Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Modulation of Toroidal Proteins Dynamics in Favor of Functional Mechanisms upon Ligand Binding.

Identifieur interne : 000141 ( PubMed/Checkpoint ); précédent : 000140; suivant : 000142

Modulation of Toroidal Proteins Dynamics in Favor of Functional Mechanisms upon Ligand Binding.

Auteurs : Hongchun Li [République populaire de Chine] ; Pemra Doruker [États-Unis] ; Guang Hu [République populaire de Chine] ; Ivet Bahar [États-Unis]

Source :

RBID : pubmed:32130874

Abstract

Toroidal proteins serve as molecular machines and play crucial roles in biological processes such as DNA replication and RNA transcription. Despite progress in the structural characterization of several toroidal proteins, we still lack a mechanistic understanding of the significance of their architecture, oligomerization states, and intermolecular interactions in defining their biological function. In this work, we analyze the collective dynamics of toroidal proteins with different oligomerization states, namely, dimeric and trimeric DNA sliding clamps, nucleocapsid proteins (4-, 5-, and 6-mers) and Trp RNA-binding attenuation proteins (11- and 12-mers). We observe common global modes, among which cooperative rolling stands out as a mechanism enabling DNA processivity, and clamshell motions as those underlying the opening/closure of the sliding clamps. Alterations in global dynamics due to complexation with DNA or the clamp loader are shown to assist in enhancing motions to enable robust function. The analysis provides new insights into the differentiation and enhancement of functional motions upon intersubunit and intermolecular interactions.

DOI: 10.1016/j.bpj.2020.01.046
PubMed: 32130874


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:32130874

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Modulation of Toroidal Proteins Dynamics in Favor of Functional Mechanisms upon Ligand Binding.</title>
<author>
<name sortKey="Li, Hongchun" sort="Li, Hongchun" uniqKey="Li H" first="Hongchun" last="Li">Hongchun Li</name>
<affiliation wicri:level="3">
<nlm:affiliation>Center for Systems Biology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China; Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Research Center for Computer-Aided Drug Discovery, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Center for Systems Biology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China; Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Research Center for Computer-Aided Drug Discovery, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen</wicri:regionArea>
<placeName>
<settlement type="city">Shenzhen</settlement>
<region type="province">Guangdong</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Doruker, Pemra" sort="Doruker, Pemra" uniqKey="Doruker P" first="Pemra" last="Doruker">Pemra Doruker</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Hu, Guang" sort="Hu, Guang" uniqKey="Hu G" first="Guang" last="Hu">Guang Hu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Systems Biology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China. Electronic address: huguang@suda.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Center for Systems Biology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou</wicri:regionArea>
<wicri:noRegion>Suzhou</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bahar, Ivet" sort="Bahar, Ivet" uniqKey="Bahar I" first="Ivet" last="Bahar">Ivet Bahar</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania. Electronic address: bahar@pitt.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32130874</idno>
<idno type="pmid">32130874</idno>
<idno type="doi">10.1016/j.bpj.2020.01.046</idno>
<idno type="wicri:Area/PubMed/Corpus">000193</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000193</idno>
<idno type="wicri:Area/PubMed/Curation">000193</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000193</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000141</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000141</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Modulation of Toroidal Proteins Dynamics in Favor of Functional Mechanisms upon Ligand Binding.</title>
<author>
<name sortKey="Li, Hongchun" sort="Li, Hongchun" uniqKey="Li H" first="Hongchun" last="Li">Hongchun Li</name>
<affiliation wicri:level="3">
<nlm:affiliation>Center for Systems Biology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China; Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Research Center for Computer-Aided Drug Discovery, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Center for Systems Biology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China; Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Research Center for Computer-Aided Drug Discovery, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen</wicri:regionArea>
<placeName>
<settlement type="city">Shenzhen</settlement>
<region type="province">Guangdong</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Doruker, Pemra" sort="Doruker, Pemra" uniqKey="Doruker P" first="Pemra" last="Doruker">Pemra Doruker</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Hu, Guang" sort="Hu, Guang" uniqKey="Hu G" first="Guang" last="Hu">Guang Hu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Systems Biology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China. Electronic address: huguang@suda.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Center for Systems Biology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou</wicri:regionArea>
<wicri:noRegion>Suzhou</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bahar, Ivet" sort="Bahar, Ivet" uniqKey="Bahar I" first="Ivet" last="Bahar">Ivet Bahar</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania. Electronic address: bahar@pitt.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh</wicri:cityArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Biophysical journal</title>
<idno type="eISSN">1542-0086</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Toroidal proteins serve as molecular machines and play crucial roles in biological processes such as DNA replication and RNA transcription. Despite progress in the structural characterization of several toroidal proteins, we still lack a mechanistic understanding of the significance of their architecture, oligomerization states, and intermolecular interactions in defining their biological function. In this work, we analyze the collective dynamics of toroidal proteins with different oligomerization states, namely, dimeric and trimeric DNA sliding clamps, nucleocapsid proteins (4-, 5-, and 6-mers) and Trp RNA-binding attenuation proteins (11- and 12-mers). We observe common global modes, among which cooperative rolling stands out as a mechanism enabling DNA processivity, and clamshell motions as those underlying the opening/closure of the sliding clamps. Alterations in global dynamics due to complexation with DNA or the clamp loader are shown to assist in enhancing motions to enable robust function. The analysis provides new insights into the differentiation and enhancement of functional motions upon intersubunit and intermolecular interactions.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Data-Review" Owner="NLM">
<PMID Version="1">32130874</PMID>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>11</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1542-0086</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>118</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2020</Year>
<Month>Apr</Month>
<Day>07</Day>
</PubDate>
</JournalIssue>
<Title>Biophysical journal</Title>
<ISOAbbreviation>Biophys. J.</ISOAbbreviation>
</Journal>
<ArticleTitle>Modulation of Toroidal Proteins Dynamics in Favor of Functional Mechanisms upon Ligand Binding.</ArticleTitle>
<Pagination>
<MedlinePgn>1782-1794</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S0006-3495(20)30130-2</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.bpj.2020.01.046</ELocationID>
<Abstract>
<AbstractText>Toroidal proteins serve as molecular machines and play crucial roles in biological processes such as DNA replication and RNA transcription. Despite progress in the structural characterization of several toroidal proteins, we still lack a mechanistic understanding of the significance of their architecture, oligomerization states, and intermolecular interactions in defining their biological function. In this work, we analyze the collective dynamics of toroidal proteins with different oligomerization states, namely, dimeric and trimeric DNA sliding clamps, nucleocapsid proteins (4-, 5-, and 6-mers) and Trp RNA-binding attenuation proteins (11- and 12-mers). We observe common global modes, among which cooperative rolling stands out as a mechanism enabling DNA processivity, and clamshell motions as those underlying the opening/closure of the sliding clamps. Alterations in global dynamics due to complexation with DNA or the clamp loader are shown to assist in enhancing motions to enable robust function. The analysis provides new insights into the differentiation and enhancement of functional motions upon intersubunit and intermolecular interactions.</AbstractText>
<CopyrightInformation>Copyright © 2020. Published by Elsevier Inc.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Hongchun</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Center for Systems Biology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China; Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Research Center for Computer-Aided Drug Discovery, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Doruker</LastName>
<ForeName>Pemra</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hu</LastName>
<ForeName>Guang</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Center for Systems Biology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China. Electronic address: huguang@suda.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bahar</LastName>
<ForeName>Ivet</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania. Electronic address: bahar@pitt.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>02</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Biophys J</MedlineTA>
<NlmUniqueID>0370626</NlmUniqueID>
<ISSNLinking>0006-3495</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>08</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>01</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>01</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pmc-release">
<Year>2021</Year>
<Month>04</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>3</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>3</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>3</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32130874</ArticleId>
<ArticleId IdType="pii">S0006-3495(20)30130-2</ArticleId>
<ArticleId IdType="doi">10.1016/j.bpj.2020.01.046</ArticleId>
<ArticleId IdType="pmc">PMC7136436</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Protein Eng. 2001 Jan;14(1):1-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11287673</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2000 Oct;1(1):22-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11413486</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2009 Jun 26;284(26):17700-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19411704</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Chem Inf Model. 2011 Sep 26;51(9):2361-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21870865</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Phys Rev Lett. 1996 Aug 26;77(9):1905-1908</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10063201</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Curr Opin Struct Biol. 2005 Oct;15(5):586-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16143512</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biophys J. 2008 May 1;94(9):3424-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18223005</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 1999 Sep 16;401(6750):235-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10499579</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Evol Appl. 2013 Apr;6(3):423-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23745135</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biophys J. 2001 Jan;80(1):505-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11159421</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Curr Opin Struct Biol. 2018 Jun;50:75-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29287233</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biophys J. 2006 Jul 15;91(2):421-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16807229</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biophys J. 2017 Aug 22;113(4):794-804</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28834716</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Aug 25;106(34):14349-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19706521</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochim Biophys Acta. 2015 May;1850(5):911-922</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25267310</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 2017 Aug 4;429(16):2571-2589</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28648616</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Phys Rev Lett. 2005 Nov 4;95(19):198103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16384030</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Struct Mol Biol. 2009 Dec;16(12):1224-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19898474</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Protein Sci. 2011 Oct;20(10):1645-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21826755</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Chem Theory Comput. 2016 Sep 13;12(9):4549-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27494296</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 2009 Mar 20;387(1):74-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19361435</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Fold Des. 1997;2(3):173-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9218955</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Biophys. 2010;39:23-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20192781</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biophys J. 2005 Jul;89(1):167-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15879477</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Structure. 2008 Feb;16(2):321-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18275822</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 1999 Jun 15;38(24):7696-709</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10387009</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 2019 Jun 28;431(14):2493-2510</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31051173</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biophys J. 2010 Jun 16;98(12):3062-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20550919</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2017 Jul 3;45(W1):W374-W380</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28472330</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2004 Jun 17;429(6993):724-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15201901</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Comput Biol. 2009 Sep;5(9):e1000496</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19730674</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Jun 29;107(26):11769-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20547879</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Bioinformatics. 2011 Jun 1;27(11):1575-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21471012</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell. 2008 Jan 11;132(1):43-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18191219</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2017 Sep 29;45(17):10178-10189</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28973453</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2006;34(20):6023-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17071716</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Graph Model. 2012 Apr;34:28-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22306411</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Pathog. 2011 May;7(5):e1002030</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21589902</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Phys Chem B. 2018 May 31;122(21):5409-5417</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29376347</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Biol Evol. 2015 Jan;32(1):132-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25312912</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):13801-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16169903</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2011 Dec 23;334(6063):1675-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22194570</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Chem Theory Comput. 2012 Jul 10;8(7):2424-2434</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22924033</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Oct 21;105(42):16148-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18849473</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biophys J. 2019 Aug 6;117(3):587-601</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31349986</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proteins. 1998 Nov 15;33(3):417-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9829700</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Chem Rev. 2010 Mar 10;110(3):1463-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19785456</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Elife. 2015 Oct 24;4:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26499492</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Bioinformatics. 2015 May 1;31(9):1487-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25568280</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biophys J. 1992 Feb;61(2):410-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1547329</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Arch Biochem Biophys. 2015 Feb 1;567:59-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25562404</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proteins. 2008 Jun;71(4):1995-2011</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18186477</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Front Mol Biosci. 2019 Sep 27;6:93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31681792</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Commun. 2017 Jan 10;8:13935</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28071730</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 1995 Apr 20;374(6524):693-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7715723</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2003 Jul;59(Pt 7):1192-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12832762</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proteins. 2011 Oct;79(10):2936-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21905116</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W24-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16845002</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Curr Biol. 1998 Jan 29;8(3):R83-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9443909</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2016 Jan 4;44(D1):D415-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26582920</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2016 May 05;11(5):e0154899</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27148748</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Chem Sci. 2018 Jun 18;9(28):6099-6106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30090298</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Structure. 2006 May;14(5):925-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16698553</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Chem Theory Comput. 2012 Sep 11;8(9):3257-3273</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23341755</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Comput Biol. 2011 Sep;7(9):e1002201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21980279</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Elife. 2016 Mar 07;5:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26949248</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2012;7(11):e50011</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23189176</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Adv Exp Med Biol. 2012;747:91-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22949113</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Curr Opin Struct Biol. 2015 Dec;35:17-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26254902</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell. 1996 Oct 18;87(2):297-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8861913</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell. 1992 May 1;69(3):425-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1349852</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Nov 20;109(47):19208-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23129612</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 2015 Jun 9;54(22):3543-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25982518</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2019 May;569(7756):438-442</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31068697</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Biol Evol. 2019 Sep 1;36(9):2053-2068</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31028708</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
<li>États-Unis</li>
</country>
<region>
<li>Guangdong</li>
<li>Pennsylvanie</li>
</region>
<settlement>
<li>Shenzhen</li>
</settlement>
</list>
<tree>
<country name="République populaire de Chine">
<region name="Guangdong">
<name sortKey="Li, Hongchun" sort="Li, Hongchun" uniqKey="Li H" first="Hongchun" last="Li">Hongchun Li</name>
</region>
<name sortKey="Hu, Guang" sort="Hu, Guang" uniqKey="Hu G" first="Guang" last="Hu">Guang Hu</name>
</country>
<country name="États-Unis">
<region name="Pennsylvanie">
<name sortKey="Doruker, Pemra" sort="Doruker, Pemra" uniqKey="Doruker P" first="Pemra" last="Doruker">Pemra Doruker</name>
</region>
<name sortKey="Bahar, Ivet" sort="Bahar, Ivet" uniqKey="Bahar I" first="Ivet" last="Bahar">Ivet Bahar</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000141 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000141 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:32130874
   |texte=   Modulation of Toroidal Proteins Dynamics in Favor of Functional Mechanisms upon Ligand Binding.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:32130874" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021