Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Optimization of de novo transcriptome assembly from high-throughput short read sequencing data improves functional annotation for non-model organisms

Identifieur interne : 000944 ( Pmc/Curation ); précédent : 000943; suivant : 000945

Optimization of de novo transcriptome assembly from high-throughput short read sequencing data improves functional annotation for non-model organisms

Auteurs : Berat Z. Haznedaroglu [États-Unis] ; Darryl Reeves [États-Unis] ; Hamid Rismani-Yazdi [États-Unis] ; Jordan Peccia [États-Unis]

Source :

RBID : PMC:3489510

Abstract

Background

The k-mer hash length is a key factor affecting the output of de novo transcriptome assembly packages using de Bruijn graph algorithms. Assemblies constructed with varying single k-mer choices might result in the loss of unique contiguous sequences (contigs) and relevant biological information. A common solution to this problem is the clustering of single k-mer assemblies. Even though annotation is one of the primary goals of a transcriptome assembly, the success of assembly strategies does not consider the impact of k-mer selection on the annotation output. This study provides an in-depth k-mer selection analysis that is focused on the degree of functional annotation achieved for a non-model organism where no reference genome information is available. Individual k-mers and clustered assemblies (CA) were considered using three representative software packages. Pair-wise comparison analyses (between individual k-mers and CAs) were produced to reveal missing Kyoto Encyclopedia of Genes and Genomes (KEGG) ortholog identifiers (KOIs), and to determine a strategy that maximizes the recovery of biological information in a de novo transcriptome assembly.

Results

Analyses of single k-mer assemblies resulted in the generation of various quantities of contigs and functional annotations within the selection window of k-mers (k-19 to k-63). For each k-mer in this window, generated assemblies contained certain unique contigs and KOIs that were not present in the other k-mer assemblies. Producing a non-redundant CA of k-mers 19 to 63 resulted in a more complete functional annotation than any single k-mer assembly. However, a fraction of unique annotations remained (~0.19 to 0.27% of total KOIs) in the assemblies of individual k-mers (k-19 to k-63) that were not present in the non-redundant CA. A workflow to recover these unique annotations is presented.

Conclusions

This study demonstrated that different k-mer choices result in various quantities of unique contigs per single k-mer assembly which affects biological information that is retrievable from the transcriptome. This undesirable effect can be minimized, but not eliminated, with clustering of multi-k assemblies with redundancy removal. The complete extraction of biological information in de novo transcriptomics studies requires both the production of a CA and efforts to identify unique contigs that are present in individual k-mer assemblies but not in the CA.


Url:
DOI: 10.1186/1471-2105-13-170
PubMed: 22808927
PubMed Central: 3489510

Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:3489510

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Optimization of
<italic>de novo</italic>
transcriptome assembly from high-throughput short read sequencing data improves functional annotation for non-model organisms</title>
<author>
<name sortKey="Haznedaroglu, Berat Z" sort="Haznedaroglu, Berat Z" uniqKey="Haznedaroglu B" first="Berat Z" last="Haznedaroglu">Berat Z. Haznedaroglu</name>
<affiliation wicri:level="1">
<nlm:aff id="I1">Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Reeves, Darryl" sort="Reeves, Darryl" uniqKey="Reeves D" first="Darryl" last="Reeves">Darryl Reeves</name>
<affiliation wicri:level="1">
<nlm:aff id="I2">Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Rismani Yazdi, Hamid" sort="Rismani Yazdi, Hamid" uniqKey="Rismani Yazdi H" first="Hamid" last="Rismani-Yazdi">Hamid Rismani-Yazdi</name>
<affiliation wicri:level="1">
<nlm:aff id="I1">Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="I3">Now at the Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Now at the Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Peccia, Jordan" sort="Peccia, Jordan" uniqKey="Peccia J" first="Jordan" last="Peccia">Jordan Peccia</name>
<affiliation wicri:level="1">
<nlm:aff id="I1">Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">22808927</idno>
<idno type="pmc">3489510</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3489510</idno>
<idno type="RBID">PMC:3489510</idno>
<idno type="doi">10.1186/1471-2105-13-170</idno>
<date when="2012">2012</date>
<idno type="wicri:Area/Pmc/Corpus">000944</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000944</idno>
<idno type="wicri:Area/Pmc/Curation">000944</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Curation">000944</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Optimization of
<italic>de novo</italic>
transcriptome assembly from high-throughput short read sequencing data improves functional annotation for non-model organisms</title>
<author>
<name sortKey="Haznedaroglu, Berat Z" sort="Haznedaroglu, Berat Z" uniqKey="Haznedaroglu B" first="Berat Z" last="Haznedaroglu">Berat Z. Haznedaroglu</name>
<affiliation wicri:level="1">
<nlm:aff id="I1">Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Reeves, Darryl" sort="Reeves, Darryl" uniqKey="Reeves D" first="Darryl" last="Reeves">Darryl Reeves</name>
<affiliation wicri:level="1">
<nlm:aff id="I2">Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Rismani Yazdi, Hamid" sort="Rismani Yazdi, Hamid" uniqKey="Rismani Yazdi H" first="Hamid" last="Rismani-Yazdi">Hamid Rismani-Yazdi</name>
<affiliation wicri:level="1">
<nlm:aff id="I1">Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="I3">Now at the Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Now at the Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Peccia, Jordan" sort="Peccia, Jordan" uniqKey="Peccia J" first="Jordan" last="Peccia">Jordan Peccia</name>
<affiliation wicri:level="1">
<nlm:aff id="I1">Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC Bioinformatics</title>
<idno type="eISSN">1471-2105</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<sec>
<title>Background</title>
<p>The
<italic>k</italic>
-mer hash length is a key factor affecting the output of
<italic>de novo</italic>
transcriptome assembly packages using de Bruijn graph algorithms. Assemblies constructed with varying single
<italic>k</italic>
-mer choices might result in the loss of unique contiguous sequences (contigs) and relevant biological information. A common solution to this problem is the clustering of single
<italic>k</italic>
-mer assemblies. Even though annotation is one of the primary goals of a transcriptome assembly, the success of assembly strategies does not consider the impact of
<italic>k</italic>
-mer selection on the annotation output. This study provides an in-depth
<italic>k</italic>
-mer selection analysis that is focused on the degree of functional annotation achieved for a non-model organism where no reference genome information is available. Individual
<italic>k</italic>
-mers and clustered assemblies (CA) were considered using three representative software packages. Pair-wise comparison analyses (between individual
<italic>k</italic>
-mers and CAs) were produced to reveal missing Kyoto Encyclopedia of Genes and Genomes (KEGG) ortholog identifiers (KOIs), and to determine a strategy that maximizes the recovery of biological information in a
<italic>de novo</italic>
transcriptome assembly.</p>
</sec>
<sec>
<title>Results</title>
<p>Analyses of single
<italic>k</italic>
-mer assemblies resulted in the generation of various quantities of contigs and functional annotations within the selection window of
<italic>k</italic>
-mers (
<italic>k-</italic>
19 to
<italic>k-</italic>
63). For each
<italic>k</italic>
-mer in this window, generated assemblies contained certain unique contigs and KOIs that were not present in the other
<italic>k</italic>
-mer assemblies. Producing a non-redundant CA of
<italic>k</italic>
-mers 19 to 63 resulted in a more complete functional annotation than any single
<italic>k</italic>
-mer assembly. However, a fraction of unique annotations remained (~0.19 to 0.27% of total KOIs) in the assemblies of individual
<italic>k</italic>
-mers (
<italic>k-</italic>
19 to
<italic>k-</italic>
63) that were not present in the non-redundant CA. A workflow to recover these unique annotations is presented.</p>
</sec>
<sec>
<title>Conclusions</title>
<p>This study demonstrated that different
<italic>k</italic>
-mer choices result in various quantities of unique contigs per single
<italic>k</italic>
-mer assembly which affects biological information that is retrievable from the transcriptome. This undesirable effect can be minimized, but not eliminated, with clustering of multi-
<italic>k</italic>
assemblies with redundancy removal. The complete extraction of biological information in
<italic>de novo</italic>
transcriptomics studies requires both the production of a CA and efforts to identify unique contigs that are present in individual
<italic>k</italic>
-mer assemblies but not in the CA.</p>
</sec>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Iyer, Mk" uniqKey="Iyer M">MK Iyer</name>
</author>
<author>
<name sortKey="Chinnaiyan, Am" uniqKey="Chinnaiyan A">AM Chinnaiyan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Martin, Ja" uniqKey="Martin J">JA Martin</name>
</author>
<author>
<name sortKey="Wang, Z" uniqKey="Wang Z">Z Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Bruijn, Ng" uniqKey="De Bruijn N">NG De Bruijn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schulz, Mh" uniqKey="Schulz M">MH Schulz</name>
</author>
<author>
<name sortKey="Zerbino, Dr" uniqKey="Zerbino D">DR Zerbino</name>
</author>
<author>
<name sortKey="Vingron, M" uniqKey="Vingron M">M Vingron</name>
</author>
<author>
<name sortKey="Birney, E" uniqKey="Birney E">E Birney</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Robertson, G" uniqKey="Robertson G">G Robertson</name>
</author>
<author>
<name sortKey="Schein, J" uniqKey="Schein J">J Schein</name>
</author>
<author>
<name sortKey="Chiu, R" uniqKey="Chiu R">R Chiu</name>
</author>
<author>
<name sortKey="Corbett, R" uniqKey="Corbett R">R Corbett</name>
</author>
<author>
<name sortKey="Field, M" uniqKey="Field M">M Field</name>
</author>
<author>
<name sortKey="Jackman, Sd" uniqKey="Jackman S">SD Jackman</name>
</author>
<author>
<name sortKey="Mungall, K" uniqKey="Mungall K">K Mungall</name>
</author>
<author>
<name sortKey="Lee, S" uniqKey="Lee S">S Lee</name>
</author>
<author>
<name sortKey="Okada, Hm" uniqKey="Okada H">HM Okada</name>
</author>
<author>
<name sortKey="Qian, Jq" uniqKey="Qian J">JQ Qian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, R" uniqKey="Li R">R Li</name>
</author>
<author>
<name sortKey="Zhu, H" uniqKey="Zhu H">H Zhu</name>
</author>
<author>
<name sortKey="Ruan, J" uniqKey="Ruan J">J Ruan</name>
</author>
<author>
<name sortKey="Qian, W" uniqKey="Qian W">W Qian</name>
</author>
<author>
<name sortKey="Fang, X" uniqKey="Fang X">X Fang</name>
</author>
<author>
<name sortKey="Shi, Z" uniqKey="Shi Z">Z Shi</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y Li</name>
</author>
<author>
<name sortKey="Li, S" uniqKey="Li S">S Li</name>
</author>
<author>
<name sortKey="Shan, G" uniqKey="Shan G">G Shan</name>
</author>
<author>
<name sortKey="Kristiansen, K" uniqKey="Kristiansen K">K Kristiansen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Grabherr, Mg" uniqKey="Grabherr M">MG Grabherr</name>
</author>
<author>
<name sortKey="Haas, Bj" uniqKey="Haas B">BJ Haas</name>
</author>
<author>
<name sortKey="Yassour, M" uniqKey="Yassour M">M Yassour</name>
</author>
<author>
<name sortKey="Levin, Jz" uniqKey="Levin J">JZ Levin</name>
</author>
<author>
<name sortKey="Thompson, Da" uniqKey="Thompson D">DA Thompson</name>
</author>
<author>
<name sortKey="Amit, I" uniqKey="Amit I">I Amit</name>
</author>
<author>
<name sortKey="Adiconis, X" uniqKey="Adiconis X">X Adiconis</name>
</author>
<author>
<name sortKey="Fan, L" uniqKey="Fan L">L Fan</name>
</author>
<author>
<name sortKey="Raychowdhury, R" uniqKey="Raychowdhury R">R Raychowdhury</name>
</author>
<author>
<name sortKey="Zeng, Q" uniqKey="Zeng Q">Q Zeng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bao, S" uniqKey="Bao S">S Bao</name>
</author>
<author>
<name sortKey="Jiang, R" uniqKey="Jiang R">R Jiang</name>
</author>
<author>
<name sortKey="Kwan, W" uniqKey="Kwan W">W Kwan</name>
</author>
<author>
<name sortKey="Wang, B" uniqKey="Wang B">B Wang</name>
</author>
<author>
<name sortKey="Ma, X" uniqKey="Ma X">X Ma</name>
</author>
<author>
<name sortKey="Song, Y Q" uniqKey="Song Y">Y-Q Song</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Narzisi, G" uniqKey="Narzisi G">G Narzisi</name>
</author>
<author>
<name sortKey="Mishra, B" uniqKey="Mishra B">B Mishra</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, W" uniqKey="Zhang W">W Zhang</name>
</author>
<author>
<name sortKey="Chen, J" uniqKey="Chen J">J Chen</name>
</author>
<author>
<name sortKey="Yang, Y" uniqKey="Yang Y">Y Yang</name>
</author>
<author>
<name sortKey="Tang, Y" uniqKey="Tang Y">Y Tang</name>
</author>
<author>
<name sortKey="Shang, J" uniqKey="Shang J">J Shang</name>
</author>
<author>
<name sortKey="Shen, B" uniqKey="Shen B">B Shen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zerbino, Dr" uniqKey="Zerbino D">DR Zerbino</name>
</author>
<author>
<name sortKey="Birney, E" uniqKey="Birney E">E Birney</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Surget Groba, Y" uniqKey="Surget Groba Y">Y Surget-Groba</name>
</author>
<author>
<name sortKey="Montoya Burgos, Ji" uniqKey="Montoya Burgos J">JI Montoya-Burgos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, W" uniqKey="Li W">W Li</name>
</author>
<author>
<name sortKey="Godzik, A" uniqKey="Godzik A">A Godzik</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kurtz, S" uniqKey="Kurtz S">S Kurtz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pertea, G" uniqKey="Pertea G">G Pertea</name>
</author>
<author>
<name sortKey="Huang, X" uniqKey="Huang X">X Huang</name>
</author>
<author>
<name sortKey="Liang, F" uniqKey="Liang F">F Liang</name>
</author>
<author>
<name sortKey="Antonescu, V" uniqKey="Antonescu V">V Antonescu</name>
</author>
<author>
<name sortKey="Sultana, R" uniqKey="Sultana R">R Sultana</name>
</author>
<author>
<name sortKey="Karamycheva, S" uniqKey="Karamycheva S">S Karamycheva</name>
</author>
<author>
<name sortKey="Lee, Y" uniqKey="Lee Y">Y Lee</name>
</author>
<author>
<name sortKey="White, J" uniqKey="White J">J White</name>
</author>
<author>
<name sortKey="Cheung, F" uniqKey="Cheung F">F Cheung</name>
</author>
<author>
<name sortKey="Parvizi, B" uniqKey="Parvizi B">B Parvizi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Griffiths, M" uniqKey="Griffiths M">M Griffiths</name>
</author>
<author>
<name sortKey="Harrison, S" uniqKey="Harrison S">S Harrison</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y Li</name>
</author>
<author>
<name sortKey="Horsman, M" uniqKey="Horsman M">M Horsman</name>
</author>
<author>
<name sortKey="Wang, B" uniqKey="Wang B">B Wang</name>
</author>
<author>
<name sortKey="Wu, N" uniqKey="Wu N">N Wu</name>
</author>
<author>
<name sortKey="Lan, C" uniqKey="Lan C">C Lan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pruvost, J" uniqKey="Pruvost J">J Pruvost</name>
</author>
<author>
<name sortKey="Van Vooren, G" uniqKey="Van Vooren G">G Van Vooren</name>
</author>
<author>
<name sortKey="Cogne, G" uniqKey="Cogne G">G Cogne</name>
</author>
<author>
<name sortKey="Legrand, J" uniqKey="Legrand J">J Legrand</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Andrews, S" uniqKey="Andrews S">S Andrews</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cox, M" uniqKey="Cox M">M Cox</name>
</author>
<author>
<name sortKey="Peterson, D" uniqKey="Peterson D">D Peterson</name>
</author>
<author>
<name sortKey="Biggs, P" uniqKey="Biggs P">P Biggs</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Garg, R" uniqKey="Garg R">R Garg</name>
</author>
<author>
<name sortKey="Patel, Rk" uniqKey="Patel R">RK Patel</name>
</author>
<author>
<name sortKey="Tyagi, Ak" uniqKey="Tyagi A">AK Tyagi</name>
</author>
<author>
<name sortKey="Jain, M" uniqKey="Jain M">M Jain</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Feldmeyer, B" uniqKey="Feldmeyer B">B Feldmeyer</name>
</author>
<author>
<name sortKey="Wheat, C" uniqKey="Wheat C">C Wheat</name>
</author>
<author>
<name sortKey="Krezdorn, N" uniqKey="Krezdorn N">N Krezdorn</name>
</author>
<author>
<name sortKey="Rotter, B" uniqKey="Rotter B">B Rotter</name>
</author>
<author>
<name sortKey="Pfenninger, M" uniqKey="Pfenninger M">M Pfenninger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moriya, Y" uniqKey="Moriya Y">Y Moriya</name>
</author>
<author>
<name sortKey="Itoh, M" uniqKey="Itoh M">M Itoh</name>
</author>
<author>
<name sortKey="Okuda, S" uniqKey="Okuda S">S Okuda</name>
</author>
<author>
<name sortKey="Yoshizawa, Ac" uniqKey="Yoshizawa A">AC Yoshizawa</name>
</author>
<author>
<name sortKey="Kanehisa, M" uniqKey="Kanehisa M">M Kanehisa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Aoki Kinoshita, Kf" uniqKey="Aoki Kinoshita K">KF Aoki-Kinoshita</name>
</author>
<author>
<name sortKey="Kanehisa, M" uniqKey="Kanehisa M">M Kanehisa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Langmead, B" uniqKey="Langmead B">B Langmead</name>
</author>
<author>
<name sortKey="Trapnell, C" uniqKey="Trapnell C">C Trapnell</name>
</author>
<author>
<name sortKey="Pop, M" uniqKey="Pop M">M Pop</name>
</author>
<author>
<name sortKey="Salzberg, S" uniqKey="Salzberg S">S Salzberg</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article" xml:lang="en">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">BMC Bioinformatics</journal-id>
<journal-id journal-id-type="iso-abbrev">BMC Bioinformatics</journal-id>
<journal-title-group>
<journal-title>BMC Bioinformatics</journal-title>
</journal-title-group>
<issn pub-type="epub">1471-2105</issn>
<publisher>
<publisher-name>BioMed Central</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">22808927</article-id>
<article-id pub-id-type="pmc">3489510</article-id>
<article-id pub-id-type="publisher-id">1471-2105-13-170</article-id>
<article-id pub-id-type="doi">10.1186/1471-2105-13-170</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Optimization of
<italic>de novo</italic>
transcriptome assembly from high-throughput short read sequencing data improves functional annotation for non-model organisms</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" id="A1">
<name>
<surname>Haznedaroglu</surname>
<given-names>Berat Z</given-names>
</name>
<xref ref-type="aff" rid="I1">1</xref>
<email>berat.haznedaroglu@yale.edu</email>
</contrib>
<contrib contrib-type="author" id="A2">
<name>
<surname>Reeves</surname>
<given-names>Darryl</given-names>
</name>
<xref ref-type="aff" rid="I2">2</xref>
<email>darryl.reeves@yale.edu</email>
</contrib>
<contrib contrib-type="author" id="A3">
<name>
<surname>Rismani-Yazdi</surname>
<given-names>Hamid</given-names>
</name>
<xref ref-type="aff" rid="I1">1</xref>
<xref ref-type="aff" rid="I3">3</xref>
<email>hrismani@mit.edu</email>
</contrib>
<contrib contrib-type="author" corresp="yes" id="A4">
<name>
<surname>Peccia</surname>
<given-names>Jordan</given-names>
</name>
<xref ref-type="aff" rid="I1">1</xref>
<email>jordan.peccia@yale.edu</email>
</contrib>
</contrib-group>
<aff id="I1">
<label>1</label>
Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511, USA</aff>
<aff id="I2">
<label>2</label>
Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511, USA</aff>
<aff id="I3">
<label>3</label>
Now at the Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA</aff>
<pub-date pub-type="collection">
<year>2012</year>
</pub-date>
<pub-date pub-type="epub">
<day>18</day>
<month>7</month>
<year>2012</year>
</pub-date>
<volume>13</volume>
<fpage>170</fpage>
<lpage>170</lpage>
<history>
<date date-type="received">
<day>25</day>
<month>2</month>
<year>2012</year>
</date>
<date date-type="accepted">
<day>26</day>
<month>6</month>
<year>2012</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright ©2012 Haznedaroglu et al.; licensee BioMed Central Ltd.</copyright-statement>
<copyright-year>2012</copyright-year>
<copyright-holder>Haznedaroglu et al.; licensee BioMed Central Ltd.</copyright-holder>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by/2.0">
<license-p>This is an Open Access article distributed under the terms of the Creative Commons Attribution License (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/2.0">http://creativecommons.org/licenses/by/2.0</ext-link>
), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</license-p>
</license>
</permissions>
<self-uri xlink:href="http://www.biomedcentral.com/1471-2105/13/170"></self-uri>
<abstract>
<sec>
<title>Background</title>
<p>The
<italic>k</italic>
-mer hash length is a key factor affecting the output of
<italic>de novo</italic>
transcriptome assembly packages using de Bruijn graph algorithms. Assemblies constructed with varying single
<italic>k</italic>
-mer choices might result in the loss of unique contiguous sequences (contigs) and relevant biological information. A common solution to this problem is the clustering of single
<italic>k</italic>
-mer assemblies. Even though annotation is one of the primary goals of a transcriptome assembly, the success of assembly strategies does not consider the impact of
<italic>k</italic>
-mer selection on the annotation output. This study provides an in-depth
<italic>k</italic>
-mer selection analysis that is focused on the degree of functional annotation achieved for a non-model organism where no reference genome information is available. Individual
<italic>k</italic>
-mers and clustered assemblies (CA) were considered using three representative software packages. Pair-wise comparison analyses (between individual
<italic>k</italic>
-mers and CAs) were produced to reveal missing Kyoto Encyclopedia of Genes and Genomes (KEGG) ortholog identifiers (KOIs), and to determine a strategy that maximizes the recovery of biological information in a
<italic>de novo</italic>
transcriptome assembly.</p>
</sec>
<sec>
<title>Results</title>
<p>Analyses of single
<italic>k</italic>
-mer assemblies resulted in the generation of various quantities of contigs and functional annotations within the selection window of
<italic>k</italic>
-mers (
<italic>k-</italic>
19 to
<italic>k-</italic>
63). For each
<italic>k</italic>
-mer in this window, generated assemblies contained certain unique contigs and KOIs that were not present in the other
<italic>k</italic>
-mer assemblies. Producing a non-redundant CA of
<italic>k</italic>
-mers 19 to 63 resulted in a more complete functional annotation than any single
<italic>k</italic>
-mer assembly. However, a fraction of unique annotations remained (~0.19 to 0.27% of total KOIs) in the assemblies of individual
<italic>k</italic>
-mers (
<italic>k-</italic>
19 to
<italic>k-</italic>
63) that were not present in the non-redundant CA. A workflow to recover these unique annotations is presented.</p>
</sec>
<sec>
<title>Conclusions</title>
<p>This study demonstrated that different
<italic>k</italic>
-mer choices result in various quantities of unique contigs per single
<italic>k</italic>
-mer assembly which affects biological information that is retrievable from the transcriptome. This undesirable effect can be minimized, but not eliminated, with clustering of multi-
<italic>k</italic>
assemblies with redundancy removal. The complete extraction of biological information in
<italic>de novo</italic>
transcriptomics studies requires both the production of a CA and efforts to identify unique contigs that are present in individual
<italic>k</italic>
-mer assemblies but not in the CA.</p>
</sec>
</abstract>
</article-meta>
</front>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Pmc/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000944 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd -nk 000944 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Pmc
   |étape=   Curation
   |type=    RBID
   |clé=     PMC:3489510
   |texte=   Optimization of de novo transcriptome assembly from high-throughput short read sequencing data improves functional annotation for non-model organisms
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Curation/RBID.i   -Sk "pubmed:22808927" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021