Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Modeling DNA affinity landscape through two-round support vector regression with weighted degree kernels

Identifieur interne : 000964 ( Pmc/Curation ); précédent : 000963; suivant : 000965

Modeling DNA affinity landscape through two-round support vector regression with weighted degree kernels

Auteurs : Xiaolei Wang ; Hiroyuki Kuwahara ; Xin Gao

Source :

RBID : PMC:4305984

Abstract

Background

A quantitative understanding of interactions between transcription factors (TFs) and their DNA binding sites is key to the rational design of gene regulatory networks. Recent advances in high-throughput technologies have enabled high-resolution measurements of protein-DNA binding affinity. Importantly, such experiments revealed the complex nature of TF-DNA interactions, whereby the effects of nucleotide changes on the binding affinity were observed to be context dependent. A systematic method to give high-quality estimates of such complex affinity landscapes is, thus, essential to the control of gene expression and the advance of synthetic biology.

Results

Here, we propose a two-round prediction method that is based on support vector regression (SVR) with weighted degree (WD) kernels. In the first round, a WD kernel with shifts and mismatches is used with SVR to detect the importance of subsequences with different lengths at different positions. The subsequences identified as important in the first round are then fed into a second WD kernel to fit the experimentally measured affinities. To our knowledge, this is the first attempt to increase the accuracy of the affinity prediction by applying two rounds of string kernels and by identifying a small number of crucial k-mers. The proposed method was tested by predicting the binding affinity landscape of Gcn4p in Saccharomyces cerevisiae using datasets from HiTS-FLIP. Our method explicitly identified important subsequences and showed significant performance improvements when compared with other state-of-the-art methods. Based on the identified important subsequences, we discovered two surprisingly stable 10-mers and one sensitive 10-mer which were not reported before. Further test on four other TFs in S. cerevisiae demonstrated the generality of our method.

Conclusion

We proposed in this paper a two-round method to quantitatively model the DNA binding affinity landscape. Since the ability to modify genetic parts to fine-tune gene expression rates is crucial to the design of biological systems, such a tool may play an important role in the success of synthetic biology going forward.


Url:
DOI: 10.1186/1752-0509-8-S5-S5
PubMed: 25605483
PubMed Central: 4305984

Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:4305984

Curation

No country items

Xiaolei Wang
<affiliation>
<nlm:aff id="I1">Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955 Thuwal, Kingdom of Saudi Arabia</nlm:aff>
<wicri:noCountry code="subfield">Kingdom of Saudi Arabia</wicri:noCountry>
</affiliation>
<affiliation>
<nlm:aff id="I2">Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), 23955 Thuwal, Kingdom of Saudi Arabia</nlm:aff>
<wicri:noCountry code="subfield">Kingdom of Saudi Arabia</wicri:noCountry>
</affiliation>
Xiaolei Wang
<affiliation>
<nlm:aff id="I2">Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), 23955 Thuwal, Kingdom of Saudi Arabia</nlm:aff>
<wicri:noCountry code="subfield">Kingdom of Saudi Arabia</wicri:noCountry>
</affiliation>
Hiroyuki Kuwahara
<affiliation>
<nlm:aff id="I1">Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955 Thuwal, Kingdom of Saudi Arabia</nlm:aff>
<wicri:noCountry code="subfield">Kingdom of Saudi Arabia</wicri:noCountry>
</affiliation>
<affiliation>
<nlm:aff id="I2">Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), 23955 Thuwal, Kingdom of Saudi Arabia</nlm:aff>
<wicri:noCountry code="subfield">Kingdom of Saudi Arabia</wicri:noCountry>
</affiliation>
Hiroyuki Kuwahara
<affiliation>
<nlm:aff id="I2">Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), 23955 Thuwal, Kingdom of Saudi Arabia</nlm:aff>
<wicri:noCountry code="subfield">Kingdom of Saudi Arabia</wicri:noCountry>
</affiliation>
Xin Gao
<affiliation>
<nlm:aff id="I1">Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955 Thuwal, Kingdom of Saudi Arabia</nlm:aff>
<wicri:noCountry code="subfield">Kingdom of Saudi Arabia</wicri:noCountry>
</affiliation>
<affiliation>
<nlm:aff id="I2">Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), 23955 Thuwal, Kingdom of Saudi Arabia</nlm:aff>
<wicri:noCountry code="subfield">Kingdom of Saudi Arabia</wicri:noCountry>
</affiliation>
Xin Gao
<affiliation>
<nlm:aff id="I2">Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), 23955 Thuwal, Kingdom of Saudi Arabia</nlm:aff>
<wicri:noCountry code="subfield">Kingdom of Saudi Arabia</wicri:noCountry>
</affiliation>

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Modeling DNA affinity landscape through two-round support vector regression with weighted degree kernels</title>
<author>
<name sortKey="Wang, Xiaolei" sort="Wang, Xiaolei" uniqKey="Wang X" first="Xiaolei" last="Wang">Xiaolei Wang</name>
<affiliation>
<nlm:aff id="I1">Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955 Thuwal, Kingdom of Saudi Arabia</nlm:aff>
<wicri:noCountry code="subfield">Kingdom of Saudi Arabia</wicri:noCountry>
</affiliation>
<affiliation>
<nlm:aff id="I2">Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), 23955 Thuwal, Kingdom of Saudi Arabia</nlm:aff>
<wicri:noCountry code="subfield">Kingdom of Saudi Arabia</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Kuwahara, Hiroyuki" sort="Kuwahara, Hiroyuki" uniqKey="Kuwahara H" first="Hiroyuki" last="Kuwahara">Hiroyuki Kuwahara</name>
<affiliation>
<nlm:aff id="I1">Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955 Thuwal, Kingdom of Saudi Arabia</nlm:aff>
<wicri:noCountry code="subfield">Kingdom of Saudi Arabia</wicri:noCountry>
</affiliation>
<affiliation>
<nlm:aff id="I2">Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), 23955 Thuwal, Kingdom of Saudi Arabia</nlm:aff>
<wicri:noCountry code="subfield">Kingdom of Saudi Arabia</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Gao, Xin" sort="Gao, Xin" uniqKey="Gao X" first="Xin" last="Gao">Xin Gao</name>
<affiliation>
<nlm:aff id="I1">Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955 Thuwal, Kingdom of Saudi Arabia</nlm:aff>
<wicri:noCountry code="subfield">Kingdom of Saudi Arabia</wicri:noCountry>
</affiliation>
<affiliation>
<nlm:aff id="I2">Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), 23955 Thuwal, Kingdom of Saudi Arabia</nlm:aff>
<wicri:noCountry code="subfield">Kingdom of Saudi Arabia</wicri:noCountry>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">25605483</idno>
<idno type="pmc">4305984</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4305984</idno>
<idno type="RBID">PMC:4305984</idno>
<idno type="doi">10.1186/1752-0509-8-S5-S5</idno>
<date when="2014">2014</date>
<idno type="wicri:Area/Pmc/Corpus">000964</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000964</idno>
<idno type="wicri:Area/Pmc/Curation">000964</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Curation">000964</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Modeling DNA affinity landscape through two-round support vector regression with weighted degree kernels</title>
<author>
<name sortKey="Wang, Xiaolei" sort="Wang, Xiaolei" uniqKey="Wang X" first="Xiaolei" last="Wang">Xiaolei Wang</name>
<affiliation>
<nlm:aff id="I1">Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955 Thuwal, Kingdom of Saudi Arabia</nlm:aff>
<wicri:noCountry code="subfield">Kingdom of Saudi Arabia</wicri:noCountry>
</affiliation>
<affiliation>
<nlm:aff id="I2">Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), 23955 Thuwal, Kingdom of Saudi Arabia</nlm:aff>
<wicri:noCountry code="subfield">Kingdom of Saudi Arabia</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Kuwahara, Hiroyuki" sort="Kuwahara, Hiroyuki" uniqKey="Kuwahara H" first="Hiroyuki" last="Kuwahara">Hiroyuki Kuwahara</name>
<affiliation>
<nlm:aff id="I1">Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955 Thuwal, Kingdom of Saudi Arabia</nlm:aff>
<wicri:noCountry code="subfield">Kingdom of Saudi Arabia</wicri:noCountry>
</affiliation>
<affiliation>
<nlm:aff id="I2">Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), 23955 Thuwal, Kingdom of Saudi Arabia</nlm:aff>
<wicri:noCountry code="subfield">Kingdom of Saudi Arabia</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Gao, Xin" sort="Gao, Xin" uniqKey="Gao X" first="Xin" last="Gao">Xin Gao</name>
<affiliation>
<nlm:aff id="I1">Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955 Thuwal, Kingdom of Saudi Arabia</nlm:aff>
<wicri:noCountry code="subfield">Kingdom of Saudi Arabia</wicri:noCountry>
</affiliation>
<affiliation>
<nlm:aff id="I2">Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), 23955 Thuwal, Kingdom of Saudi Arabia</nlm:aff>
<wicri:noCountry code="subfield">Kingdom of Saudi Arabia</wicri:noCountry>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC Systems Biology</title>
<idno type="eISSN">1752-0509</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<sec>
<title>Background</title>
<p>A quantitative understanding of interactions between transcription factors (TFs) and their DNA binding sites is key to the rational design of gene regulatory networks. Recent advances in high-throughput technologies have enabled high-resolution measurements of protein-DNA binding affinity. Importantly, such experiments revealed the complex nature of TF-DNA interactions, whereby the effects of nucleotide changes on the binding affinity were observed to be context dependent. A systematic method to give high-quality estimates of such complex affinity landscapes is, thus, essential to the control of gene expression and the advance of synthetic biology.</p>
</sec>
<sec>
<title>Results</title>
<p>Here, we propose a two-round prediction method that is based on support vector regression (SVR) with weighted degree (WD) kernels. In the first round, a WD kernel with shifts and mismatches is used with SVR to detect the importance of subsequences with different lengths at different positions. The subsequences identified as important in the first round are then fed into a second WD kernel to fit the experimentally measured affinities. To our knowledge, this is the first attempt to increase the accuracy of the affinity prediction by applying two rounds of string kernels and by identifying a small number of crucial k-mers. The proposed method was tested by predicting the binding affinity landscape of Gcn4p in
<italic>Saccharomyces cerevisiae </italic>
using datasets from HiTS-FLIP. Our method explicitly identified important subsequences and showed significant performance improvements when compared with other state-of-the-art methods. Based on the identified important subsequences, we discovered two surprisingly stable 10-mers and one sensitive 10-mer which were not reported before. Further test on four other TFs in
<italic>S. cerevisiae </italic>
demonstrated the generality of our method.</p>
</sec>
<sec>
<title>Conclusion</title>
<p>We proposed in this paper a two-round method to quantitatively model the DNA binding affinity landscape. Since the ability to modify genetic parts to fine-tune gene expression rates is crucial to the design of biological systems, such a tool may play an important role in the success of synthetic biology going forward.</p>
</sec>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Endy, D" uniqKey="Endy D">D Endy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Purnick, Pem" uniqKey="Purnick P">PEM Purnick</name>
</author>
<author>
<name sortKey="Weiss, R" uniqKey="Weiss R">R Weiss</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kuwahara, H" uniqKey="Kuwahara H">H Kuwahara</name>
</author>
<author>
<name sortKey="Fan, M" uniqKey="Fan M">M Fan</name>
</author>
<author>
<name sortKey="Wang, S" uniqKey="Wang S">S Wang</name>
</author>
<author>
<name sortKey="Gao, X" uniqKey="Gao X">X Gao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Alberts, B" uniqKey="Alberts B">B Alberts</name>
</author>
<author>
<name sortKey="Johnson, A" uniqKey="Johnson A">A Johnson</name>
</author>
<author>
<name sortKey="Lewis, J" uniqKey="Lewis J">J Lewis</name>
</author>
<author>
<name sortKey="Raff, M" uniqKey="Raff M">M Raff</name>
</author>
<author>
<name sortKey="Roberts, K" uniqKey="Roberts K">K Roberts</name>
</author>
<author>
<name sortKey="Walter, P" uniqKey="Walter P">P Walter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Berger, Mf" uniqKey="Berger M">MF Berger</name>
</author>
<author>
<name sortKey="Bulyk, Ml" uniqKey="Bulyk M">ML Bulyk</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gottardo, R" uniqKey="Gottardo R">R Gottardo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maerkl, Sj" uniqKey="Maerkl S">SJ Maerkl</name>
</author>
<author>
<name sortKey="Quake, Sr" uniqKey="Quake S">SR Quake</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fordyce, Pm" uniqKey="Fordyce P">PM Fordyce</name>
</author>
<author>
<name sortKey="Gerber, D" uniqKey="Gerber D">D Gerber</name>
</author>
<author>
<name sortKey="Tran, D" uniqKey="Tran D">D Tran</name>
</author>
<author>
<name sortKey="Zheng, J" uniqKey="Zheng J">J Zheng</name>
</author>
<author>
<name sortKey="Li, H" uniqKey="Li H">H Li</name>
</author>
<author>
<name sortKey="Derisi, Jl" uniqKey="Derisi J">JL DeRisi</name>
</author>
<author>
<name sortKey="Quake, Sr" uniqKey="Quake S">SR Quake</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nutiu, R" uniqKey="Nutiu R">R Nutiu</name>
</author>
<author>
<name sortKey="Friedman, Rc" uniqKey="Friedman R">RC Friedman</name>
</author>
<author>
<name sortKey="Luo, S" uniqKey="Luo S">S Luo</name>
</author>
<author>
<name sortKey="Khrebtukova, I" uniqKey="Khrebtukova I">I Khrebtukova</name>
</author>
<author>
<name sortKey="Silva, D" uniqKey="Silva D">D Silva</name>
</author>
<author>
<name sortKey="Li, R" uniqKey="Li R">R Li</name>
</author>
<author>
<name sortKey="Zhang, L" uniqKey="Zhang L">L Zhang</name>
</author>
<author>
<name sortKey="Schroth, Gp" uniqKey="Schroth G">GP Schroth</name>
</author>
<author>
<name sortKey="Burge, Cb" uniqKey="Burge C">CB Burge</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Alleyne, Tm" uniqKey="Alleyne T">TM Alleyne</name>
</author>
<author>
<name sortKey="Pe A Castillo, L" uniqKey="Pe A Castillo L">L Peña-Castillo</name>
</author>
<author>
<name sortKey="Badis, G" uniqKey="Badis G">G Badis</name>
</author>
<author>
<name sortKey="Talukder, S" uniqKey="Talukder S">S Talukder</name>
</author>
<author>
<name sortKey="Berger, Mf" uniqKey="Berger M">MF Berger</name>
</author>
<author>
<name sortKey="Gehrke, Ar" uniqKey="Gehrke A">AR Gehrke</name>
</author>
<author>
<name sortKey="Philippakis, Aa" uniqKey="Philippakis A">AA Philippakis</name>
</author>
<author>
<name sortKey="Bulyk, Ml" uniqKey="Bulyk M">ML Bulyk</name>
</author>
<author>
<name sortKey="Morris, Qd" uniqKey="Morris Q">QD Morris</name>
</author>
<author>
<name sortKey="Hughes, Tr" uniqKey="Hughes T">TR Hughes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Weirauch, Mt" uniqKey="Weirauch M">MT Weirauch</name>
</author>
<author>
<name sortKey="Cote, A" uniqKey="Cote A">A Cote</name>
</author>
<author>
<name sortKey="Norel, R" uniqKey="Norel R">R Norel</name>
</author>
<author>
<name sortKey="Annala, M" uniqKey="Annala M">M Annala</name>
</author>
<author>
<name sortKey="Zhao, Y" uniqKey="Zhao Y">Y Zhao</name>
</author>
<author>
<name sortKey="Riley, Tr" uniqKey="Riley T">TR Riley</name>
</author>
<author>
<name sortKey="Saez Rodriguez, J" uniqKey="Saez Rodriguez J">J Saez-Rodriguez</name>
</author>
<author>
<name sortKey="Cokelaer, T" uniqKey="Cokelaer T">T Cokelaer</name>
</author>
<author>
<name sortKey="Vedenko, A" uniqKey="Vedenko A">A Vedenko</name>
</author>
<author>
<name sortKey="Talukder, S" uniqKey="Talukder S">S Talukder</name>
</author>
<author>
<name sortKey="Dreamc" uniqKey="Dreamc">DREAMC</name>
</author>
<author>
<name sortKey="Bussemaker, Hj" uniqKey="Bussemaker H">HJ Bussemaker</name>
</author>
<author>
<name sortKey="Morris, Qd" uniqKey="Morris Q">QD Morris</name>
</author>
<author>
<name sortKey="Bulyk, Ml" uniqKey="Bulyk M">ML Bulyk</name>
</author>
<author>
<name sortKey="Stolovitzky, G" uniqKey="Stolovitzky G">G Stolovitzky</name>
</author>
<author>
<name sortKey="Hughes, Tr" uniqKey="Hughes T">TR Hughes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Berg, Og" uniqKey="Berg O">OG Berg</name>
</author>
<author>
<name sortKey="Von Hippel, Ph" uniqKey="Von Hippel P">PH von Hippel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stormo, Gd" uniqKey="Stormo G">GD Stormo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Benos, Pv" uniqKey="Benos P">PV Benos</name>
</author>
<author>
<name sortKey="Bulyk, Ml" uniqKey="Bulyk M">ML Bulyk</name>
</author>
<author>
<name sortKey="Stormo, Gd" uniqKey="Stormo G">GD Stormo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bulyk, Ml" uniqKey="Bulyk M">ML Bulyk</name>
</author>
<author>
<name sortKey="Johnson, Plf" uniqKey="Johnson P">PLF Johnson</name>
</author>
<author>
<name sortKey="Church, Gm" uniqKey="Church G">GM Church</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, Xs" uniqKey="Liu X">XS Liu</name>
</author>
<author>
<name sortKey="Brutlag, Dl" uniqKey="Brutlag D">DL Brutlag</name>
</author>
<author>
<name sortKey="Liu, Js" uniqKey="Liu J">JS Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Foat, Bc" uniqKey="Foat B">BC Foat</name>
</author>
<author>
<name sortKey="Morozov, Av" uniqKey="Morozov A">AV Morozov</name>
</author>
<author>
<name sortKey="Bussemaker, Hj" uniqKey="Bussemaker H">HJ Bussemaker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, X" uniqKey="Chen X">X Chen</name>
</author>
<author>
<name sortKey="Hughes, Tr" uniqKey="Hughes T">TR Hughes</name>
</author>
<author>
<name sortKey="Morris, Q" uniqKey="Morris Q">Q Morris</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Agius, P" uniqKey="Agius P">P Agius</name>
</author>
<author>
<name sortKey="Arvey, A" uniqKey="Arvey A">A Arvey</name>
</author>
<author>
<name sortKey="Chang, W" uniqKey="Chang W">W Chang</name>
</author>
<author>
<name sortKey="Noble, Ws" uniqKey="Noble W">WS Noble</name>
</author>
<author>
<name sortKey="Leslie, C" uniqKey="Leslie C">C Leslie</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, D" uniqKey="Lee D">D Lee</name>
</author>
<author>
<name sortKey="Karchin, R" uniqKey="Karchin R">R Karchin</name>
</author>
<author>
<name sortKey="Beer, Ma" uniqKey="Beer M">MA Beer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Annala, M" uniqKey="Annala M">M Annala</name>
</author>
<author>
<name sortKey="Laurila, K" uniqKey="Laurila K">K Laurila</name>
</author>
<author>
<name sortKey="L Hdesm Ki, H" uniqKey="L Hdesm Ki H">H Lähdesmäki</name>
</author>
<author>
<name sortKey="Nykter, M" uniqKey="Nykter M">M Nykter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vapnik, V" uniqKey="Vapnik V">V Vapnik</name>
</author>
<author>
<name sortKey="Chervonenkis, A" uniqKey="Chervonenkis A">A Chervonenkis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jebara, T" uniqKey="Jebara T">T Jebara</name>
</author>
<author>
<name sortKey="Kondor, R" uniqKey="Kondor R">R Kondor</name>
</author>
<author>
<name sortKey="Howard, A" uniqKey="Howard A">A Howard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xie, B" uniqKey="Xie B">B Xie</name>
</author>
<author>
<name sortKey="Jankovic, Br" uniqKey="Jankovic B">BR Jankovic</name>
</author>
<author>
<name sortKey="Bajic, Vb" uniqKey="Bajic V">VB Bajic</name>
</author>
<author>
<name sortKey="Song, L" uniqKey="Song L">L Song</name>
</author>
<author>
<name sortKey="Gao, X" uniqKey="Gao X">X Gao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Leslie, C" uniqKey="Leslie C">C Leslie</name>
</author>
<author>
<name sortKey="Eskin, E" uniqKey="Eskin E">E Eskin</name>
</author>
<author>
<name sortKey="Noble, Ws" uniqKey="Noble W">WS Noble</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="R Tsch, G" uniqKey="R Tsch G">G Rätsch</name>
</author>
<author>
<name sortKey="Sonnenburg, S" uniqKey="Sonnenburg S">S Sonnenburg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Leslie, Cs" uniqKey="Leslie C">CS Leslie</name>
</author>
<author>
<name sortKey="Eskin, E" uniqKey="Eskin E">E Eskin</name>
</author>
<author>
<name sortKey="Cohen, A" uniqKey="Cohen A">A Cohen</name>
</author>
<author>
<name sortKey="Weston, J" uniqKey="Weston J">J Weston</name>
</author>
<author>
<name sortKey="Noble, Ws" uniqKey="Noble W">WS Noble</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="R Tsch, G" uniqKey="R Tsch G">G Rätsch</name>
</author>
<author>
<name sortKey="Sonnenburg, S" uniqKey="Sonnenburg S">S Sonnenburg</name>
</author>
<author>
<name sortKey="Sch Lkopf, B" uniqKey="Sch Lkopf B">B Schälkopf</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mohapatra, A" uniqKey="Mohapatra A">A Mohapatra</name>
</author>
<author>
<name sortKey="Mishra, Pm" uniqKey="Mishra P">PM Mishra</name>
</author>
<author>
<name sortKey="Padhy, S" uniqKey="Padhy S">S Padhy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sonnenburg, S" uniqKey="Sonnenburg S">S Sonnenburg</name>
</author>
<author>
<name sortKey="Zien, A" uniqKey="Zien A">A Zien</name>
</author>
<author>
<name sortKey="Philips, P" uniqKey="Philips P">P Philips</name>
</author>
<author>
<name sortKey="R Tsch, G" uniqKey="R Tsch G">G Rätsch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Natarajan, K" uniqKey="Natarajan K">K Natarajan</name>
</author>
<author>
<name sortKey="Meyer, Mr" uniqKey="Meyer M">MR Meyer</name>
</author>
<author>
<name sortKey="Jackson, Bm" uniqKey="Jackson B">BM Jackson</name>
</author>
<author>
<name sortKey="Slade, D" uniqKey="Slade D">D Slade</name>
</author>
<author>
<name sortKey="Roberts, C" uniqKey="Roberts C">C Roberts</name>
</author>
<author>
<name sortKey="Hinnebusch, Ag" uniqKey="Hinnebusch A">AG Hinnebusch</name>
</author>
<author>
<name sortKey="Marton, Mj" uniqKey="Marton M">MJ Marton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hope, Ia" uniqKey="Hope I">IA Hope</name>
</author>
<author>
<name sortKey="Struhl, K" uniqKey="Struhl K">K Struhl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hill, De" uniqKey="Hill D">DE Hill</name>
</author>
<author>
<name sortKey="Hope, Ia" uniqKey="Hope I">IA Hope</name>
</author>
<author>
<name sortKey="Macke, Jp" uniqKey="Macke J">JP Macke</name>
</author>
<author>
<name sortKey="Struhl, K" uniqKey="Struhl K">K Struhl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sellers, Jw" uniqKey="Sellers J">JW Sellers</name>
</author>
<author>
<name sortKey="Vincent, Ac" uniqKey="Vincent A">AC Vincent</name>
</author>
<author>
<name sortKey="Struhl, K" uniqKey="Struhl K">K Struhl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hinnebusch, Ag" uniqKey="Hinnebusch A">AG Hinnebusch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhu, C" uniqKey="Zhu C">C Zhu</name>
</author>
<author>
<name sortKey="Byers, Kjrp" uniqKey="Byers K">KJRP Byers</name>
</author>
<author>
<name sortKey="Mccord, Rp" uniqKey="Mccord R">RP McCord</name>
</author>
<author>
<name sortKey="Shi, Z" uniqKey="Shi Z">Z Shi</name>
</author>
<author>
<name sortKey="Berger, Mf" uniqKey="Berger M">MF Berger</name>
</author>
<author>
<name sortKey="Newburger, De" uniqKey="Newburger D">DE Newburger</name>
</author>
<author>
<name sortKey="Saulrieta, K" uniqKey="Saulrieta K">K Saulrieta</name>
</author>
<author>
<name sortKey="Smith, Z" uniqKey="Smith Z">Z Smith</name>
</author>
<author>
<name sortKey="Shah, Mv" uniqKey="Shah M">MV Shah</name>
</author>
<author>
<name sortKey="Radhakrishnan, M" uniqKey="Radhakrishnan M">M Radhakrishnan</name>
</author>
<author>
<name sortKey="Philippakis, Aa" uniqKey="Philippakis A">AA Philippakis</name>
</author>
<author>
<name sortKey="Hu, Y" uniqKey="Hu Y">Y Hu</name>
</author>
<author>
<name sortKey="De Masi, F" uniqKey="De Masi F">F De Masi</name>
</author>
<author>
<name sortKey="Pacek, M" uniqKey="Pacek M">M Pacek</name>
</author>
<author>
<name sortKey="Rolfs, A" uniqKey="Rolfs A">A Rolfs</name>
</author>
<author>
<name sortKey="Murthy, T" uniqKey="Murthy T">T Murthy</name>
</author>
<author>
<name sortKey="Labaer, J" uniqKey="Labaer J">J Labaer</name>
</author>
<author>
<name sortKey="Bulyk, Ml" uniqKey="Bulyk M">ML Bulyk</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sonnenburg, S" uniqKey="Sonnenburg S">S Sonnenburg</name>
</author>
<author>
<name sortKey="Zien, A" uniqKey="Zien A">A Zien</name>
</author>
<author>
<name sortKey="R Tsch, G" uniqKey="R Tsch G">G Rätsch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sonnenburg, S" uniqKey="Sonnenburg S">S Sonnenburg</name>
</author>
<author>
<name sortKey="Schweikert, G" uniqKey="Schweikert G">G Schweikert</name>
</author>
<author>
<name sortKey="Philips, P" uniqKey="Philips P">P Philips</name>
</author>
<author>
<name sortKey="Behr, J" uniqKey="Behr J">J Behr</name>
</author>
<author>
<name sortKey="R Tsch, G" uniqKey="R Tsch G">G Rätsch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schweikert, G" uniqKey="Schweikert G">G Schweikert</name>
</author>
<author>
<name sortKey="Zien, A" uniqKey="Zien A">A Zien</name>
</author>
<author>
<name sortKey="Zeller, G" uniqKey="Zeller G">G Zeller</name>
</author>
<author>
<name sortKey="Behr, J" uniqKey="Behr J">J Behr</name>
</author>
<author>
<name sortKey="Dieterich, C" uniqKey="Dieterich C">C Dieterich</name>
</author>
<author>
<name sortKey="Ong, Cs" uniqKey="Ong C">CS Ong</name>
</author>
<author>
<name sortKey="Philips, P" uniqKey="Philips P">P Philips</name>
</author>
<author>
<name sortKey="De Bona, F" uniqKey="De Bona F">F De Bona</name>
</author>
<author>
<name sortKey="Hartmann, L" uniqKey="Hartmann L">L Hartmann</name>
</author>
<author>
<name sortKey="Bohlen, A" uniqKey="Bohlen A">A Bohlen</name>
</author>
<author>
<name sortKey="Kruger, N" uniqKey="Kruger N">N Krüger</name>
</author>
<author>
<name sortKey="Sonnenburg, S" uniqKey="Sonnenburg S">S Sonnenburg</name>
</author>
<author>
<name sortKey="R Tsch, G" uniqKey="R Tsch G">G Rätsch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Saeys, Y" uniqKey="Saeys Y">Y Saeys</name>
</author>
<author>
<name sortKey="Abeel, T" uniqKey="Abeel T">T Abeel</name>
</author>
<author>
<name sortKey="Degroeve, S" uniqKey="Degroeve S">S Degroeve</name>
</author>
<author>
<name sortKey="Van, Y De Peer" uniqKey="Van Y">Y de Peer Van</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article" xml:lang="en">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">BMC Syst Biol</journal-id>
<journal-id journal-id-type="iso-abbrev">BMC Syst Biol</journal-id>
<journal-title-group>
<journal-title>BMC Systems Biology</journal-title>
</journal-title-group>
<issn pub-type="epub">1752-0509</issn>
<publisher>
<publisher-name>BioMed Central</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">25605483</article-id>
<article-id pub-id-type="pmc">4305984</article-id>
<article-id pub-id-type="publisher-id">1752-0509-8-S5-S5</article-id>
<article-id pub-id-type="doi">10.1186/1752-0509-8-S5-S5</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Modeling DNA affinity landscape through two-round support vector regression with weighted degree kernels</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" id="A1">
<name>
<surname>Wang</surname>
<given-names>Xiaolei</given-names>
</name>
<xref ref-type="aff" rid="I1">1</xref>
<xref ref-type="aff" rid="I2">2</xref>
</contrib>
<contrib contrib-type="author" id="A2">
<name>
<surname>Kuwahara</surname>
<given-names>Hiroyuki</given-names>
</name>
<xref ref-type="aff" rid="I1">1</xref>
<xref ref-type="aff" rid="I2">2</xref>
</contrib>
<contrib contrib-type="author" corresp="yes" id="A3">
<name>
<surname>Gao</surname>
<given-names>Xin</given-names>
</name>
<xref ref-type="aff" rid="I1">1</xref>
<xref ref-type="aff" rid="I2">2</xref>
<email>xin.gao@kaust.edu.sa</email>
</contrib>
</contrib-group>
<aff id="I1">
<label>1</label>
Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955 Thuwal, Kingdom of Saudi Arabia</aff>
<aff id="I2">
<label>2</label>
Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), 23955 Thuwal, Kingdom of Saudi Arabia</aff>
<pub-date pub-type="collection">
<year>2014</year>
</pub-date>
<pub-date pub-type="epub">
<day>12</day>
<month>12</month>
<year>2014</year>
</pub-date>
<volume>8</volume>
<issue>Suppl 5</issue>
<supplement>
<named-content content-type="supplement-title">Proceedings of the 25th International Conference on Genome Informatics (GIW/ISCB-Asia): Systems Biology</named-content>
<named-content content-type="supplement-editor">Tetsuo Shibuya and Chuan Yi Tang</named-content>
<named-content content-type="supplement-sponsor">Publication of this supplement has not been supported by sponsorship. Information about the source of funding for publication charges can be found in the individual articles. Articles are based on presentations made at The 25th International Conference on Genome Informatics (GIW/ISCB-Asia). The peer review process was overseen by the Supplement Editors in accordance with BioMed Central's peer review guidelines for supplements. The Supplement Editors declare they have no competing interests.</named-content>
</supplement>
<fpage>S5</fpage>
<lpage>S5</lpage>
<permissions>
<copyright-statement>Copyright © 2014 Wang et al.; licensee BioMed Central Ltd.</copyright-statement>
<copyright-year>2014</copyright-year>
<copyright-holder>Wang et al.; licensee BioMed Central Ltd.</copyright-holder>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by/4.0">
<license-p>This is an Open Access article distributed under the terms of the Creative Commons Attribution License (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0">http://creativecommons.org/licenses/by/4.0</ext-link>
), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/publicdomain/zero/1.0/">http://creativecommons.org/publicdomain/zero/1.0/</ext-link>
) applies to the data made available in this article, unless otherwise stated.</license-p>
</license>
</permissions>
<self-uri xlink:href="http://www.biomedcentral.com/1752-0509/8/S5/S5"></self-uri>
<abstract>
<sec>
<title>Background</title>
<p>A quantitative understanding of interactions between transcription factors (TFs) and their DNA binding sites is key to the rational design of gene regulatory networks. Recent advances in high-throughput technologies have enabled high-resolution measurements of protein-DNA binding affinity. Importantly, such experiments revealed the complex nature of TF-DNA interactions, whereby the effects of nucleotide changes on the binding affinity were observed to be context dependent. A systematic method to give high-quality estimates of such complex affinity landscapes is, thus, essential to the control of gene expression and the advance of synthetic biology.</p>
</sec>
<sec>
<title>Results</title>
<p>Here, we propose a two-round prediction method that is based on support vector regression (SVR) with weighted degree (WD) kernels. In the first round, a WD kernel with shifts and mismatches is used with SVR to detect the importance of subsequences with different lengths at different positions. The subsequences identified as important in the first round are then fed into a second WD kernel to fit the experimentally measured affinities. To our knowledge, this is the first attempt to increase the accuracy of the affinity prediction by applying two rounds of string kernels and by identifying a small number of crucial k-mers. The proposed method was tested by predicting the binding affinity landscape of Gcn4p in
<italic>Saccharomyces cerevisiae </italic>
using datasets from HiTS-FLIP. Our method explicitly identified important subsequences and showed significant performance improvements when compared with other state-of-the-art methods. Based on the identified important subsequences, we discovered two surprisingly stable 10-mers and one sensitive 10-mer which were not reported before. Further test on four other TFs in
<italic>S. cerevisiae </italic>
demonstrated the generality of our method.</p>
</sec>
<sec>
<title>Conclusion</title>
<p>We proposed in this paper a two-round method to quantitatively model the DNA binding affinity landscape. Since the ability to modify genetic parts to fine-tune gene expression rates is crucial to the design of biological systems, such a tool may play an important role in the success of synthetic biology going forward.</p>
</sec>
</abstract>
<kwd-group>
<kwd>binding affinity</kwd>
<kwd>protein-DNA interaction</kwd>
<kwd>support vector regression</kwd>
<kwd>weighted degree kernel</kwd>
</kwd-group>
<conference>
<conf-date>15-17 December 2014</conf-date>
<conf-name>The 25th International Conference on Genome Informatics (GIW/ISCB-Asia)</conf-name>
<conf-loc>Tokyo, Japan</conf-loc>
</conference>
</article-meta>
</front>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Pmc/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000964 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd -nk 000964 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Pmc
   |étape=   Curation
   |type=    RBID
   |clé=     PMC:4305984
   |texte=   Modeling DNA affinity landscape through two-round support vector regression with weighted degree kernels
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Curation/RBID.i   -Sk "pubmed:25605483" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021