Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Using the spike protein feature to predict infection risk and monitor the evolutionary dynamic of coronavirus

Identifieur interne : 000379 ( Pmc/Curation ); précédent : 000378; suivant : 000380

Using the spike protein feature to predict infection risk and monitor the evolutionary dynamic of coronavirus

Auteurs : Xiao-Li Qiang ; Peng Xu ; Gang Fang ; Wen-Bin Liu ; Zheng Kou

Source :

RBID : PMC:7093988

Abstract

Background

Coronavirus can cross the species barrier and infect humans with a severe respiratory syndrome. SARS-CoV-2 with potential origin of bat is still circulating in China. In this study, a prediction model is proposed to evaluate the infection risk of non-human-origin coronavirus for early warning.

Methods

The spike protein sequences of 2666 coronaviruses were collected from 2019 Novel Coronavirus Resource (2019nCoVR) Database of China National Genomics Data Center on Jan 29, 2020. A total of 507 human-origin viruses were regarded as positive samples, whereas 2159 non-human-origin viruses were regarded as negative. To capture the key information of the spike protein, three feature encoding algorithms (amino acid composition, AAC; parallel correlation-based pseudo-amino-acid composition, PC-PseAAC and G-gap dipeptide composition, GGAP) were used to train 41 random forest models. The optimal feature with the best performance was identified by the multidimensional scaling method, which was used to explore the pattern of human coronavirus.

Results

The 10-fold cross-validation results showed that well performance was achieved with the use of the GGAP (g = 3) feature. The predictive model achieved the maximum ACC of 98.18% coupled with the Matthews correlation coefficient (MCC) of 0.9638. Seven clusters for human coronaviruses (229E, NL63, OC43, HKU1, MERS-CoV, SARS-CoV, and SARS-CoV-2) were found. The cluster for SARS-CoV-2 was very close to that for SARS-CoV, which suggests that both of viruses have the same human receptor (angiotensin converting enzyme II). The big gap in the distance curve suggests that the origin of SARS-CoV-2 is not clear and further surveillance in the field should be made continuously. The smooth distance curve for SARS-CoV suggests that its close relatives still exist in nature and public health is challenged as usual.

Conclusions

The optimal feature (GGAP, g = 3) performed well in terms of predicting infection risk and could be used to explore the evolutionary dynamic in a simple, fast and large-scale manner. The study may be beneficial for the surveillance of the genome mutation of coronavirus in the field.


Url:
DOI: 10.1186/s40249-020-00649-8
PubMed: 32209118
PubMed Central: 7093988

Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:7093988

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Using the spike protein feature to predict infection risk and monitor the evolutionary dynamic of coronavirus</title>
<author>
<name sortKey="Qiang, Xiao Li" sort="Qiang, Xiao Li" uniqKey="Qiang X" first="Xiao-Li" last="Qiang">Xiao-Li Qiang</name>
<affiliation>
<nlm:aff id="Aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Xu, Peng" sort="Xu, Peng" uniqKey="Xu P" first="Peng" last="Xu">Peng Xu</name>
<affiliation>
<nlm:aff id="Aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Fang, Gang" sort="Fang, Gang" uniqKey="Fang G" first="Gang" last="Fang">Gang Fang</name>
<affiliation>
<nlm:aff id="Aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Liu, Wen Bin" sort="Liu, Wen Bin" uniqKey="Liu W" first="Wen-Bin" last="Liu">Wen-Bin Liu</name>
<affiliation>
<nlm:aff id="Aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kou, Zheng" sort="Kou, Zheng" uniqKey="Kou Z" first="Zheng" last="Kou">Zheng Kou</name>
<affiliation>
<nlm:aff id="Aff1"></nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">32209118</idno>
<idno type="pmc">7093988</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7093988</idno>
<idno type="RBID">PMC:7093988</idno>
<idno type="doi">10.1186/s40249-020-00649-8</idno>
<date when="2020">2020</date>
<idno type="wicri:Area/Pmc/Corpus">000379</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000379</idno>
<idno type="wicri:Area/Pmc/Curation">000379</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Curation">000379</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Using the spike protein feature to predict infection risk and monitor the evolutionary dynamic of coronavirus</title>
<author>
<name sortKey="Qiang, Xiao Li" sort="Qiang, Xiao Li" uniqKey="Qiang X" first="Xiao-Li" last="Qiang">Xiao-Li Qiang</name>
<affiliation>
<nlm:aff id="Aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Xu, Peng" sort="Xu, Peng" uniqKey="Xu P" first="Peng" last="Xu">Peng Xu</name>
<affiliation>
<nlm:aff id="Aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Fang, Gang" sort="Fang, Gang" uniqKey="Fang G" first="Gang" last="Fang">Gang Fang</name>
<affiliation>
<nlm:aff id="Aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Liu, Wen Bin" sort="Liu, Wen Bin" uniqKey="Liu W" first="Wen-Bin" last="Liu">Wen-Bin Liu</name>
<affiliation>
<nlm:aff id="Aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kou, Zheng" sort="Kou, Zheng" uniqKey="Kou Z" first="Zheng" last="Kou">Zheng Kou</name>
<affiliation>
<nlm:aff id="Aff1"></nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Infectious Diseases of Poverty</title>
<idno type="ISSN">2095-5162</idno>
<idno type="eISSN">2049-9957</idno>
<imprint>
<date when="2020">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<sec>
<title>Background</title>
<p id="Par1">Coronavirus can cross the species barrier and infect humans with a severe respiratory syndrome. SARS-CoV-2 with potential origin of bat is still circulating in China. In this study, a prediction model is proposed to evaluate the infection risk of non-human-origin coronavirus for early warning.</p>
</sec>
<sec>
<title>Methods</title>
<p id="Par2">The spike protein sequences of 2666 coronaviruses were collected from 2019 Novel Coronavirus Resource (2019nCoVR) Database of China National Genomics Data Center on Jan 29, 2020. A total of 507 human-origin viruses were regarded as positive samples, whereas 2159 non-human-origin viruses were regarded as negative. To capture the key information of the spike protein, three feature encoding algorithms (amino acid composition, AAC; parallel correlation-based pseudo-amino-acid composition, PC-PseAAC and G-gap dipeptide composition, GGAP) were used to train 41 random forest models. The optimal feature with the best performance was identified by the multidimensional scaling method, which was used to explore the pattern of human coronavirus.</p>
</sec>
<sec>
<title>Results</title>
<p id="Par3">The 10-fold cross-validation results showed that well performance was achieved with the use of the GGAP (g = 3) feature. The predictive model achieved the maximum ACC of 98.18% coupled with the Matthews correlation coefficient (MCC) of 0.9638. Seven clusters for human coronaviruses (229E, NL63, OC43, HKU1, MERS-CoV, SARS-CoV, and SARS-CoV-2) were found. The cluster for SARS-CoV-2 was very close to that for SARS-CoV, which suggests that both of viruses have the same human receptor (angiotensin converting enzyme II). The big gap in the distance curve suggests that the origin of SARS-CoV-2 is not clear and further surveillance in the field should be made continuously. The smooth distance curve for SARS-CoV suggests that its close relatives still exist in nature and public health is challenged as usual.</p>
</sec>
<sec>
<title>Conclusions</title>
<p id="Par4">The optimal feature (GGAP, g = 3) performed well in terms of predicting infection risk and could be used to explore the evolutionary dynamic in a simple, fast and large-scale manner. The study may be beneficial for the surveillance of the genome mutation of coronavirus in the field.</p>
</sec>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Gorbalenya, A" uniqKey="Gorbalenya A">A Gorbalenya</name>
</author>
<author>
<name sortKey="Enjuanes, L" uniqKey="Enjuanes L">L Enjuanes</name>
</author>
<author>
<name sortKey="Ziebuhr, J" uniqKey="Ziebuhr J">J Ziebuhr</name>
</author>
<author>
<name sortKey="Snijder, E" uniqKey="Snijder E">E Snijder</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Corman, V" uniqKey="Corman V">V Corman</name>
</author>
<author>
<name sortKey="Muth, D" uniqKey="Muth D">D Muth</name>
</author>
<author>
<name sortKey="Niemeyer, D" uniqKey="Niemeyer D">D Niemeyer</name>
</author>
<author>
<name sortKey="Drosten, C" uniqKey="Drosten C">C Drosten</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cui, J" uniqKey="Cui J">J Cui</name>
</author>
<author>
<name sortKey="Li, F" uniqKey="Li F">F Li</name>
</author>
<author>
<name sortKey="Shi, Zl" uniqKey="Shi Z">ZL Shi</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Adams, M" uniqKey="Adams M">M Adams</name>
</author>
<author>
<name sortKey="Carstens, E" uniqKey="Carstens E">E Carstens</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Menachery, V" uniqKey="Menachery V">V Menachery</name>
</author>
<author>
<name sortKey="Yount, B" uniqKey="Yount B">B Yount</name>
</author>
<author>
<name sortKey="Debbink, K" uniqKey="Debbink K">K Debbink</name>
</author>
<author>
<name sortKey="Agnihothram, S" uniqKey="Agnihothram S">S Agnihothram</name>
</author>
<author>
<name sortKey="Gralinski, L" uniqKey="Gralinski L">L Gralinski</name>
</author>
<author>
<name sortKey="Plante, J" uniqKey="Plante J">J Plante</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Qiang, Xl" uniqKey="Qiang X">XL Qiang</name>
</author>
<author>
<name sortKey="Kou, Z" uniqKey="Kou Z">Z Kou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Qiang, Xl" uniqKey="Qiang X">XL Qiang</name>
</author>
<author>
<name sortKey="Kou, Z" uniqKey="Kou Z">Z Kou</name>
</author>
<author>
<name sortKey="Fang, G" uniqKey="Fang G">G Fang</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Heald Sargent, T" uniqKey="Heald Sargent T">T Heald-Sargent</name>
</author>
<author>
<name sortKey="Gallagher, T" uniqKey="Gallagher T">T Gallagher</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhao, Wm" uniqKey="Zhao W">WM Zhao</name>
</author>
<author>
<name sortKey="Song, Sh" uniqKey="Song S">SH Song</name>
</author>
<author>
<name sortKey="Chen, Ml" uniqKey="Chen M">ML Chen</name>
</author>
<author>
<name sortKey="Zou, D" uniqKey="Zou D">D Zou</name>
</author>
<author>
<name sortKey="Ma, Ln" uniqKey="Ma L">LN Ma</name>
</author>
<author>
<name sortKey="Ma, Yk" uniqKey="Ma Y">YK Ma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, B" uniqKey="Liu B">B Liu</name>
</author>
<author>
<name sortKey="Liu, F" uniqKey="Liu F">F Liu</name>
</author>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X Wang</name>
</author>
<author>
<name sortKey="Chen, J" uniqKey="Chen J">J Chen</name>
</author>
<author>
<name sortKey="Fang, L" uniqKey="Fang L">L Fang</name>
</author>
<author>
<name sortKey="Chou, K" uniqKey="Chou K">K Chou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Atchley, Wr" uniqKey="Atchley W">WR Atchley</name>
</author>
<author>
<name sortKey="Zhao, J" uniqKey="Zhao J">J Zhao</name>
</author>
<author>
<name sortKey="Fernandes, Ad" uniqKey="Fernandes A">AD Fernandes</name>
</author>
<author>
<name sortKey="Druke, T" uniqKey="Druke T">T Drüke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liaw, A" uniqKey="Liaw A">A Liaw</name>
</author>
<author>
<name sortKey="Wiener, M" uniqKey="Wiener M">M Wiener</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sing, T" uniqKey="Sing T">T Sing</name>
</author>
<author>
<name sortKey="Sander, O" uniqKey="Sander O">O Sander</name>
</author>
<author>
<name sortKey="Beerenwinkel, N" uniqKey="Beerenwinkel N">N Beerenwinkel</name>
</author>
<author>
<name sortKey="Lengauer, T" uniqKey="Lengauer T">T Lengauer</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Holshue, Ml" uniqKey="Holshue M">ML Holshue</name>
</author>
<author>
<name sortKey="Debolt, C" uniqKey="Debolt C">C DeBolt</name>
</author>
<author>
<name sortKey="Lindquist, S" uniqKey="Lindquist S">S Lindquist</name>
</author>
<author>
<name sortKey="Lofy, Kh" uniqKey="Lofy K">KH Lofy</name>
</author>
<author>
<name sortKey="Wiesman, J" uniqKey="Wiesman J">J Wiesman</name>
</author>
<author>
<name sortKey="Bruce, H" uniqKey="Bruce H">H Bruce</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Infect Dis Poverty</journal-id>
<journal-id journal-id-type="iso-abbrev">Infect Dis Poverty</journal-id>
<journal-title-group>
<journal-title>Infectious Diseases of Poverty</journal-title>
</journal-title-group>
<issn pub-type="ppub">2095-5162</issn>
<issn pub-type="epub">2049-9957</issn>
<publisher>
<publisher-name>BioMed Central</publisher-name>
<publisher-loc>London</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">32209118</article-id>
<article-id pub-id-type="pmc">7093988</article-id>
<article-id pub-id-type="publisher-id">649</article-id>
<article-id pub-id-type="doi">10.1186/s40249-020-00649-8</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Using the spike protein feature to predict infection risk and monitor the evolutionary dynamic of coronavirus</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Qiang</surname>
<given-names>Xiao-Li</given-names>
</name>
<xref ref-type="aff" rid="Aff1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Xu</surname>
<given-names>Peng</given-names>
</name>
<xref ref-type="aff" rid="Aff1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Fang</surname>
<given-names>Gang</given-names>
</name>
<xref ref-type="aff" rid="Aff1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Liu</surname>
<given-names>Wen-Bin</given-names>
</name>
<xref ref-type="aff" rid="Aff1"></xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Kou</surname>
<given-names>Zheng</given-names>
</name>
<address>
<email>kouzhengcn@foxmail.com</email>
</address>
<xref ref-type="aff" rid="Aff1"></xref>
</contrib>
<aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.411863.9</institution-id>
<institution-id institution-id-type="ISNI">0000 0001 0067 3588</institution-id>
<institution>Institute of Computing Science and Technology, Guangzhou University,</institution>
</institution-wrap>
Guangzhou, 510006 China</aff>
</contrib-group>
<pub-date pub-type="epub">
<day>25</day>
<month>3</month>
<year>2020</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>25</day>
<month>3</month>
<year>2020</year>
</pub-date>
<pub-date pub-type="collection">
<year>2020</year>
</pub-date>
<volume>9</volume>
<elocation-id>33</elocation-id>
<history>
<date date-type="received">
<day>6</day>
<month>2</month>
<year>2020</year>
</date>
<date date-type="accepted">
<day>16</day>
<month>3</month>
<year>2020</year>
</date>
</history>
<permissions>
<copyright-statement>© The Author(s) 2020</copyright-statement>
<license license-type="OpenAccess">
<license-p>
<bold>Open Access</bold>
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</ext-link>
. The Creative Commons Public Domain Dedication waiver (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/publicdomain/zero/1.0/">http://creativecommons.org/publicdomain/zero/1.0/</ext-link>
) applies to the data made available in this article, unless otherwise stated in a credit line to the data.</license-p>
</license>
</permissions>
<abstract id="Abs1">
<sec>
<title>Background</title>
<p id="Par1">Coronavirus can cross the species barrier and infect humans with a severe respiratory syndrome. SARS-CoV-2 with potential origin of bat is still circulating in China. In this study, a prediction model is proposed to evaluate the infection risk of non-human-origin coronavirus for early warning.</p>
</sec>
<sec>
<title>Methods</title>
<p id="Par2">The spike protein sequences of 2666 coronaviruses were collected from 2019 Novel Coronavirus Resource (2019nCoVR) Database of China National Genomics Data Center on Jan 29, 2020. A total of 507 human-origin viruses were regarded as positive samples, whereas 2159 non-human-origin viruses were regarded as negative. To capture the key information of the spike protein, three feature encoding algorithms (amino acid composition, AAC; parallel correlation-based pseudo-amino-acid composition, PC-PseAAC and G-gap dipeptide composition, GGAP) were used to train 41 random forest models. The optimal feature with the best performance was identified by the multidimensional scaling method, which was used to explore the pattern of human coronavirus.</p>
</sec>
<sec>
<title>Results</title>
<p id="Par3">The 10-fold cross-validation results showed that well performance was achieved with the use of the GGAP (g = 3) feature. The predictive model achieved the maximum ACC of 98.18% coupled with the Matthews correlation coefficient (MCC) of 0.9638. Seven clusters for human coronaviruses (229E, NL63, OC43, HKU1, MERS-CoV, SARS-CoV, and SARS-CoV-2) were found. The cluster for SARS-CoV-2 was very close to that for SARS-CoV, which suggests that both of viruses have the same human receptor (angiotensin converting enzyme II). The big gap in the distance curve suggests that the origin of SARS-CoV-2 is not clear and further surveillance in the field should be made continuously. The smooth distance curve for SARS-CoV suggests that its close relatives still exist in nature and public health is challenged as usual.</p>
</sec>
<sec>
<title>Conclusions</title>
<p id="Par4">The optimal feature (GGAP, g = 3) performed well in terms of predicting infection risk and could be used to explore the evolutionary dynamic in a simple, fast and large-scale manner. The study may be beneficial for the surveillance of the genome mutation of coronavirus in the field.</p>
</sec>
</abstract>
<kwd-group xml:lang="en">
<title>Keywords</title>
<kwd>Coronavirus</kwd>
<kwd>Cross-species infection</kwd>
<kwd>Spike protein</kwd>
<kwd>Machine learning</kwd>
</kwd-group>
<funding-group>
<award-group>
<funding-source>
<institution-wrap>
<institution-id institution-id-type="FundRef">http://dx.doi.org/10.13039/501100001809</institution-id>
<institution>National Natural Science Foundation of China</institution>
</institution-wrap>
</funding-source>
<award-id>61972109</award-id>
<principal-award-recipient>
<name>
<surname>Kou</surname>
<given-names>Zheng</given-names>
</name>
</principal-award-recipient>
</award-group>
</funding-group>
<custom-meta-group>
<custom-meta>
<meta-name>issue-copyright-statement</meta-name>
<meta-value>© The Author(s) 2020</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Pmc/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000379 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd -nk 000379 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Pmc
   |étape=   Curation
   |type=    RBID
   |clé=     PMC:7093988
   |texte=   Using the spike protein feature to predict infection risk and monitor the evolutionary dynamic of coronavirus
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Curation/RBID.i   -Sk "pubmed:32209118" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021