Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Structures of MERS-CoV spike glycoprotein in complex with sialoside attachment receptors.

Identifieur interne : 000366 ( PubMed/Checkpoint ); précédent : 000365; suivant : 000367

Structures of MERS-CoV spike glycoprotein in complex with sialoside attachment receptors.

Auteurs : Young-Jun Park [États-Unis] ; Alexandra C. Walls [États-Unis] ; Zhaoqian Wang [États-Unis] ; Maximillian M. Sauer [États-Unis] ; Wentao Li [Pays-Bas] ; M Alejandra Tortorici [États-Unis] ; Berend-Jan Bosch [Pays-Bas] ; Frank Dimaio [États-Unis] ; David Veesler [États-Unis]

Source :

RBID : pubmed:31792450

Descripteurs français

English descriptors

Abstract

The Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe and often lethal respiratory illness in humans, and no vaccines or specific treatments are available. Infections are initiated via binding of the MERS-CoV spike (S) glycoprotein to sialosides and dipeptidyl-peptidase 4 (the attachment and entry receptors, respectively). To understand MERS-CoV engagement of sialylated receptors, we determined the cryo-EM structures of S in complex with 5-N-acetyl neuraminic acid, 5-N-glycolyl neuraminic acid, sialyl-LewisX, α2,3-sialyl-N-acetyl-lactosamine and α2,6-sialyl-N-acetyl-lactosamine at 2.7-3.0 Å resolution. We show that recognition occurs via a conserved groove that is essential for MERS-CoV S-mediated attachment to sialosides and entry into human airway epithelial cells. Our data illuminate MERS-CoV S sialoside specificity and suggest that selectivity for α2,3-linked over α2,6-linked receptors results from enhanced interactions with the former class of oligosaccharides. This study provides a structural framework explaining MERS-CoV attachment to sialoside receptors and identifies a site of potential vulnerability to inhibitors of viral entry.

DOI: 10.1038/s41594-019-0334-7
PubMed: 31792450


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:31792450

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Structures of MERS-CoV spike glycoprotein in complex with sialoside attachment receptors.</title>
<author>
<name sortKey="Park, Young Jun" sort="Park, Young Jun" uniqKey="Park Y" first="Young-Jun" last="Park">Young-Jun Park</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry, University of Washington, Seattle, WA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry, University of Washington, Seattle, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
<settlement type="city">Seattle</settlement>
</placeName>
<orgName type="university">Université de Washington</orgName>
</affiliation>
</author>
<author>
<name sortKey="Walls, Alexandra C" sort="Walls, Alexandra C" uniqKey="Walls A" first="Alexandra C" last="Walls">Alexandra C. Walls</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry, University of Washington, Seattle, WA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry, University of Washington, Seattle, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
<settlement type="city">Seattle</settlement>
</placeName>
<orgName type="university">Université de Washington</orgName>
</affiliation>
</author>
<author>
<name sortKey="Wang, Zhaoqian" sort="Wang, Zhaoqian" uniqKey="Wang Z" first="Zhaoqian" last="Wang">Zhaoqian Wang</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry, University of Washington, Seattle, WA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry, University of Washington, Seattle, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
<settlement type="city">Seattle</settlement>
</placeName>
<orgName type="university">Université de Washington</orgName>
</affiliation>
</author>
<author>
<name sortKey="Sauer, Maximillian M" sort="Sauer, Maximillian M" uniqKey="Sauer M" first="Maximillian M" last="Sauer">Maximillian M. Sauer</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry, University of Washington, Seattle, WA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry, University of Washington, Seattle, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
<settlement type="city">Seattle</settlement>
</placeName>
<orgName type="university">Université de Washington</orgName>
</affiliation>
</author>
<author>
<name sortKey="Li, Wentao" sort="Li, Wentao" uniqKey="Li W" first="Wentao" last="Li">Wentao Li</name>
<affiliation wicri:level="4">
<nlm:affiliation>Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">Pays-Bas</country>
<wicri:regionArea>Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht</wicri:regionArea>
<placeName>
<settlement type="city">Utrecht</settlement>
<region nuts="2" type="province">Utrecht (province)</region>
</placeName>
<orgName type="university">Université d'Utrecht</orgName>
</affiliation>
</author>
<author>
<name sortKey="Tortorici, M Alejandra" sort="Tortorici, M Alejandra" uniqKey="Tortorici M" first="M Alejandra" last="Tortorici">M Alejandra Tortorici</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry, University of Washington, Seattle, WA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry, University of Washington, Seattle, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
<settlement type="city">Seattle</settlement>
</placeName>
<orgName type="university">Université de Washington</orgName>
</affiliation>
</author>
<author>
<name sortKey="Bosch, Berend Jan" sort="Bosch, Berend Jan" uniqKey="Bosch B" first="Berend-Jan" last="Bosch">Berend-Jan Bosch</name>
<affiliation wicri:level="4">
<nlm:affiliation>Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">Pays-Bas</country>
<wicri:regionArea>Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht</wicri:regionArea>
<placeName>
<settlement type="city">Utrecht</settlement>
<region nuts="2" type="province">Utrecht (province)</region>
</placeName>
<orgName type="university">Université d'Utrecht</orgName>
</affiliation>
</author>
<author>
<name sortKey="Dimaio, Frank" sort="Dimaio, Frank" uniqKey="Dimaio F" first="Frank" last="Dimaio">Frank Dimaio</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry, University of Washington, Seattle, WA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry, University of Washington, Seattle, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
<settlement type="city">Seattle</settlement>
</placeName>
<orgName type="university">Université de Washington</orgName>
</affiliation>
</author>
<author>
<name sortKey="Veesler, David" sort="Veesler, David" uniqKey="Veesler D" first="David" last="Veesler">David Veesler</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry, University of Washington, Seattle, WA, USA. dveesler@uw.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry, University of Washington, Seattle, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
<settlement type="city">Seattle</settlement>
</placeName>
<orgName type="university">Université de Washington</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31792450</idno>
<idno type="pmid">31792450</idno>
<idno type="doi">10.1038/s41594-019-0334-7</idno>
<idno type="wicri:Area/PubMed/Corpus">000347</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000347</idno>
<idno type="wicri:Area/PubMed/Curation">000347</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000347</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000366</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000366</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Structures of MERS-CoV spike glycoprotein in complex with sialoside attachment receptors.</title>
<author>
<name sortKey="Park, Young Jun" sort="Park, Young Jun" uniqKey="Park Y" first="Young-Jun" last="Park">Young-Jun Park</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry, University of Washington, Seattle, WA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry, University of Washington, Seattle, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
<settlement type="city">Seattle</settlement>
</placeName>
<orgName type="university">Université de Washington</orgName>
</affiliation>
</author>
<author>
<name sortKey="Walls, Alexandra C" sort="Walls, Alexandra C" uniqKey="Walls A" first="Alexandra C" last="Walls">Alexandra C. Walls</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry, University of Washington, Seattle, WA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry, University of Washington, Seattle, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
<settlement type="city">Seattle</settlement>
</placeName>
<orgName type="university">Université de Washington</orgName>
</affiliation>
</author>
<author>
<name sortKey="Wang, Zhaoqian" sort="Wang, Zhaoqian" uniqKey="Wang Z" first="Zhaoqian" last="Wang">Zhaoqian Wang</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry, University of Washington, Seattle, WA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry, University of Washington, Seattle, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
<settlement type="city">Seattle</settlement>
</placeName>
<orgName type="university">Université de Washington</orgName>
</affiliation>
</author>
<author>
<name sortKey="Sauer, Maximillian M" sort="Sauer, Maximillian M" uniqKey="Sauer M" first="Maximillian M" last="Sauer">Maximillian M. Sauer</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry, University of Washington, Seattle, WA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry, University of Washington, Seattle, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
<settlement type="city">Seattle</settlement>
</placeName>
<orgName type="university">Université de Washington</orgName>
</affiliation>
</author>
<author>
<name sortKey="Li, Wentao" sort="Li, Wentao" uniqKey="Li W" first="Wentao" last="Li">Wentao Li</name>
<affiliation wicri:level="4">
<nlm:affiliation>Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">Pays-Bas</country>
<wicri:regionArea>Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht</wicri:regionArea>
<placeName>
<settlement type="city">Utrecht</settlement>
<region nuts="2" type="province">Utrecht (province)</region>
</placeName>
<orgName type="university">Université d'Utrecht</orgName>
</affiliation>
</author>
<author>
<name sortKey="Tortorici, M Alejandra" sort="Tortorici, M Alejandra" uniqKey="Tortorici M" first="M Alejandra" last="Tortorici">M Alejandra Tortorici</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry, University of Washington, Seattle, WA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry, University of Washington, Seattle, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
<settlement type="city">Seattle</settlement>
</placeName>
<orgName type="university">Université de Washington</orgName>
</affiliation>
</author>
<author>
<name sortKey="Bosch, Berend Jan" sort="Bosch, Berend Jan" uniqKey="Bosch B" first="Berend-Jan" last="Bosch">Berend-Jan Bosch</name>
<affiliation wicri:level="4">
<nlm:affiliation>Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">Pays-Bas</country>
<wicri:regionArea>Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht</wicri:regionArea>
<placeName>
<settlement type="city">Utrecht</settlement>
<region nuts="2" type="province">Utrecht (province)</region>
</placeName>
<orgName type="university">Université d'Utrecht</orgName>
</affiliation>
</author>
<author>
<name sortKey="Dimaio, Frank" sort="Dimaio, Frank" uniqKey="Dimaio F" first="Frank" last="Dimaio">Frank Dimaio</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry, University of Washington, Seattle, WA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry, University of Washington, Seattle, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
<settlement type="city">Seattle</settlement>
</placeName>
<orgName type="university">Université de Washington</orgName>
</affiliation>
</author>
<author>
<name sortKey="Veesler, David" sort="Veesler, David" uniqKey="Veesler D" first="David" last="Veesler">David Veesler</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry, University of Washington, Seattle, WA, USA. dveesler@uw.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry, University of Washington, Seattle, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
<settlement type="city">Seattle</settlement>
</placeName>
<orgName type="university">Université de Washington</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Nature structural & molecular biology</title>
<idno type="eISSN">1545-9985</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Binding Sites</term>
<term>Carbohydrate Conformation</term>
<term>Cryoelectron Microscopy</term>
<term>Dipeptidyl Peptidase 4 (chemistry)</term>
<term>Dipeptidyl Peptidase 4 (metabolism)</term>
<term>Dipeptidyl Peptidase 4 (ultrastructure)</term>
<term>Hemagglutination, Viral</term>
<term>Humans</term>
<term>Middle East Respiratory Syndrome Coronavirus (chemistry)</term>
<term>Models, Molecular</term>
<term>Protein Binding</term>
<term>Protein Conformation</term>
<term>Protein Domains</term>
<term>Protein Interaction Mapping</term>
<term>Sialic Acids (chemistry)</term>
<term>Sialic Acids (metabolism)</term>
<term>Spike Glycoprotein, Coronavirus (chemistry)</term>
<term>Spike Glycoprotein, Coronavirus (metabolism)</term>
<term>Spike Glycoprotein, Coronavirus (ultrastructure)</term>
<term>Structure-Activity Relationship</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acides sialiques ()</term>
<term>Acides sialiques (métabolisme)</term>
<term>Cartographie d'interactions entre protéines</term>
<term>Conformation des glucides</term>
<term>Conformation des protéines</term>
<term>Coronavirus du syndrome respiratoire du Moyen-Orient ()</term>
<term>Cryomicroscopie électronique</term>
<term>Dipeptidyl peptidase 4 ()</term>
<term>Dipeptidyl peptidase 4 (métabolisme)</term>
<term>Dipeptidyl peptidase 4 (ultrastructure)</term>
<term>Domaines protéiques</term>
<term>Glycoprotéine de spicule des coronavirus ()</term>
<term>Glycoprotéine de spicule des coronavirus (métabolisme)</term>
<term>Glycoprotéine de spicule des coronavirus (ultrastructure)</term>
<term>Humains</term>
<term>Hémagglutination virale</term>
<term>Liaison aux protéines</term>
<term>Modèles moléculaires</term>
<term>Relation structure-activité</term>
<term>Sites de fixation</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Dipeptidyl Peptidase 4</term>
<term>Sialic Acids</term>
<term>Spike Glycoprotein, Coronavirus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Dipeptidyl Peptidase 4</term>
<term>Sialic Acids</term>
<term>Spike Glycoprotein, Coronavirus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="ultrastructure" xml:lang="en">
<term>Dipeptidyl Peptidase 4</term>
<term>Spike Glycoprotein, Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Middle East Respiratory Syndrome Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acides sialiques</term>
<term>Dipeptidyl peptidase 4</term>
<term>Glycoprotéine de spicule des coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="fr">
<term>Dipeptidyl peptidase 4</term>
<term>Glycoprotéine de spicule des coronavirus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Binding Sites</term>
<term>Carbohydrate Conformation</term>
<term>Cryoelectron Microscopy</term>
<term>Hemagglutination, Viral</term>
<term>Humans</term>
<term>Models, Molecular</term>
<term>Protein Binding</term>
<term>Protein Conformation</term>
<term>Protein Domains</term>
<term>Protein Interaction Mapping</term>
<term>Structure-Activity Relationship</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Acides sialiques</term>
<term>Cartographie d'interactions entre protéines</term>
<term>Conformation des glucides</term>
<term>Conformation des protéines</term>
<term>Coronavirus du syndrome respiratoire du Moyen-Orient</term>
<term>Cryomicroscopie électronique</term>
<term>Dipeptidyl peptidase 4</term>
<term>Domaines protéiques</term>
<term>Glycoprotéine de spicule des coronavirus</term>
<term>Humains</term>
<term>Hémagglutination virale</term>
<term>Liaison aux protéines</term>
<term>Modèles moléculaires</term>
<term>Relation structure-activité</term>
<term>Sites de fixation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe and often lethal respiratory illness in humans, and no vaccines or specific treatments are available. Infections are initiated via binding of the MERS-CoV spike (S) glycoprotein to sialosides and dipeptidyl-peptidase 4 (the attachment and entry receptors, respectively). To understand MERS-CoV engagement of sialylated receptors, we determined the cryo-EM structures of S in complex with 5-N-acetyl neuraminic acid, 5-N-glycolyl neuraminic acid, sialyl-Lewis
<sup>X</sup>
, α2,3-sialyl-N-acetyl-lactosamine and α2,6-sialyl-N-acetyl-lactosamine at 2.7-3.0 Å resolution. We show that recognition occurs via a conserved groove that is essential for MERS-CoV S-mediated attachment to sialosides and entry into human airway epithelial cells. Our data illuminate MERS-CoV S sialoside specificity and suggest that selectivity for α2,3-linked over α2,6-linked receptors results from enhanced interactions with the former class of oligosaccharides. This study provides a structural framework explaining MERS-CoV attachment to sialoside receptors and identifies a site of potential vulnerability to inhibitors of viral entry.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31792450</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>02</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1545-9985</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>26</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2019</Year>
<Month>12</Month>
</PubDate>
</JournalIssue>
<Title>Nature structural & molecular biology</Title>
<ISOAbbreviation>Nat. Struct. Mol. Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Structures of MERS-CoV spike glycoprotein in complex with sialoside attachment receptors.</ArticleTitle>
<Pagination>
<MedlinePgn>1151-1157</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/s41594-019-0334-7</ELocationID>
<Abstract>
<AbstractText>The Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe and often lethal respiratory illness in humans, and no vaccines or specific treatments are available. Infections are initiated via binding of the MERS-CoV spike (S) glycoprotein to sialosides and dipeptidyl-peptidase 4 (the attachment and entry receptors, respectively). To understand MERS-CoV engagement of sialylated receptors, we determined the cryo-EM structures of S in complex with 5-N-acetyl neuraminic acid, 5-N-glycolyl neuraminic acid, sialyl-Lewis
<sup>X</sup>
, α2,3-sialyl-N-acetyl-lactosamine and α2,6-sialyl-N-acetyl-lactosamine at 2.7-3.0 Å resolution. We show that recognition occurs via a conserved groove that is essential for MERS-CoV S-mediated attachment to sialosides and entry into human airway epithelial cells. Our data illuminate MERS-CoV S sialoside specificity and suggest that selectivity for α2,3-linked over α2,6-linked receptors results from enhanced interactions with the former class of oligosaccharides. This study provides a structural framework explaining MERS-CoV attachment to sialoside receptors and identifies a site of potential vulnerability to inhibitors of viral entry.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Park</LastName>
<ForeName>Young-Jun</ForeName>
<Initials>YJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, University of Washington, Seattle, WA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Walls</LastName>
<ForeName>Alexandra C</ForeName>
<Initials>AC</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, University of Washington, Seattle, WA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Zhaoqian</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, University of Washington, Seattle, WA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sauer</LastName>
<ForeName>Maximillian M</ForeName>
<Initials>MM</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, University of Washington, Seattle, WA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Wentao</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tortorici</LastName>
<ForeName>M Alejandra</ForeName>
<Initials>MA</Initials>
<Identifier Source="ORCID">0000-0002-2260-2577</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, University of Washington, Seattle, WA, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institut Pasteur, Unité de Virologie Structurale, Paris, France.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>CNRS UMR 3569, Unité de Virologie Structurale, Paris, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bosch</LastName>
<ForeName>Berend-Jan</ForeName>
<Initials>BJ</Initials>
<AffiliationInfo>
<Affiliation>Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>DiMaio</LastName>
<ForeName>Frank</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, University of Washington, Seattle, WA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Veesler</LastName>
<ForeName>David</ForeName>
<Initials>D</Initials>
<Identifier Source="ORCID">0000-0002-6019-8675</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, University of Washington, Seattle, WA, USA. dveesler@uw.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM120553</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>12</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Nat Struct Mol Biol</MedlineTA>
<NlmUniqueID>101186374</NlmUniqueID>
<ISSNLinking>1545-9985</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012794">Sialic Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064370">Spike Glycoprotein, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.14.5</RegistryNumber>
<NameOfSubstance UI="C042807">DPP4 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.14.5</RegistryNumber>
<NameOfSubstance UI="D018819">Dipeptidyl Peptidase 4</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002236" MajorTopicYN="N">Carbohydrate Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020285" MajorTopicYN="N">Cryoelectron Microscopy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018819" MajorTopicYN="N">Dipeptidyl Peptidase 4</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006387" MajorTopicYN="N">Hemagglutination, Viral</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D065207" MajorTopicYN="N">Middle East Respiratory Syndrome Coronavirus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000072417" MajorTopicYN="N">Protein Domains</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025941" MajorTopicYN="N">Protein Interaction Mapping</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012794" MajorTopicYN="N">Sialic Acids</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064370" MajorTopicYN="N">Spike Glycoprotein, Coronavirus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013329" MajorTopicYN="N">Structure-Activity Relationship</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>07</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>10</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>12</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>2</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>12</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31792450</ArticleId>
<ArticleId IdType="doi">10.1038/s41594-019-0334-7</ArticleId>
<ArticleId IdType="pii">10.1038/s41594-019-0334-7</ArticleId>
<ArticleId IdType="pmc">PMC7097669</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Structure. 2019 Jan 2;27(1):134-139.e3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30344107</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Struct Mol Biol. 2019 Jun;26(6):481-489</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31160783</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2013 Mar 14;495(7440):251-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23486063</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Pathog. 2017 Jul 31;13(7):e1006546</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28759649</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell Res. 2013 Aug;23(8):986-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23835475</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Elife. 2018 Nov 09;7:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30412051</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Commun. 2017 Apr 10;8:15092</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28393837</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2017 Oct 25;92(4):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29070693</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2015 Jan 1;71(Pt 1):136-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25615868</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Emerg Infect Dis. 2017 Feb;23(2):232-240</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27901465</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Aug 29;114(35):E7348-E7357</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28807998</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Methods. 2012 Sep;9(9):853-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22842542</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell Res. 2017 Jan;27(1):119-129</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28008928</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Emerg Microbes Infect. 2019;8(1):516-530</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30938227</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Struct Mol Biol. 2015 Nov;22(11):833-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26581513</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Lancet Infect Dis. 2014 Feb;14(2):140-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24355866</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2013 May 16;497(7449):392-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23615615</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2013 Aug 8;500(7461):227-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23831647</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Methods. 2017 Mar;14(3):290-296</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28165473</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Elife. 2016 Sep 26;5:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27669148</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2018 Jan 30;92(4):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29093093</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2006 Jul 20;351(1):180-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16647731</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Jan;66(Pt 1):12-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20057044</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2015 Sep;89(17):9119-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26063432</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Microbiol. 2014 Nov;12(11):739-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25263223</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2012 Nov 8;367(19):1814-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23075143</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Pathog. 2017 Nov 30;13(11):e1006698</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29190287</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Oct 3;114(40):E8508-E8517</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28923942</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2011;6(6):e20450</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21731614</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Methods. 2015 Oct;12(10):943-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26280328</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Bio Protoc. 2016 Dec 5;6(23):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28018942</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2011 Sep;85(17):8903-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21697468</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>IUCrJ. 2019 Jan 01;6(Pt 1):5-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30713699</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Methods. 2015 Apr;12(4):361-365</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25707030</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell Host Microbe. 2017 Mar 8;21(3):356-366</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28279346</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2016 Mar 3;531(7592):118-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26935699</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2018 Jul 27;293(30):11709-11726</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29887526</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2013 Jul 25;499(7459):496-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23787694</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Elife. 2015 Mar 11;4:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25760083</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2016 Sep 29;90(20):9114-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27489282</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Emerg Infect Dis. 2015 Jan;21(1):181-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25531820</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2016 Jan 1;351(6268):81-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26678874</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Oct 6;106(40):17175-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19805083</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 2007 Sep 21;372(3):774-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17681537</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2019 Feb 12;116(7):2681-2690</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30679277</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2016 Apr 14;90(9):4838-4842</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26889022</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Oct 17;114(42):11157-11162</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29073020</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Pathog. 2018 Apr 23;14(4):e1007009</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29684066</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2016 Mar 3;531(7592):114-117</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26855426</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2012 Dec;86(24):13456-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23035213</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Mar 15;113(11):3048-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26976607</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20383002</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Struct Mol Biol. 2016 Oct;23(10):899-905</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27617430</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2014 May;88(9):4953-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24554656</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Med. 2015 Dec;21(12):1508-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26552008</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Methods. 2017 Aug;14(8):797-800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28628127</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Struct Biol. 2005 Jul;151(1):41-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15890530</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virus Res. 2013 Dec 5;178(1):12-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24036174</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Pathog. 2018 Aug 13;14(8):e1007236</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30102747</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Methods. 2019 Nov;16(11):1146-1152</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31591575</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Oct 21;111(42):15214-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25288733</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Oct 25;113(43):12262-12267</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27791014</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2000 Dec;74(24):11825-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11090182</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Protein Sci. 2018 Jan;27(1):14-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28710774</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell. 2019 Feb 21;176(5):1026-1039.e15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30712865</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Sci Rep. 2018 Oct 24;8(1):15701</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30356097</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2015 Jun;89(11):6093-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25833045</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Protein Sci. 2017 Jan;26(1):113-121</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27667334</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Struct Biol. 2007 Jan;157(1):281-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16963278</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Pays-Bas</li>
<li>États-Unis</li>
</country>
<region>
<li>Utrecht (province)</li>
<li>Washington (État)</li>
</region>
<settlement>
<li>Seattle</li>
<li>Utrecht</li>
</settlement>
<orgName>
<li>Université d'Utrecht</li>
<li>Université de Washington</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="Washington (État)">
<name sortKey="Park, Young Jun" sort="Park, Young Jun" uniqKey="Park Y" first="Young-Jun" last="Park">Young-Jun Park</name>
</region>
<name sortKey="Dimaio, Frank" sort="Dimaio, Frank" uniqKey="Dimaio F" first="Frank" last="Dimaio">Frank Dimaio</name>
<name sortKey="Sauer, Maximillian M" sort="Sauer, Maximillian M" uniqKey="Sauer M" first="Maximillian M" last="Sauer">Maximillian M. Sauer</name>
<name sortKey="Tortorici, M Alejandra" sort="Tortorici, M Alejandra" uniqKey="Tortorici M" first="M Alejandra" last="Tortorici">M Alejandra Tortorici</name>
<name sortKey="Veesler, David" sort="Veesler, David" uniqKey="Veesler D" first="David" last="Veesler">David Veesler</name>
<name sortKey="Walls, Alexandra C" sort="Walls, Alexandra C" uniqKey="Walls A" first="Alexandra C" last="Walls">Alexandra C. Walls</name>
<name sortKey="Wang, Zhaoqian" sort="Wang, Zhaoqian" uniqKey="Wang Z" first="Zhaoqian" last="Wang">Zhaoqian Wang</name>
</country>
<country name="Pays-Bas">
<region name="Utrecht (province)">
<name sortKey="Li, Wentao" sort="Li, Wentao" uniqKey="Li W" first="Wentao" last="Li">Wentao Li</name>
</region>
<name sortKey="Bosch, Berend Jan" sort="Bosch, Berend Jan" uniqKey="Bosch B" first="Berend-Jan" last="Bosch">Berend-Jan Bosch</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000366 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000366 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:31792450
   |texte=   Structures of MERS-CoV spike glycoprotein in complex with sialoside attachment receptors.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:31792450" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021