AffiliationInfo>
<Affiliation>Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>08</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>mSystems</MedlineTA>
<NlmUniqueID>101680636</NlmUniqueID>
<ISSNLinking>2379-5077</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">AMR prediction</Keyword>
<Keyword MajorTopicYN="N">Salmonella </Keyword>
<Keyword MajorTopicYN="N">antimicrobial resistance</Keyword>
<Keyword MajorTopicYN="N">food chain</Keyword>
<Keyword MajorTopicYN="N">genomics</Keyword>
<Keyword MajorTopicYN="N">machine learning</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>8</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>8</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>8</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31387929</ArticleId>
<ArticleId IdType="pii">4/4/e00211-19</ArticleId>
<ArticleId IdType="doi">10.1128/mSystems.00211-19</ArticleId>
<ArticleId IdType="pmc">PMC6687941</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>FEMS Microbiol Lett. 1999 May 15;174(2):327-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10339826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1999 Nov;181(21):6650-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10542165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2002 Feb;43(3):677-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11929524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2002 May;184(9):2543-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11948170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2002 Aug;184(15):4161-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12107133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2003 Mar;185(6):1851-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12618449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):8938-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1409590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2004 Mar;186(5):1423-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14973023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2004 Mar;48(3):903-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14982782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2004 Aug;48(8):2845-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15273090</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Antimicrob Chemother. 2005 Apr;55(4):558-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15722395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2005 Apr 15;245(2):195-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15837373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2005 Dec 1;41(11):1613-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16267734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2006 Jan;59(1):126-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16359323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2006 Dec;50(12):4070-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17015629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2007 Nov;66(3):814-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17919284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2008 Feb 08;9:75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18261238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2008 Jul;52(7):2428-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18443112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Antibiot (Tokyo). 2008 Mar;61(3):120-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18503189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2009 Mar;53(3):1080-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19104017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Antimicrob Agents. 2010 Apr;35(4):333-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20071153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2010 Mar 08;11:119</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20211023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2010 Nov;34(6):1015-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20412308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2010 Oct;54(10):4389-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20696879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2011 Jan;55(1):190-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20937787</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Nov 1;27(21):2957-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21903629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Antimicrob Chemother. 2012 Jan;67(1):111-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21990047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2012 Feb;78(4):1285-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22156427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(4):e33777</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22496764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Biol. 2012 May;19(5):455-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22506599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Control Hosp Epidemiol. 2012 Jun;33(6):589-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22561714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2013 Apr 15;29(8):1072-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23422339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Antimicrob Chemother. 2013 Jul;68(7):1583-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23460607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2013 Jul;57(7):3348-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23650175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol Evol. 2013;5(11):2109-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24158624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jan;42(Database issue):D206-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24293654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Food Prot. 2014 Jan;77(1):40-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24405997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Foodborne Pathog Dis. 2014 May;11(5):335-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24617446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 Jul 15;30(14):2068-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24642063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2014 Jul;58(7):3895-903</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24777092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2015 Jan;32(1):268-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25371430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2015 Jan;12(1):59-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25402007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2015 Jun;21(6):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25860298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Jun 17;10(6):e0128773</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26083489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2015 Nov 15;31(22):3691-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26198102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2015 Dec 21;6:10063</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26686880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2016 Jan 21;529(7586):336-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26791724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 Jan 22;11(1):e0147101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26800248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2016 Jun;33(6):1635-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26921390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2016 Jul 8;44(W1):W232-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27084950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Jun 14;6:27930</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27297683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2016 Aug 22;60(9):5515-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27381390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trans R Soc Trop Med Hyg. 2016 Jul;110(7):377-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27475987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Microbiol Infect. 2016 Dec;22(12):968-974</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27506509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2016 Sep 26;17(1):754</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27671088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2017 Jan 4;45(D1):D566-D573</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27789705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2016 Nov 28;7:1887</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27965630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2017 Feb 23;61(3):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27993845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Microbiol Infect. 2017 Nov;23(11):826-833</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28143782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2017 Mar 14;8(2):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28292982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Genom. 2016 Apr 29;2(4):e000056</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28348851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2017 Jun;14(6):587-589</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28481363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vet Microbiol. 2017 May;203:211-214</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28619146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Antimicrob Agents. 2018 Jan;51(1):151-154</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28919197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2018 Jan;19(1):9-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29129921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Res Notes. 2018 Jan 20;11(1):53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29352811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Food Microbiol. 2018 Mar 23;269:60-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29421359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microbiol Methods. 2018 May;148:22-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29621582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2018 Mar 27;9:592</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29636749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2018 Sep 10;9:2123</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30250458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Drug Resist. 2019 Mar;25(2):271-276</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30256175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Microbiol. 2019 Jan 30;57(2):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30333126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mSphere. 2018 Dec 12;3(6):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30541778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1979 Jan;76(1):391-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">370828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1995 May;177(9):2328-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7730261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 1996 Jan;40(1):221-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8787910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 1997 Oct;41(10):2067-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9333027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1998 Mar;27(6):1171-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9570402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1998 Nov;180(22):6072-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9811673</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
</list>
<tree>
<country name="Canada">
<noRegion>
<name sortKey="Maguire, Finlay" sort="Maguire, Finlay" uniqKey="Maguire F" first="Finlay" last="Maguire">Finlay Maguire</name>
</noRegion>
<name sortKey="Beiko, Robert G" sort="Beiko, Robert G" uniqKey="Beiko R" first="Robert G" last="Beiko">Robert G. Beiko</name>
<name sortKey="Carrillo, Catherine" sort="Carrillo, Catherine" uniqKey="Carrillo C" first="Catherine" last="Carrillo">Catherine Carrillo</name>
<name sortKey="Diarra, Moussa S" sort="Diarra, Moussa S" uniqKey="Diarra M" first="Moussa S" last="Diarra">Moussa S. Diarra</name>
<name sortKey="Rehman, Muhammad Attiq" sort="Rehman, Muhammad Attiq" uniqKey="Rehman M" first="Muhammad Attiq" last="Rehman">Muhammad Attiq Rehman</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000526 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000526 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:31387929
   |texte=   Identification of Primary Antimicrobial Resistance Drivers in Agricultural Nontyphoidal Salmonella enterica Serovars by Using Machine Learning.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:31387929" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021