Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genetically Engineering a Susceptible Mouse Model for MERS-CoV-Induced Acute Respiratory Distress Syndrome.

Identifieur interne : 000196 ( PubMed/Checkpoint ); précédent : 000195; suivant : 000197

Genetically Engineering a Susceptible Mouse Model for MERS-CoV-Induced Acute Respiratory Distress Syndrome.

Auteurs : Sarah R. Leist [États-Unis] ; Adam S. Cockrell [États-Unis]

Source :

RBID : pubmed:31883094

Abstract

Since 2012, monthly cases of Middle East respiratory syndrome coronavirus (MERS-CoV) continue to cause severe respiratory disease that is fatal in ~35% of diagnosed individuals. The ongoing threat to global public health and the need for novel therapeutic countermeasures have driven the development of animal models that can reproducibly replicate the pathology associated with MERS-CoV in human infections. The inability of MERS-CoV to replicate in the respiratory tracts of mice, hamsters, and ferrets stymied initial attempts to generate small animal models. Identification of human dipeptidyl peptidase IV (hDPP4) as the receptor for MERS-CoV infection opened the door for genetic engineering of mice. Precise molecular engineering of mouse DPP4 (mDPP4) with clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology maintained inherent expression profiles, and limited MERS-CoV susceptibility to tissues that naturally express mDPP4, notably the lower respiratory tract wherein MERS-CoV elicits severe pulmonary pathology. Here, we describe the generation of the 288-330+/+ MERS-CoV mouse model in which mice were made susceptible to MERS-CoV by modifying two amino acids on mDPP4 (A288 and T330), and the use of adaptive evolution to generate novel MERS-CoV isolates that cause fatal respiratory disease. The 288-330+/+ mice are currently being used to evaluate novel drug, antibody, and vaccine therapeutic countermeasures for MERS-CoV. The chapter starts with a historical perspective on the emergence of MERS-CoV and animal models evaluated for MERS-CoV pathogenesis, and then outlines the development of the 288-330+/+ mouse model, assays for assessing a MERS-CoV pulmonary infection in a mouse model, and describes some of the challenges associated with using genetically engineered mice.

DOI: 10.1007/978-1-0716-0211-9_12
PubMed: 31883094


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:31883094

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Genetically Engineering a Susceptible Mouse Model for MERS-CoV-Induced Acute Respiratory Distress Syndrome.</title>
<author>
<name sortKey="Leist, Sarah R" sort="Leist, Sarah R" uniqKey="Leist S" first="Sarah R" last="Leist">Sarah R. Leist</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Cockrell, Adam S" sort="Cockrell, Adam S" uniqKey="Cockrell A" first="Adam S" last="Cockrell">Adam S. Cockrell</name>
<affiliation wicri:level="2">
<nlm:affiliation>, Durham, NC, USA. adam.alphavirus@gmail.com.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>, Durham, NC</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31883094</idno>
<idno type="pmid">31883094</idno>
<idno type="doi">10.1007/978-1-0716-0211-9_12</idno>
<idno type="wicri:Area/PubMed/Corpus">000306</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000306</idno>
<idno type="wicri:Area/PubMed/Curation">000306</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000306</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000196</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000196</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Genetically Engineering a Susceptible Mouse Model for MERS-CoV-Induced Acute Respiratory Distress Syndrome.</title>
<author>
<name sortKey="Leist, Sarah R" sort="Leist, Sarah R" uniqKey="Leist S" first="Sarah R" last="Leist">Sarah R. Leist</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Cockrell, Adam S" sort="Cockrell, Adam S" uniqKey="Cockrell A" first="Adam S" last="Cockrell">Adam S. Cockrell</name>
<affiliation wicri:level="2">
<nlm:affiliation>, Durham, NC, USA. adam.alphavirus@gmail.com.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>, Durham, NC</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Methods in molecular biology (Clifton, N.J.)</title>
<idno type="eISSN">1940-6029</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Since 2012, monthly cases of Middle East respiratory syndrome coronavirus (MERS-CoV) continue to cause severe respiratory disease that is fatal in ~35% of diagnosed individuals. The ongoing threat to global public health and the need for novel therapeutic countermeasures have driven the development of animal models that can reproducibly replicate the pathology associated with MERS-CoV in human infections. The inability of MERS-CoV to replicate in the respiratory tracts of mice, hamsters, and ferrets stymied initial attempts to generate small animal models. Identification of human dipeptidyl peptidase IV (hDPP4) as the receptor for MERS-CoV infection opened the door for genetic engineering of mice. Precise molecular engineering of mouse DPP4 (mDPP4) with clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology maintained inherent expression profiles, and limited MERS-CoV susceptibility to tissues that naturally express mDPP4, notably the lower respiratory tract wherein MERS-CoV elicits severe pulmonary pathology. Here, we describe the generation of the 288-330
<sup>+/+</sup>
MERS-CoV mouse model in which mice were made susceptible to MERS-CoV by modifying two amino acids on mDPP4 (A288 and T330), and the use of adaptive evolution to generate novel MERS-CoV isolates that cause fatal respiratory disease. The 288-330
<sup>+/+</sup>
mice are currently being used to evaluate novel drug, antibody, and vaccine therapeutic countermeasures for MERS-CoV. The chapter starts with a historical perspective on the emergence of MERS-CoV and animal models evaluated for MERS-CoV pathogenesis, and then outlines the development of the 288-330
<sup>+/+</sup>
mouse model, assays for assessing a MERS-CoV pulmonary infection in a mouse model, and describes some of the challenges associated with using genetically engineered mice.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">31883094</PMID>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>18</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1940-6029</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>2099</Volume>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>Methods in molecular biology (Clifton, N.J.)</Title>
<ISOAbbreviation>Methods Mol. Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Genetically Engineering a Susceptible Mouse Model for MERS-CoV-Induced Acute Respiratory Distress Syndrome.</ArticleTitle>
<Pagination>
<MedlinePgn>137-159</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/978-1-0716-0211-9_12</ELocationID>
<Abstract>
<AbstractText>Since 2012, monthly cases of Middle East respiratory syndrome coronavirus (MERS-CoV) continue to cause severe respiratory disease that is fatal in ~35% of diagnosed individuals. The ongoing threat to global public health and the need for novel therapeutic countermeasures have driven the development of animal models that can reproducibly replicate the pathology associated with MERS-CoV in human infections. The inability of MERS-CoV to replicate in the respiratory tracts of mice, hamsters, and ferrets stymied initial attempts to generate small animal models. Identification of human dipeptidyl peptidase IV (hDPP4) as the receptor for MERS-CoV infection opened the door for genetic engineering of mice. Precise molecular engineering of mouse DPP4 (mDPP4) with clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology maintained inherent expression profiles, and limited MERS-CoV susceptibility to tissues that naturally express mDPP4, notably the lower respiratory tract wherein MERS-CoV elicits severe pulmonary pathology. Here, we describe the generation of the 288-330
<sup>+/+</sup>
MERS-CoV mouse model in which mice were made susceptible to MERS-CoV by modifying two amino acids on mDPP4 (A288 and T330), and the use of adaptive evolution to generate novel MERS-CoV isolates that cause fatal respiratory disease. The 288-330
<sup>+/+</sup>
mice are currently being used to evaluate novel drug, antibody, and vaccine therapeutic countermeasures for MERS-CoV. The chapter starts with a historical perspective on the emergence of MERS-CoV and animal models evaluated for MERS-CoV pathogenesis, and then outlines the development of the 288-330
<sup>+/+</sup>
mouse model, assays for assessing a MERS-CoV pulmonary infection in a mouse model, and describes some of the challenges associated with using genetically engineered mice.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Leist</LastName>
<ForeName>Sarah R</ForeName>
<Initials>SR</Initials>
<AffiliationInfo>
<Affiliation>Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cockrell</LastName>
<ForeName>Adam S</ForeName>
<Initials>AS</Initials>
<AffiliationInfo>
<Affiliation>, Durham, NC, USA. adam.alphavirus@gmail.com.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Methods Mol Biol</MedlineTA>
<NlmUniqueID>9214969</NlmUniqueID>
<ISSNLinking>1064-3745</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Cas9</Keyword>
<Keyword MajorTopicYN="Y">Clustered regularly interspaced short palindromic repeats</Keyword>
<Keyword MajorTopicYN="Y">Middle East respiratory syndrome coronavirus</Keyword>
<Keyword MajorTopicYN="Y">Mouse</Keyword>
<Keyword MajorTopicYN="Y">Pathogenesis</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>12</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>12</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>12</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31883094</ArticleId>
<ArticleId IdType="doi">10.1007/978-1-0716-0211-9_12</ArticleId>
<ArticleId IdType="pmc">PMC7123801</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Trends Genet. 2018 Oct;34(10):777-789</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30131185</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2017 Feb 9;376(6):584-594</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28177862</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Microbiol. 2016 Nov 28;2:16226</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27892925</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>mSphere. 2018 Dec 12;3(6):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30541777</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Oct 8;110(41):16598-603</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24062443</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Curr Opin Virol. 2017 Apr;23:1-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28214731</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2015 Apr;89(8):4696-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25653445</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2018 Apr;517:98-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29277291</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Antiviral Res. 2018 Nov;159:63-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30261226</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Methods Mol Biol. 2017;1602:59-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28508214</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2014 Aug;88(16):9220-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24899185</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2015 Dec 23;10(12):e0145561</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26701103</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>BMC Public Health. 2018 May 2;18(1):574</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29716568</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2019 Mar 5;93(6):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30626685</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Trends Immunol. 2008 Jun;29(6):295-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18456553</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2015 Apr;89(7):3659-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25589660</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mamm Genome. 2018 Aug;29(7-8):367-383</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30043100</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2016 Dec 16;91(1):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27795435</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Infect Dis. 2015 Dec 15;212(12):1904-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26198719</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Sci Transl Med. 2017 Jun 28;9(396):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28659436</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2015 Nov;485:422-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26342468</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Am J Pathol. 2016 Mar;186(3):652-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26857507</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Infect Dis. 2016 May 15;213(10):1557-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26941283</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 2014 Feb;95(Pt 2):408-412</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24197535</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Viruses. 2018 Aug 13;10(8):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30104551</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Jul 14;112(28):8738-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26124093</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Infect Dis. 2016 Mar 1;213(5):712-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26486634</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>mBio. 2018 Oct 30;9(5):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30377284</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2013 Mar 14;495(7440):251-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23486063</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Infect Dis. 2019 Feb 15;219(5):829-835</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30256968</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Methods Mol Biol. 2017;1642:1-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28815490</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Infect Dis. 2014 Jan 15;209(2):236-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24218506</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Clin Exp Immunol. 2016 Jul;185(1):1-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26919392</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Histopathology. 2018 Feb;72(3):516-524</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28858401</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2013 Apr 18;368(16):1560-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23550601</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Lancet Infect Dis. 2018 Aug;18(8):e217-e227</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29680581</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2015 Jun 26;10(6):e0131451</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26115403</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Apr 11;114(15):E3119-E3128</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28348219</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Pathog. 2014 Aug 21;10(8):e1004250</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25144235</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>mBio. 2017 Aug 22;8(4):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28830941</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Viruses. 2019 Apr 24;11(4):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31022948</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Virol. 2015 Nov;2(1):95-117</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26958908</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Oct 1;110(40):16157-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24043791</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2014 Feb;88(3):1834-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24257613</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Sci Rep. 2019 May 14;9(1):7385</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31089148</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Emerg Infect Dis. 2014 Dec;20(12):1999-2005</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25418529</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Apr 1;111(13):4970-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24599590</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell. 2013 Sep 12;154(6):1370-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23992847</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2015 Jun;89(11):6131-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25810539</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2014 May;88(9):4953-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24554656</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2017 Sep 12;91(19):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28747502</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell Res. 2013 Aug;23(8):986-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23835475</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Microbiol. 2019 Mar;17(3):181-192</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30531947</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2004 Oct 8;279(41):43330-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15213224</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Viruses. 2018 Aug 23;10(9):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30142928</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Sci Rep. 2018 Jul 16;8(1):10727</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30013082</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 1993 Jul 23;261(5120):466-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8101391</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Transbound Emerg Dis. 2017 Apr;64(2):344-353</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26256102</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2016 Mar;490:49-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26828465</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Methods Mol Biol. 2019;1960:23-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30798518</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Prev Med Public Health. 2015 Nov;48(6):274-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26639740</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2016 Sep 29;375(13):1303-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27682053</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>mSphere. 2017 Nov 15;2(6):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29152578</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2013 Jul 02;8(7):e69127</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23844250</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2013 Feb 15;339(6121):823-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23287722</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Pathog. 2017 Aug 17;13(8):e1006565</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28817732</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2016 Jan 1;351(6268):77-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26678878</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Emerg Microbes Infect. 2019;8(1):717-723</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31119984</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Med. 2004 Dec;10(12 Suppl):S88-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15577937</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2013 Feb 15;339(6121):819-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23287718</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Am J Infect Control. 2018 Feb;46(2):165-168</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28958446</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Health Secur. 2019 Mar/Apr;17(2):100-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30969152</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2014 May;88(9):5195-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24574399</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Caroline du Nord</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Caroline du Nord">
<name sortKey="Leist, Sarah R" sort="Leist, Sarah R" uniqKey="Leist S" first="Sarah R" last="Leist">Sarah R. Leist</name>
</region>
<name sortKey="Cockrell, Adam S" sort="Cockrell, Adam S" uniqKey="Cockrell A" first="Adam S" last="Cockrell">Adam S. Cockrell</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000196 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000196 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:31883094
   |texte=   Genetically Engineering a Susceptible Mouse Model for MERS-CoV-Induced Acute Respiratory Distress Syndrome.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:31883094" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021