Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Global status of Middle East respiratory syndrome coronavirus in dromedary camels: a systematic review

Identifieur interne : 001318 ( Pmc/Corpus ); précédent : 001317; suivant : 001319

Global status of Middle East respiratory syndrome coronavirus in dromedary camels: a systematic review

Auteurs : R. S. Sikkema ; E. A. B. A. Farag ; Mazharul Islam ; Muzzamil Atta ; C. B. E. M. Reusken ; Mohd M. Al-Hajri ; M. P. G. Koopmans

Source :

RBID : PMC:6518605

Abstract

Dromedary camels have been shown to be the main reservoir for human Middle East respiratory syndrome (MERS) infections. This systematic review aims to compile and analyse all published data on MERS-coronavirus (CoV) in the global camel population to provide an overview of current knowledge on the distribution, spread and risk factors of infections in dromedary camels. We included original research articles containing laboratory evidence of MERS-CoV infections in dromedary camels in the field from 2013 to April 2018. In general, camels only show minor clinical signs of disease after being infected with MERS-CoV. Serological evidence of MERS-CoV in camels has been found in 20 countries, with molecular evidence for virus circulation in 13 countries. The seroprevalence of MERS-CoV antibodies increases with age in camels, while the prevalence of viral shedding as determined by MERS-CoV RNA detection in nasal swabs decreases. In several studies, camels that were sampled at animal markets or quarantine facilities were seropositive more often than camels at farms as well as imported camels vs. locally bred camels. Some studies show a relatively higher seroprevalence and viral detection during the cooler winter months. Knowledge of the animal reservoir of MERS-CoV is essential to develop intervention and control measures to prevent human infections.


Url:
DOI: 10.1017/S095026881800345X
PubMed: 30869000
PubMed Central: 6518605

Links to Exploration step

PMC:6518605

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Global status of Middle East respiratory syndrome coronavirus in dromedary camels: a systematic review</title>
<author>
<name sortKey="Sikkema, R S" sort="Sikkema, R S" uniqKey="Sikkema R" first="R. S." last="Sikkema">R. S. Sikkema</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Department of Viroscience</addr-line>
,
<institution>Erasmus University Medical Center</institution>
,
<addr-line>Rotterdam</addr-line>
,
<country>The Netherlands</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Farag, E A B A" sort="Farag, E A B A" uniqKey="Farag E" first="E. A. B. A." last="Farag">E. A. B. A. Farag</name>
<affiliation>
<nlm:aff id="aff2">
<institution>Ministry of Public of Health</institution>
,
<addr-line>Doha</addr-line>
,
<country>Qatar</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Islam, Mazharul" sort="Islam, Mazharul" uniqKey="Islam M" first="Mazharul" last="Islam">Mazharul Islam</name>
<affiliation>
<nlm:aff id="aff3">
<addr-line>Department of Animal Resources</addr-line>
,
<institution>Ministry of Municipality and Environment</institution>
,
<addr-line>Doha</addr-line>
,
<country>Qatar</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Atta, Muzzamil" sort="Atta, Muzzamil" uniqKey="Atta M" first="Muzzamil" last="Atta">Muzzamil Atta</name>
<affiliation>
<nlm:aff id="aff3">
<addr-line>Department of Animal Resources</addr-line>
,
<institution>Ministry of Municipality and Environment</institution>
,
<addr-line>Doha</addr-line>
,
<country>Qatar</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Reusken, C B E M" sort="Reusken, C B E M" uniqKey="Reusken C" first="C. B. E. M." last="Reusken">C. B. E. M. Reusken</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Department of Viroscience</addr-line>
,
<institution>Erasmus University Medical Center</institution>
,
<addr-line>Rotterdam</addr-line>
,
<country>The Netherlands</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Al Hajri, Mohd M" sort="Al Hajri, Mohd M" uniqKey="Al Hajri M" first="Mohd M." last="Al-Hajri">Mohd M. Al-Hajri</name>
<affiliation>
<nlm:aff id="aff2">
<institution>Ministry of Public of Health</institution>
,
<addr-line>Doha</addr-line>
,
<country>Qatar</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Koopmans, M P G" sort="Koopmans, M P G" uniqKey="Koopmans M" first="M. P. G." last="Koopmans">M. P. G. Koopmans</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Department of Viroscience</addr-line>
,
<institution>Erasmus University Medical Center</institution>
,
<addr-line>Rotterdam</addr-line>
,
<country>The Netherlands</country>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">30869000</idno>
<idno type="pmc">6518605</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6518605</idno>
<idno type="RBID">PMC:6518605</idno>
<idno type="doi">10.1017/S095026881800345X</idno>
<date when="2019">2019</date>
<idno type="wicri:Area/Pmc/Corpus">001318</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">001318</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Global status of Middle East respiratory syndrome coronavirus in dromedary camels: a systematic review</title>
<author>
<name sortKey="Sikkema, R S" sort="Sikkema, R S" uniqKey="Sikkema R" first="R. S." last="Sikkema">R. S. Sikkema</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Department of Viroscience</addr-line>
,
<institution>Erasmus University Medical Center</institution>
,
<addr-line>Rotterdam</addr-line>
,
<country>The Netherlands</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Farag, E A B A" sort="Farag, E A B A" uniqKey="Farag E" first="E. A. B. A." last="Farag">E. A. B. A. Farag</name>
<affiliation>
<nlm:aff id="aff2">
<institution>Ministry of Public of Health</institution>
,
<addr-line>Doha</addr-line>
,
<country>Qatar</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Islam, Mazharul" sort="Islam, Mazharul" uniqKey="Islam M" first="Mazharul" last="Islam">Mazharul Islam</name>
<affiliation>
<nlm:aff id="aff3">
<addr-line>Department of Animal Resources</addr-line>
,
<institution>Ministry of Municipality and Environment</institution>
,
<addr-line>Doha</addr-line>
,
<country>Qatar</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Atta, Muzzamil" sort="Atta, Muzzamil" uniqKey="Atta M" first="Muzzamil" last="Atta">Muzzamil Atta</name>
<affiliation>
<nlm:aff id="aff3">
<addr-line>Department of Animal Resources</addr-line>
,
<institution>Ministry of Municipality and Environment</institution>
,
<addr-line>Doha</addr-line>
,
<country>Qatar</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Reusken, C B E M" sort="Reusken, C B E M" uniqKey="Reusken C" first="C. B. E. M." last="Reusken">C. B. E. M. Reusken</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Department of Viroscience</addr-line>
,
<institution>Erasmus University Medical Center</institution>
,
<addr-line>Rotterdam</addr-line>
,
<country>The Netherlands</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Al Hajri, Mohd M" sort="Al Hajri, Mohd M" uniqKey="Al Hajri M" first="Mohd M." last="Al-Hajri">Mohd M. Al-Hajri</name>
<affiliation>
<nlm:aff id="aff2">
<institution>Ministry of Public of Health</institution>
,
<addr-line>Doha</addr-line>
,
<country>Qatar</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Koopmans, M P G" sort="Koopmans, M P G" uniqKey="Koopmans M" first="M. P. G." last="Koopmans">M. P. G. Koopmans</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Department of Viroscience</addr-line>
,
<institution>Erasmus University Medical Center</institution>
,
<addr-line>Rotterdam</addr-line>
,
<country>The Netherlands</country>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Epidemiology and Infection</title>
<idno type="ISSN">0950-2688</idno>
<idno type="eISSN">1469-4409</idno>
<imprint>
<date when="2019">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Dromedary camels have been shown to be the main reservoir for human Middle East respiratory syndrome (MERS) infections. This systematic review aims to compile and analyse all published data on MERS-coronavirus (CoV) in the global camel population to provide an overview of current knowledge on the distribution, spread and risk factors of infections in dromedary camels. We included original research articles containing laboratory evidence of MERS-CoV infections in dromedary camels in the field from 2013 to April 2018. In general, camels only show minor clinical signs of disease after being infected with MERS-CoV. Serological evidence of MERS-CoV in camels has been found in 20 countries, with molecular evidence for virus circulation in 13 countries. The seroprevalence of MERS-CoV antibodies increases with age in camels, while the prevalence of viral shedding as determined by MERS-CoV RNA detection in nasal swabs decreases. In several studies, camels that were sampled at animal markets or quarantine facilities were seropositive more often than camels at farms as well as imported camels
<italic>vs.</italic>
locally bred camels. Some studies show a relatively higher seroprevalence and viral detection during the cooler winter months. Knowledge of the animal reservoir of MERS-CoV is essential to develop intervention and control measures to prevent human infections.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Zaki, Am" uniqKey="Zaki A">AM Zaki</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Haagmans, Bl" uniqKey="Haagmans B">BL Haagmans</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reusken, Cb" uniqKey="Reusken C">CB Reusken</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hui, Ds" uniqKey="Hui D">DS Hui</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dudas, G" uniqKey="Dudas G">G Dudas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Anthony, Sj" uniqKey="Anthony S">SJ Anthony</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chu, Dk" uniqKey="Chu D">DK Chu</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Faye, B" uniqKey="Faye B">B Faye</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Saalfeld, Wk" uniqKey="Saalfeld W">WK Saalfeld</name>
</author>
<author>
<name sortKey="Edwards, Gp" uniqKey="Edwards G">GP Edwards</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Younan, M" uniqKey="Younan M">M Younan</name>
</author>
<author>
<name sortKey="Bornstein, S" uniqKey="Bornstein S">S Bornstein</name>
</author>
<author>
<name sortKey="Gluecks, Iv" uniqKey="Gluecks I">IV Gluecks</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ali, M" uniqKey="Ali M">M Ali</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Adney, Dr" uniqKey="Adney D">DR Adney</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hemida, Mg" uniqKey="Hemida M">MG Hemida</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Khalafalla, Ai" uniqKey="Khalafalla A">AI Khalafalla</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Haagmans, Bl" uniqKey="Haagmans B">BL Haagmans</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sabir, Js" uniqKey="Sabir J">JS Sabir</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Doremalen, N" uniqKey="Van Doremalen N">N van Doremalen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hemida, Mg" uniqKey="Hemida M">MG Hemida</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Woo, Pc" uniqKey="Woo P">PC Woo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Farag, Ea" uniqKey="Farag E">EA Farag</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ali, Ma" uniqKey="Ali M">MA Ali</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reusken, Cb" uniqKey="Reusken C">CB Reusken</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Muhairi, Sa" uniqKey="Muhairi S">SA Muhairi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Meyer, B" uniqKey="Meyer B">B Meyer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Alagaili, An" uniqKey="Alagaili A">AN Alagaili</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Muller, Ma" uniqKey="Muller M">MA Muller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gutierrez, C" uniqKey="Gutierrez C">C Gutierrez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Islam, A" uniqKey="Islam A">A Islam</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Saqib, M" uniqKey="Saqib M">M Saqib</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Corman, Vm" uniqKey="Corman V">VM Corman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Meyer, B" uniqKey="Meyer B">B Meyer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kasem, S" uniqKey="Kasem S">S Kasem</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Miguel, E" uniqKey="Miguel E">E Miguel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Deem, Sl" uniqKey="Deem S">SL Deem</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yusof, Mf" uniqKey="Yusof M">MF Yusof</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reusken, Cb" uniqKey="Reusken C">CB Reusken</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="David, D" uniqKey="David D">D David</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chan, Sm" uniqKey="Chan S">SM Chan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, R" uniqKey="Liu R">R Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Miguel, E" uniqKey="Miguel E">E Miguel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shirato, K" uniqKey="Shirato K">K Shirato</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Perera, Ra" uniqKey="Perera R">RA Perera</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Alexandersen, S" uniqKey="Alexandersen S">S Alexandersen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hemida, Mg" uniqKey="Hemida M">MG Hemida</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reusken, Cb" uniqKey="Reusken C">CB Reusken</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Meyer, B" uniqKey="Meyer B">B Meyer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Falzarano, D" uniqKey="Falzarano D">D Falzarano</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kamber, R" uniqKey="Kamber R">R Kamber</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wernery, U" uniqKey="Wernery U">U Wernery</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Faye, B" uniqKey="Faye B">B Faye</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Doremalen, N" uniqKey="Van Doremalen N">N van Doremalen</name>
</author>
<author>
<name sortKey="Bushmaker, T" uniqKey="Bushmaker T">T Bushmaker</name>
</author>
<author>
<name sortKey="Munster, Vj" uniqKey="Munster V">VJ Munster</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Crameri, G" uniqKey="Crameri G">G Crameri</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vergara Alert, J" uniqKey="Vergara Alert J">J Vergara-Alert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Adney, Dr" uniqKey="Adney D">DR Adney</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Doremalen, N" uniqKey="Van Doremalen N">N van Doremalen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vergara Alert, J" uniqKey="Vergara Alert J">J Vergara-Alert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Wit, E" uniqKey="De Wit E">E de Wit</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liljander, A" uniqKey="Liljander A">A Liljander</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chu, Dkw" uniqKey="Chu D">DKW Chu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ming, L" uniqKey="Ming L">L Ming</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Azhar, Ei" uniqKey="Azhar E">EI Azhar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Memish, Za" uniqKey="Memish Z">ZA Memish</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hemida, Mg" uniqKey="Hemida M">MG Hemida</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nowotny, N" uniqKey="Nowotny N">N Nowotny</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Raj, V" uniqKey="Raj V">V Raj</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Al Hammadi, Zm" uniqKey="Al Hammadi Z">ZM Al Hammadi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chu, Dkw" uniqKey="Chu D">DKW Chu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yusof, Mf" uniqKey="Yusof M">MF Yusof</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Al Salihi, Sf" uniqKey="Al Salihi S">SF Al-Salihi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Munyua, P" uniqKey="Munyua P">P Munyua</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Harrath, R" uniqKey="Harrath R">R Harrath</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kasem, S" uniqKey="Kasem S">S Kasem</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="review-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Epidemiol Infect</journal-id>
<journal-id journal-id-type="iso-abbrev">Epidemiol. Infect</journal-id>
<journal-id journal-id-type="publisher-id">HYG</journal-id>
<journal-title-group>
<journal-title>Epidemiology and Infection</journal-title>
</journal-title-group>
<issn pub-type="ppub">0950-2688</issn>
<issn pub-type="epub">1469-4409</issn>
<publisher>
<publisher-name>Cambridge University Press</publisher-name>
<publisher-loc>Cambridge, UK</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">30869000</article-id>
<article-id pub-id-type="pmc">6518605</article-id>
<article-id pub-id-type="doi">10.1017/S095026881800345X</article-id>
<article-id pub-id-type="pii">S095026881800345X</article-id>
<article-id pub-id-type="publisher-id">00345</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Review</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Global status of Middle East respiratory syndrome coronavirus in dromedary camels: a systematic review</article-title>
<alt-title alt-title-type="left-running">R. S. Sikkema
<italic>et al.</italic>
</alt-title>
<alt-title alt-title-type="right-running">
<italic>Epidemiology and Infection</italic>
</alt-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<contrib-id contrib-id-type="orcid" authenticated="false">https://orcid.org/0000-0001-7331-6274</contrib-id>
<name>
<surname>Sikkema</surname>
<given-names>R. S.</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
<xref ref-type="author-notes" rid="fns01">*</xref>
<xref ref-type="corresp" rid="cor1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Farag</surname>
<given-names>E. A. B. A.</given-names>
</name>
<xref ref-type="aff" rid="aff2">2</xref>
<xref ref-type="author-notes" rid="fns01">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Islam</surname>
<given-names>Mazharul</given-names>
</name>
<xref ref-type="aff" rid="aff3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Atta</surname>
<given-names>Muzzamil</given-names>
</name>
<xref ref-type="aff" rid="aff3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Reusken</surname>
<given-names>C. B. E. M.</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Al-Hajri</surname>
<given-names>Mohd M.</given-names>
</name>
<xref ref-type="aff" rid="aff2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Koopmans</surname>
<given-names>M. P. G.</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
</contrib>
</contrib-group>
<aff id="aff1">
<label>1</label>
<addr-line>Department of Viroscience</addr-line>
,
<institution>Erasmus University Medical Center</institution>
,
<addr-line>Rotterdam</addr-line>
,
<country>The Netherlands</country>
</aff>
<aff id="aff2">
<label>2</label>
<institution>Ministry of Public of Health</institution>
,
<addr-line>Doha</addr-line>
,
<country>Qatar</country>
</aff>
<aff id="aff3">
<label>3</label>
<addr-line>Department of Animal Resources</addr-line>
,
<institution>Ministry of Municipality and Environment</institution>
,
<addr-line>Doha</addr-line>
,
<country>Qatar</country>
</aff>
<author-notes>
<corresp id="cor1">
<bold>Author for correspondence:</bold>
R. S. Sikkema, E-mail:
<email>r.sikkema@erasmusmc.nl</email>
</corresp>
<fn id="fns01" fn-type="equal">
<label>*</label>
<p>Authors contributed equally.</p>
</fn>
</author-notes>
<pub-date pub-type="collection">
<year>2019</year>
</pub-date>
<pub-date pub-type="epub">
<day>21</day>
<month>2</month>
<year>2019</year>
</pub-date>
<volume>147</volume>
<elocation-id>e84</elocation-id>
<history>
<date date-type="received">
<day>15</day>
<month>8</month>
<year>2018</year>
</date>
<date date-type="rev-recd">
<day>23</day>
<month>10</month>
<year>2018</year>
</date>
<date date-type="accepted">
<day>25</day>
<month>11</month>
<year>2018</year>
</date>
</history>
<permissions>
<copyright-statement>© Cambridge University Press 2019</copyright-statement>
<copyright-year>2019</copyright-year>
<copyright-holder>Cambridge University Press</copyright-holder>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by/4.0/">
<license-p>
<pmc-comment>CREATIVE COMMONS</pmc-comment>
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</ext-link>
), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.</license-p>
</license>
</permissions>
<self-uri xlink:title="pdf" xlink:href="S095026881800345Xa.pdf"></self-uri>
<abstract abstract-type="normal">
<p>Dromedary camels have been shown to be the main reservoir for human Middle East respiratory syndrome (MERS) infections. This systematic review aims to compile and analyse all published data on MERS-coronavirus (CoV) in the global camel population to provide an overview of current knowledge on the distribution, spread and risk factors of infections in dromedary camels. We included original research articles containing laboratory evidence of MERS-CoV infections in dromedary camels in the field from 2013 to April 2018. In general, camels only show minor clinical signs of disease after being infected with MERS-CoV. Serological evidence of MERS-CoV in camels has been found in 20 countries, with molecular evidence for virus circulation in 13 countries. The seroprevalence of MERS-CoV antibodies increases with age in camels, while the prevalence of viral shedding as determined by MERS-CoV RNA detection in nasal swabs decreases. In several studies, camels that were sampled at animal markets or quarantine facilities were seropositive more often than camels at farms as well as imported camels
<italic>vs.</italic>
locally bred camels. Some studies show a relatively higher seroprevalence and viral detection during the cooler winter months. Knowledge of the animal reservoir of MERS-CoV is essential to develop intervention and control measures to prevent human infections.</p>
</abstract>
<kwd-group>
<title>Key words</title>
<kwd>Animal pathogens</kwd>
<kwd>coronavirus</kwd>
<kwd>emerging infections</kwd>
<kwd>zoonoses</kwd>
</kwd-group>
<counts>
<fig-count count="2"></fig-count>
<table-count count="3"></table-count>
<ref-count count="65"></ref-count>
<page-count count="13"></page-count>
</counts>
</article-meta>
</front>
<body>
<sec sec-type="intro" id="sec1">
<title>Introduction</title>
<p>Middle East respiratory syndrome (MERS) is a highly fatal respiratory tract disease in humans that was first detected in 2012 in the Kingdom of Saudi Arabia (KSA) [
<xref rid="ref1" ref-type="bibr">1</xref>
]. After its first detection, MERS-coronavirus (MERS-CoV) was being reported in human patients across the Arabian Peninsula, with occasional travel-related cases in other continents. As of the end of March 2018, a total of 2189 human laboratory-confirmed cases from 27 countries have been reported to the World Health Organisation (WHO), including 782 associated deaths [
<xref rid="ref2" ref-type="bibr">2</xref>
]. Dromedary camels (
<italic>Camelus dromedaries</italic>
) have been shown to be the natural reservoir from where spill-over to humans can occur [
<xref rid="ref3" ref-type="bibr">3</xref>
,
<xref rid="ref4" ref-type="bibr">4</xref>
]. Human-to-human infection is also reported frequently, especially in healthcare settings [
<xref rid="ref5" ref-type="bibr">5</xref>
]. Sustained human-to-human transmission outside of hospital settings has not been shown yet [
<xref rid="ref6" ref-type="bibr">6</xref>
]. Direct or indirect human contact with camels has resulted in repeated introductions of MERS-CoV into the human population [
<xref rid="ref7" ref-type="bibr">7</xref>
]. It has been suggested that camels may have acquired MERS-CoV from a spill-over event from a bat reservoir, but evidence for that remains inconclusive [
<xref rid="ref8" ref-type="bibr">8</xref>
]. Infections with MERS-CoV generally are thought to be mild or inapparent in camels [
<xref rid="ref9" ref-type="bibr">9</xref>
], and are therefore of low economical or animal welfare significance.</p>
<p>This systematic review was done to compile and analyse all published data on MERS-CoV in the global camel population to provide an overview of current knowledge on the distribution, spread and risk factors of MERS-CoV infections in dromedary camels as a basis for the design of intervention and control measures to prevent human infections.</p>
</sec>
<sec sec-type="materialsandmethods" id="sec2">
<title>Material and methods</title>
<p>On 2 May 2018, a literature search on PubMed was performed, using the terms ‘middle east respiratory syndrome coronavirus’ and ‘MERS-CoV’. Using the term ‘MERS’ did not result in any additional articles that fit the scope of this review. Only articles published in English were included. Two reviewers individually selected all original research articles containing laboratory evidence of MERS-CoV infections in dromedary camels in the field. Articles that were mentioned in Food and Agriculture Organization (FAO) updates [
<xref rid="ref10" ref-type="bibr">10</xref>
] or in the references of included publications, but did not appear in the PubMed search were added. Subsequently, abstracts, follow-up studies of MERS-CoV-positive camels and genome studies without prevalence data were excluded from the analysis. Data on variables such as year of sampling, country, region, age, sex and animal origin were extracted and analysed. For each variable, the number of positive camels, total number of camels tested and the median percentage positivity was calculated. Data from experimental infection studies were not included in this analysis, but they were included in the review to provide additional information and context to the field studies. Additional information on the distribution and trade of dromedary camels was collected from references in the publications on MERS-CoV in camels and extracted from official FAO and World Organisation for Animal Health (OIE) databases [
<xref rid="ref11" ref-type="bibr">11</xref>
,
<xref rid="ref12" ref-type="bibr">12</xref>
]. The additional literature on camel trade was collected in a less systematic way from PubMed.</p>
</sec>
<sec sec-type="results" id="sec3">
<title>Results</title>
<sec id="sec3-1">
<title>Literature search</title>
<p>The literature search resulted in a total of 53 papers (
<xref ref-type="fig" rid="fig01">Fig. 1</xref>
). Forty-three research papers described the results of cross-sectional studies in dromedary camel populations, six papers described outbreak investigations, including an analysis of camel samples, and four papers described longitudinal studies. In total, 33 papers describe camel studies in the Middle East, 13 studies investigated camels from Africa and the remaining seven surveys were from Spain, Australia, Japan, Bangladesh and Pakistan (
<xref rid="tab01" ref-type="table">Table 1</xref>
).
<fig id="fig01" orientation="portrait" position="float">
<label>Fig. 1.</label>
<caption>
<p>Results literature search.</p>
</caption>
<graphic xlink:href="S095026881800345X_fig1"></graphic>
</fig>
<table-wrap id="tab01" orientation="portrait" position="float">
<label>Table 1.</label>
<caption>
<p>Summary table of included papers</p>
</caption>
<alternatives>
<graphic xlink:href="S095026881800345X_tab1"></graphic>
<table frame="hsides" rules="groups">
<col align="left" width="1*" span="1"></col>
<col align="left" width="1*" span="1"></col>
<col align="left" width="1*" span="1"></col>
<col align="left" width="1*" span="1"></col>
<col align="left" width="1*" span="1"></col>
<col align="left" width="1*" span="1"></col>
<col align="left" width="1*" span="1"></col>
<col align="left" width="1*" span="1"></col>
<col align="left" width="1*" span="1"></col>
<col align="left" width="1*" span="1"></col>
<col align="left" width="1*" span="1"></col>
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">References</th>
<th align="center" rowspan="1" colspan="1">Study design</th>
<th align="center" rowspan="1" colspan="1">Country of origin</th>
<th align="center" rowspan="1" colspan="1">Year</th>
<th align="center" rowspan="1" colspan="1">MERS-CoV RNA presence</th>
<th align="center" rowspan="1" colspan="1">MERS-CoV seroprevalence</th>
<th align="center" rowspan="1" colspan="1">Sex</th>
<th align="center" rowspan="1" colspan="1">Age</th>
<th align="center" rowspan="1" colspan="1">Imported/local</th>
<th align="center" rowspan="1" colspan="1">Sampling location</th>
<th align="center" rowspan="1" colspan="1">Other animals tested</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="1" colspan="1">Hemida
<italic>et al</italic>
. [
<xref rid="ref50" ref-type="bibr">50</xref>
]</td>
<td rowspan="1" colspan="1">Cross-sectional</td>
<td rowspan="1" colspan="1">KSA</td>
<td rowspan="1" colspan="1">2010–2013</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">ppNT: 90% (280/310)</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"><1Y: 72% (47/65)
<break></break>
1–3Y: 95% (101/106)
<break></break>
4–5Y: 97% (74/76)
<break></break>
>5Y: 92% (58/63)</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">Sheep 0% (0/100)
<break></break>
Goat 0% (0/45)
<break></break>
Chicken 0% (0/240)
<break></break>
Cattle 0% (0/50)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Perera
<italic>et al</italic>
. [
<xref rid="ref48" ref-type="bibr">48</xref>
]</td>
<td rowspan="1" colspan="1">Cross-sectional</td>
<td rowspan="1" colspan="1">Egypt</td>
<td rowspan="1" colspan="1">2013</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">MN: 98% (108/110)</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">Abattoir</td>
<td rowspan="1" colspan="1">Goat 0% (0/13)
<break></break>
Sheep 0% (0/5)
<break></break>
Buffalo 0% (0/8)
<break></break>
Cattle 0% (0/25)
<break></break>
Swine 0% (0/260)
<break></break>
Wild birds (Hong Kong) 0% (0/204)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Reusken
<italic>et al</italic>
. [
<xref rid="ref4" ref-type="bibr">4</xref>
]</td>
<td rowspan="1" colspan="1">Cross-sectional</td>
<td rowspan="1" colspan="1">Oman
<break></break>
<break></break>
<break></break>
Spain (Canary islands)</td>
<td rowspan="1" colspan="1">2013
<break></break>
<break></break>
<break></break>
2012–2013</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">pMA: 100% (50/50)
<break></break>
<break></break>
<break></break>
<break></break>
<break></break>
<break></break>
14% (15/105)</td>
<td rowspan="1" colspan="1">Female: 100% (50/50)
<break></break>
<break></break>
<break></break>
Male: 4% (2/50)
<break></break>
Female:13% (7/55)</td>
<td rowspan="1" colspan="1">8–12Y: 100% (50/50)</td>
<td rowspan="1" colspan="1">Local
<break></break>
<break></break>
<break></break>
Morocco: 0% (0/3)</td>
<td rowspan="1" colspan="1">Breeding farm
<break></break>
<break></break>
<break></break>
Tourist farm</td>
<td rowspan="1" colspan="1">Bactrian camel 0% (0/4)
<break></break>
Alpaca 0% (0/24)
<break></break>
Llama 0% (0/7)
<break></break>
Guanaco 0% (0/2)
<break></break>
Cattle 0% (0/40)
<break></break>
Goat 0% (0/120)
<break></break>
Sheep 0% (0/40)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Reusken
<italic>et al</italic>
. [
<xref rid="ref51" ref-type="bibr">51</xref>
]</td>
<td rowspan="1" colspan="1">Cross-sectional</td>
<td rowspan="1" colspan="1">Jordan</td>
<td rowspan="1" colspan="1">2013</td>
<td rowspan="1" colspan="1">Faecal: 0% (0/11)</td>
<td rowspan="1" colspan="1">pMA: 100% (11/11)</td>
<td rowspan="1" colspan="1">Male: 100% (11/11)</td>
<td rowspan="1" colspan="1">3–14m: 100% (11/11)</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">Sheep: 0% PCR (0/126) pMA: 5% (6/126): 0% (0/126)
<break></break>
Cattle: PCR 0% (0/91) pMA: 0% (0/91)
<break></break>
Goat: pMA/0% (0/150)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Alagaili
<italic>et al</italic>
. [
<xref rid="ref31" ref-type="bibr">31</xref>
]</td>
<td rowspan="1" colspan="1">Cross-sectional</td>
<td rowspan="1" colspan="1">KSA</td>
<td rowspan="1" colspan="1">1992
<break></break>
1993
<break></break>
1994
<break></break>
1996
<break></break>
2004
<break></break>
2009
<break></break>
2010
<break></break>
2013</td>
<td rowspan="1" colspan="1">
<break></break>
<break></break>
<break></break>
<break></break>
<break></break>
<break></break>
<break></break>
Nasal: 25% (51/202)</td>
<td rowspan="1" colspan="1">ELISA: 100% (1/1)
<break></break>
100% (2/2)
<break></break>
93% (114/123)
<break></break>
100% (6/6)
<break></break>
100% (6/6)
<break></break>
78% (64/82)
<break></break>
84% (37/44)
<break></break>
74% (150/203)</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"><2Y: 52% (50/96)
<break></break>
2–5Y: 88% (29/33)
<break></break>
>5Y: 98% (54/55)</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">Goat: PCR 0% (0/36) ELISA 0% (0/35)
<break></break>
Sheep: PCR 0% (0/78) ELISA 0% (0/112)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Alexandersen
<italic>et al</italic>
. [
<xref rid="ref49" ref-type="bibr">49</xref>
]</td>
<td rowspan="1" colspan="1">Cross-sectional</td>
<td rowspan="1" colspan="1">UAE
<break></break>
<break></break>
USA and Canada</td>
<td rowspan="1" colspan="1">2005
<break></break>
<break></break>
2000–2001</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">VNT/ELISA: 82% (9/11)
<break></break>
<break></break>
0% (0/6)</td>
<td rowspan="1" colspan="1">Male: 50% (2/4)
<break></break>
Female: 100% (7/7)</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">Sheep 0% (0/20)
<break></break>
Horse 0% (0/3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Azhar
<italic>et al</italic>
. [
<xref rid="ref66" ref-type="bibr">66</xref>
]
<break></break>
Memish
<italic>et al</italic>
. [
<xref rid="ref67" ref-type="bibr">67</xref>
]</td>
<td rowspan="1" colspan="1">Human outbreak investigation</td>
<td rowspan="1" colspan="1">KSA</td>
<td rowspan="1" colspan="1">2013</td>
<td rowspan="1" colspan="1">Nasal: 11% (1/9)
<break></break>
Milk, urine, rectal: 0% (0/11)</td>
<td rowspan="1" colspan="1">IFA/ELISA: 100% (9/9)</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"><1Y: PCR 33% (1/3) IFA/ELISA: 100% (3/3)
<break></break>
2–5Y: IFA/ELISA 100% (1/1)
<break></break>
>5Y: IFA/ELISA 100% (5/5)</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">Farm</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Chu
<italic>et al</italic>
. [
<xref rid="ref9" ref-type="bibr">9</xref>
]</td>
<td rowspan="1" colspan="1">(Multiple) cross-sectional</td>
<td rowspan="1" colspan="1">Egypt</td>
<td rowspan="1" colspan="1">2014</td>
<td rowspan="1" colspan="1">Nasal: 4% (4/93)
<break></break>
<break></break>
<break></break>
Nasal: 0% (0/17)</td>
<td rowspan="1" colspan="1">ppNT: 92% (48/52)</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">>6Y: 92% (48/52)</td>
<td rowspan="1" colspan="1">Sudan or Ethiopia
<break></break>
<break></break>
<break></break>
Local</td>
<td rowspan="1" colspan="1">Abattoir
<break></break>
<break></break>
<break></break>
Farm</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Corman
<italic>et al</italic>
. [
<xref rid="ref36" ref-type="bibr">36</xref>
]</td>
<td rowspan="1" colspan="1">Cross-sectional</td>
<td rowspan="1" colspan="1">Kenya</td>
<td rowspan="1" colspan="1">Total
<break></break>
<break></break>
<break></break>
<break></break>
1992
<break></break>
1996
<break></break>
1998
<break></break>
<break></break>
1999
<break></break>
<break></break>
2000
<break></break>
<break></break>
2007
<break></break>
2008
<break></break>
2013</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">ELISA, total: 30% (228/774)
<break></break>
<break></break>
<break></break>
5% (1/22)
<break></break>
5% (2/37)
<break></break>
3% (2/62)
<break></break>
<break></break>
27% (71/266)
<break></break>
<break></break>
32% (82/258)
<break></break>
<break></break>
0% (0/28)
<break></break>
56% (103/183)
<break></break>
17% (8/47)</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">Adult: 37% (226/70)
<break></break>
Juvenile: 25% (15/59)</td>
<td rowspan="1" colspan="1">
<break></break>
<break></break>
<break></break>
<break></break>
Pakistan
<break></break>
Local
<break></break>
Local
<break></break>
<break></break>
Local
<break></break>
<break></break>
Local
<break></break>
<break></break>
Local
<break></break>
Local
<break></break>
Local</td>
<td rowspan="1" colspan="1">Total, farm: 9% (40/436)
<break></break>
Total, nomadic: 52% (229/439)
<break></break>
<break></break>
<break></break>
Farm
<break></break>
Farm
<break></break>
Farm: 0% (0/50)
<break></break>
Nomadic: 17% (2/12)
<break></break>
Farm: 18% (32/175)
<break></break>
Nomadic: 43% (39/91)
<break></break>
Farm: 4% (4/112)
<break></break>
Nomadic: 53%
<break></break>
(78/146)
<break></break>
Isolated
<break></break>
Nomadic
<break></break>
Farm: 3% (1/40)
<break></break>
Nomadic: 100% (7/7)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Haagmans
<italic>et al</italic>
. [
<xref rid="ref3" ref-type="bibr">3</xref>
]</td>
<td rowspan="1" colspan="1">Human outbreak investigation</td>
<td rowspan="1" colspan="1">Qatar</td>
<td rowspan="1" colspan="1">2013</td>
<td rowspan="1" colspan="1">Nasal: 86% (12/14)
<break></break>
Oral: 0% (0/14)
<break></break>
Rectal: 0% (0/19)</td>
<td rowspan="1" colspan="1">IFA/VNT: 100% (14/14)</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">Farm</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Hemida
<italic>et al</italic>
. [
<xref rid="ref19" ref-type="bibr">19</xref>
]</td>
<td rowspan="1" colspan="1">Longitudinal</td>
<td rowspan="1" colspan="1">KSA</td>
<td rowspan="1" colspan="1">2013–2014</td>
<td rowspan="1" colspan="1">Nasal: 33% (9/27)
<break></break>
Oral: 0% (0/17)
<break></break>
Rectal: 3% (1/37)</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"><2Y: 39% (7/18)
<break></break>
6–14Y: 22% (2/9)</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">Farm</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Hemida
<italic>et al</italic>
. [
<xref rid="ref68" ref-type="bibr">68</xref>
]</td>
<td rowspan="1" colspan="1">Cross-sectional</td>
<td rowspan="1" colspan="1">KSA
<break></break>
<break></break>
Australia
<break></break>
<break></break>
Egypt</td>
<td rowspan="1" colspan="1">1993
<break></break>
<break></break>
2014
<break></break>
<break></break>
2014</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">ppNT: 90% (118/131)
<break></break>
<break></break>
ppNT: 0% (0/25)
<break></break>
<break></break>
ppNT: 100% (7/7)</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">Farm
<break></break>
<break></break>
Farm and abattoir (feral)
<break></break>
Abattoir</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Meyer
<italic>et al</italic>
. [
<xref rid="ref37" ref-type="bibr">37</xref>
]</td>
<td rowspan="1" colspan="1">Cross-sectional</td>
<td rowspan="1" colspan="1">UAE</td>
<td rowspan="1" colspan="1">2003
<break></break>
<break></break>
2013</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">IFA: 100% (151/151)
<break></break>
<break></break>
IFA: 96% (481/500)</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">>2Y: 100% (151/151)
<break></break>
<break></break>
2–8Y: 89% (89/100)
<break></break>
<break></break>
>2Y: 89% (89/100)</td>
<td rowspan="1" colspan="1">
<break></break>
<break></break>
<break></break>
<break></break>
KSA, Sudan, Pakistan and Oman
<break></break>
UAE</td>
<td rowspan="1" colspan="1">
<break></break>
<break></break>
Farm (racing): 89% (89/100)
<break></break>
Farm (livestock camels): 100% (217/218)
<break></break>
Isolated: 0% (0/5)</td>
<td rowspan="1" colspan="1">Bactrian camel 0% (0/16)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Muller
<italic>et al</italic>
. [
<xref rid="ref32" ref-type="bibr">32</xref>
]</td>
<td rowspan="1" colspan="1">Cross-sectional</td>
<td rowspan="1" colspan="1">Somalia
<break></break>
<break></break>
Sudan
<break></break>
<break></break>
Egypt</td>
<td rowspan="1" colspan="1">1983–1984
<break></break>
<break></break>
1983
<break></break>
<break></break>
1997</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">ELISA: 84% (72/86)
<break></break>
mNT: 81% (70/86)
<break></break>
ELISA: 84% (159/189)
<break></break>
mNT: 81% (153/189)
<break></break>
ELISA: 81% (35/43)
<break></break>
mNT: 79% (34/43)</td>
<td rowspan="1" colspan="1">
<break></break>
<break></break>
Female: ELISA 84% (159/189)</td>
<td rowspan="1" colspan="1">
<break></break>
<break></break>
>6Y: 84% (159/189)</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">Abattoir
<break></break>
<break></break>
Farm</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Nowotny
<italic>et al</italic>
. [
<xref rid="ref69" ref-type="bibr">69</xref>
]</td>
<td rowspan="1" colspan="1">Cross-sectional</td>
<td rowspan="1" colspan="1">Oman</td>
<td rowspan="1" colspan="1">2013</td>
<td rowspan="1" colspan="1">Nasal: 7% (5/76)</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Raj
<italic>et al</italic>
. [
<xref rid="ref70" ref-type="bibr">70</xref>
]</td>
<td rowspan="1" colspan="1">Cross-sectional</td>
<td rowspan="1" colspan="1">Qatar</td>
<td rowspan="1" colspan="1">2014</td>
<td rowspan="1" colspan="1">Nasal: 2% (1/53)</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Reusken
<italic>et al</italic>
. [
<xref rid="ref28" ref-type="bibr">28</xref>
]</td>
<td rowspan="1" colspan="1">Cross-sectional</td>
<td rowspan="1" colspan="1">Qatar</td>
<td rowspan="1" colspan="1">2013</td>
<td rowspan="1" colspan="1">Nasal: 15% (5/33)
<break></break>
<break></break>
Rectal: 9% (3/33)
<break></break>
Milk: 15% (5/33)</td>
<td rowspan="1" colspan="1">pMA: 100% (33/33)
<break></break>
<break></break>
<break></break>
<italic>Milk: pMA 100% (12/12), 75% (9/12)</italic>
</td>
<td rowspan="1" colspan="1">Female: 15% (5/33)</td>
<td rowspan="1" colspan="1">>5Y: PCR 42% (5/12) ELISA 100% (12/12)</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">Farm</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Reusken
<italic>et al</italic>
. [
<xref rid="ref28" ref-type="bibr">28</xref>
]</td>
<td rowspan="1" colspan="1">Cross-sectional</td>
<td rowspan="1" colspan="1">Nigeria
<break></break>
<break></break>
<break></break>
Tunisia
<break></break>
Ethiopia</td>
<td rowspan="1" colspan="1">2010–2011
<break></break>
<break></break>
<break></break>
2009
<break></break>
2010–2011</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">pMA: 28% (100/358)
<break></break>
<break></break>
<break></break>
pMA: 49% (99/204)
<break></break>
pMA: 96% (181/188)</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">4–15Y: 28% (100/358)
<break></break>
<break></break>
<break></break>
<break></break>
⩽2Y: 30% (14/46)
<break></break>
>2Y: 54% (85/158)
<break></break>
⩽2Y: 94% (29/31)
<break></break>
>2Y: 97% (152/157)</td>
<td rowspan="1" colspan="1">Abattoir also serves Chad, Niger, CAR</td>
<td rowspan="1" colspan="1">Abattoir
<break></break>
<break></break>
<break></break>
<break></break>
Farm</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Woo
<italic>et al</italic>
. [
<xref rid="ref25" ref-type="bibr">25</xref>
]</td>
<td rowspan="1" colspan="1">Cross-sectional</td>
<td rowspan="1" colspan="1">UAE</td>
<td rowspan="1" colspan="1">2013</td>
<td rowspan="1" colspan="1">Faecal: 5% (14/293)</td>
<td rowspan="1" colspan="1">WB: 98% (58/59)
<break></break>
IFA: 100% (59/59)</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"><1Y: PCR 21% (13/61): 98% (54/55)
<break></break>
⩾1Y: PCR: 0% (1/232): 100% (4/4)</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">Farm</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Al Hammadi
<italic>et al</italic>
. [
<xref rid="ref71" ref-type="bibr">71</xref>
]</td>
<td rowspan="1" colspan="1">Human outbreak investigation</td>
<td rowspan="1" colspan="1">UAE</td>
<td rowspan="1" colspan="1">2015</td>
<td rowspan="1" colspan="1">Nasal: 100% (8/8)</td>
<td rowspan="1" colspan="1">ppNT: 100% (5/5)</td>
<td rowspan="1" colspan="1">Female: 100% (5/5)</td>
<td rowspan="1" colspan="1"><1Y: 100% (4/4)
<break></break>
10Y: 100% (1/1)</td>
<td rowspan="1" colspan="1">Oman</td>
<td rowspan="1" colspan="1">Border screening</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Chu
<italic>et al</italic>
. [
<xref rid="ref72" ref-type="bibr">72</xref>
]</td>
<td rowspan="1" colspan="1">Cross-sectional</td>
<td rowspan="1" colspan="1">Nigeria</td>
<td rowspan="1" colspan="1">2015</td>
<td rowspan="1" colspan="1">Nasal: 11% (14/132)</td>
<td rowspan="1" colspan="1">ppNT: 95% (125/131)</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">>6Y: 95% (125/131)</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">Abattoir</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Crameri
<italic>et al</italic>
. [
<xref rid="ref58" ref-type="bibr">58</xref>
]</td>
<td rowspan="1" colspan="1">Cross-sectional</td>
<td rowspan="1" colspan="1">Australia</td>
<td rowspan="1" colspan="1">2013–2014</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">VNT: 0% (0/307)</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">Abattoir: 231
<break></break>
Feral camel muster: 76</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Deem
<italic>et al</italic>
. [
<xref rid="ref40" ref-type="bibr">40</xref>
]</td>
<td rowspan="1" colspan="1">Cross-sectional</td>
<td rowspan="1" colspan="1">Kenya</td>
<td rowspan="1" colspan="1">2013</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">pMA: 50% (166/335)</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"><6m: 36% (22/61)
<break></break>
6m–2Y: 30% (24/80)
<break></break>
>2Y: 62% (120/194)</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">Farm: 48% (124/261)
<break></break>
Nomadic: 57% (42/74)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Farag
<italic>et al</italic>
. [
<xref rid="ref26" ref-type="bibr">26</xref>
]</td>
<td rowspan="1" colspan="1">Cross-sectional</td>
<td rowspan="1" colspan="1">Qatar</td>
<td rowspan="1" colspan="1">2014</td>
<td rowspan="1" colspan="1">Nasal: 60% (61/101)
<break></break>
Oral: 23% (23/102)
<break></break>
Rectal: 15% (15/103)
<break></break>
Bronchial: 7% (7/101)
<break></break>
Lymph nodes: 9% (5/53)</td>
<td rowspan="1" colspan="1">pMA: 97% (100/103)</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"><1Y: PCR: 68% (50/73)
<break></break>
⩾1Y: PCR: 39% (11/28)</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">Abattoir</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Gutierrez
<italic>et al</italic>
. [
<xref rid="ref33" ref-type="bibr">33</xref>
]</td>
<td rowspan="1" colspan="1">Cross-sectional</td>
<td rowspan="1" colspan="1">Canary Islands</td>
<td rowspan="1" colspan="1">2015</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">ELISA: 4% (7/170)</td>
<td rowspan="1" colspan="1">Male: 0% (0/101)
<break></break>
Female: 10% (7/69)</td>
<td rowspan="1" colspan="1">⩾2Y: 4% (7/170)
<break></break>
<italic>All positives were aged 20–26Y</italic>
</td>
<td rowspan="1" colspan="1">African: 41% (7/17)
<break></break>
<break></break>
Local: 0% (0/153)</td>
<td rowspan="1" colspan="1">Farm</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Khalafalla
<italic>et al</italic>
. [
<xref rid="ref20" ref-type="bibr">20</xref>
]</td>
<td rowspan="1" colspan="1">Longitudinal</td>
<td rowspan="1" colspan="1">KSA</td>
<td rowspan="1" colspan="1">2013–2014</td>
<td rowspan="1" colspan="1">Nasal: 29% (28/96)
<break></break>
<break></break>
<break></break>
Lung tissue 62% (56/91)</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"><4Y: 42% (15/36)
<break></break>
⩾4Y: 22% (13/60)</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">Abattoir, live animal market, veterinary hospital</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Shirato
<italic>et al</italic>
. [
<xref rid="ref47" ref-type="bibr">47</xref>
]</td>
<td rowspan="1" colspan="1">Cross-sectional</td>
<td rowspan="1" colspan="1">Japan</td>
<td rowspan="1" colspan="1">2015</td>
<td rowspan="1" colspan="1">Nasal: 0% (0/4)
<break></break>
Rectal: 0% (0/18)
<break></break>
Oral: 0% (0/10)</td>
<td rowspan="1" colspan="1">ELISA: 0% (0/5)</td>
<td rowspan="1" colspan="1">Male: nasal PCR 0% (0/1) 0% (0/1)
<break></break>
Female: nasal PCR 0% (0/3) 0% (0/4)</td>
<td rowspan="1" colspan="1"><2Y: 0% (0/1)
<break></break>
>5Y: PCR 0% (0/3) 0% (0/3)</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">Zoo</td>
<td rowspan="1" colspan="1">Bactrian camels:
<break></break>
PCR: 0% (0/6)
<break></break>
ELISA: 0% (0/6)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Wernery
<italic>et al</italic>
. [
<xref rid="ref55" ref-type="bibr">55</xref>
]</td>
<td rowspan="1" colspan="1">Cross-sectional</td>
<td rowspan="1" colspan="1">UAE</td>
<td rowspan="1" colspan="1">2015</td>
<td rowspan="1" colspan="1">Nasal: 0% (0/254)
<break></break>
Milk: 0% (0/1333)</td>
<td rowspan="1" colspan="1">ELISA: 92% (234/254)</td>
<td rowspan="1" colspan="1">Female: ELISA 99% (132/133)</td>
<td rowspan="1" colspan="1">0–3m: ELISA: 75% (24/32)
<break></break>
4m: ELISA: 79% (11/14)
<break></break>
5–6m: ELISA: 89% (41/46)
<break></break>
7–12m: ELISA: 90% (26/29)
<break></break>
>12m: ELISA: 99% (132/133)</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">Farm</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Wernery
<italic>et al</italic>
. [
<xref rid="ref55" ref-type="bibr">55</xref>
]</td>
<td rowspan="1" colspan="1">Cross-sectional</td>
<td rowspan="1" colspan="1">UAE</td>
<td rowspan="1" colspan="1">2015</td>
<td rowspan="1" colspan="1">Nasal: 5% (45/871)</td>
<td rowspan="1" colspan="1">ELISA: 93% (786/843)</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"><1Y: PCR: 35% (24/68) ELISA 85% (92/108)
<break></break>
2–4Y: PCR: 3% (10/344) ELISA 97% (328/340)
<break></break>
>4Y: PCR: 0% (0/250) ELISA 96% (298/310)</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">Farm</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Yusof
<italic>et al</italic>
. [
<xref rid="ref73" ref-type="bibr">73</xref>
]</td>
<td rowspan="1" colspan="1">Cross-sectional</td>
<td rowspan="1" colspan="1">UAE</td>
<td rowspan="1" colspan="1">2014</td>
<td rowspan="1" colspan="1">Nasal: 2% (126/7803)</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">KSA
<break></break>
<break></break>
Oman</td>
<td rowspan="1" colspan="1">Border screening: 2% (70/4617)
<break></break>
Border screening: 1% (31/2853)
<break></break>
Abattoir: 8% (25/303)
<break></break>
Public escort and zoo: 0% (0/30)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Meyer
<italic>et al</italic>
. [
<xref rid="ref30" ref-type="bibr">30</xref>
]</td>
<td rowspan="1" colspan="1">Longitudinal
<break></break>
<break></break>
<break></break>
11 calf-dam pairs</td>
<td rowspan="1" colspan="1">UAE</td>
<td rowspan="1" colspan="1">2014–2015</td>
<td rowspan="1" colspan="1">At 6m (nasal): 18% (2/11) of calves, no dams</td>
<td rowspan="1" colspan="1">At day 0: MN/ELISA 0% (0/11)
<break></break>
<break></break>
Maternal Ab peak at day 7
<break></break>
At 5–6m: 45% (5/11)
<break></break>
At 12m: 100% (22/22)</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">Dams: ELISA: 100% (11/11)</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">Farm</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Miguel
<italic>et al</italic>
. [
<xref rid="ref46" ref-type="bibr">46</xref>
]</td>
<td rowspan="1" colspan="1">Cross-sectional</td>
<td rowspan="1" colspan="1">Kazakhstan</td>
<td rowspan="1" colspan="1">2015</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">ppNT: 0% (0/455)</td>
<td rowspan="1" colspan="1">Female: 0% (0/455)</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">Farm</td>
<td rowspan="1" colspan="1">Bactrian camels:
<break></break>
ppNT: 0% (0/95)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Muhairi
<italic>et al</italic>
. [
<xref rid="ref29" ref-type="bibr">29</xref>
]</td>
<td rowspan="1" colspan="1">Human outbreak investigation</td>
<td rowspan="1" colspan="1">UAE</td>
<td rowspan="1" colspan="1">2014</td>
<td rowspan="1" colspan="1">Farms MERS patients (
<italic>n</italic>
 = 2):
<break></break>
Nasal: 10% (15/155)
<break></break>
Surrounding farms:
<break></break>
Nasal: 3% (27/992)</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">Farm</td>
<td rowspan="1" colspan="1">Sheep: 0% (0/34)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Sabir
<italic>et al</italic>
. [
<xref rid="ref22" ref-type="bibr">22</xref>
]</td>
<td rowspan="1" colspan="1">Cross-sectional</td>
<td rowspan="1" colspan="1">KSA</td>
<td rowspan="1" colspan="1">2014–2015</td>
<td rowspan="1" colspan="1">Nasal: 12% (159/1309)
<break></break>
Rectal: 0% (0/304)</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">⩽6m:15% (28/190)
<break></break>
6m–1Y: 18% (58/315)
<break></break>
1–2Y: 8% (42/509)
<break></break>
2–4Y: 10% (20/206)
<break></break>
>4Y: 11% (5/46)</td>
<td rowspan="1" colspan="1">Local: 15% (133/893)
<break></break>
Sudan: 6% (7/116)
<break></break>
Somalia: 7% (19/291)</td>
<td rowspan="1" colspan="1">Abattoir: 0% (0/14)
<break></break>
Farm: 11% (14/133)
<break></break>
Market: 12% (145/1162)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Al Salihi
<italic>et al</italic>
. [
<xref rid="ref74" ref-type="bibr">74</xref>
]</td>
<td rowspan="1" colspan="1">Cross-sectional</td>
<td rowspan="1" colspan="1">Iraq</td>
<td rowspan="1" colspan="1">2015–2016</td>
<td rowspan="1" colspan="1">15% (15/100)
<break></break>
<break></break>
<break></break>
(94 nasal, 6 oropharyngeal swabs)</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">Male: 18% (3/17)
<break></break>
Female: 14% (12/83)</td>
<td rowspan="1" colspan="1"><1Y: 0% (0/9)
<break></break>
1–5Y: 15% (6/41)
<break></break>
5–10Y: 16% (6/38)
<break></break>
>10Y: 25% (3/12)</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">Farm: 16% (13/80)
<break></break>
Abattoir: 10% (2/20)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Ali
<italic>et al</italic>
. [
<xref rid="ref17" ref-type="bibr">17</xref>
]</td>
<td rowspan="1" colspan="1">Cross-sectional</td>
<td rowspan="1" colspan="1">Egypt</td>
<td rowspan="1" colspan="1">2014–2016</td>
<td rowspan="1" colspan="1">Nasal: 15% (435/2825)
<break></break>
Rectal: 15% (18/114)
<break></break>
Milk: 6% (12/187)
<break></break>
Urine: 0% (0/26)</td>
<td rowspan="1" colspan="1">MN: 71% (1808/2541)
<break></break>
<italic>Milk: 20% (38/187)</italic>
</td>
<td rowspan="1" colspan="1">Male: PCR 21% (300/1439) MN: 72% (905/1254)
<break></break>
Female: PCR 11% (115/1089) MN 66% (724/1090)</td>
<td rowspan="1" colspan="1"><2Y: PCR 16% (97/591) MN 37% (221/596)
<break></break>
>2Y: PCR 10% (228/2234) MN 82% (1587/1945)</td>
<td rowspan="1" colspan="1">Local: PCR 12% (192/1658) MN 61% (1015/1655)
<break></break>
<break></break>
<break></break>
<break></break>
<break></break>
Sudan, Somalia and Ethiopia: PCR 21% (243/1167) MN 90% (793/886)</td>
<td rowspan="1" colspan="1">Market: PCR 2.5% (4/159) MN 92% (159/172)
<break></break>
Nomadic: PCR 1% (3/282) MN 72% (202/282)
<break></break>
<break></break>
Farm: PCR 14% (189/1376) MN 59% (813/1373)
<break></break>
Quarantine: PCR 36% (153/424) MN 95% (342/361)
<break></break>
Abattoir: PCR 15% (86/584) MN 83% (292/353)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Ali
<italic>et al</italic>
. [
<xref rid="ref27" ref-type="bibr">27</xref>
]</td>
<td rowspan="1" colspan="1">Cross-sectional</td>
<td rowspan="1" colspan="1">Egypt</td>
<td rowspan="1" colspan="1">2014–2015</td>
<td rowspan="1" colspan="1">Nasal: 4% (41/1078)</td>
<td rowspan="1" colspan="1">MN: 84% (871/1031)</td>
<td rowspan="1" colspan="1">Male: PCR 3% (21/798) MN 85% (651/765)
<break></break>
Female: PCR 7% (20/280) MN 83% (220/266)</td>
<td rowspan="1" colspan="1">⩽2Y: PCR 2% (2/82) MN 52% (42/81)
<break></break>
>2Y: PCR 4% (39/996) MN 87% (829/950)</td>
<td rowspan="1" colspan="1">Local: PCR 1% (2/340) MN 76% (257/339)
<break></break>
East Africa: PCR 3% (4/115) MN 72% (71/98)
<break></break>
Sudan: PCR 6% (35/623) MN 91% (543/594)</td>
<td rowspan="1" colspan="1">Market: PCR 3% (9/290) MN 94% (273/289)
<break></break>
Village: PCR 1% (2/340) MN 76% (256/339)
<break></break>
Quarantine: PCR 2% (4/164) MN 96% (1557/164)
<break></break>
Abattoir: PCR 9% (26/284) MN 77% (184/239)</td>
<td rowspan="1" colspan="1">Cattle: PCR 0% (0/35) MN 0% (0/35)
<break></break>
Sheep: PCR 0% (0/51) MN 2% (1/51)
<break></break>
Goat: PCR 0% (0/36) MN 0% (0/36)
<break></break>
Buffalo: PCR 0% (0/4) MN 0% (0/4)
<break></break>
Donkey: PCR 0% (0/15) MN 0% (0/15)
<break></break>
Horse: PCR 0% (0/4) MN 0% (0/4)
<break></break>
Bat: 0% (0/91)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Doremalen
<italic>et al</italic>
. [
<xref rid="ref23" ref-type="bibr">23</xref>
]</td>
<td rowspan="1" colspan="1">Cross-sectional</td>
<td rowspan="1" colspan="1">Jordan</td>
<td rowspan="1" colspan="1">2016</td>
<td rowspan="1" colspan="1">Nasal: 67% (28/42)
<break></break>
Rectal: 0% (0/42)
<break></break>
Urogenital: 0% (0/42)</td>
<td rowspan="1" colspan="1">ELISA 82% (37/45)</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"><1Y: PCR 61% (11/18) ELISA 78% (14/18)
<break></break>
1–2Y: PCR 92% (12/13) ELISA 69% (9/13)
<break></break>
2–5Y: PCR 50% (5/10) ELISA 100% (10/10)
<break></break>
>5Y: PCR 0% (0/1) ELISA 100% (4/4)</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">Farm PCR 77% (17/22) ELISA 77% (17/22)
<break></break>
Nomadic: PCR (10/20) ELISA 87% (20/23)</td>
<td rowspan="1" colspan="1">Cattle: ELISA 0% (0/5)
<break></break>
Sheep: ELISA 0% (0/10)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Falzarano
<italic>et al</italic>
. [
<xref rid="ref53" ref-type="bibr">53</xref>
]</td>
<td rowspan="1" colspan="1">Cross-sectional</td>
<td rowspan="1" colspan="1">Mali</td>
<td rowspan="1" colspan="1">2009–2010</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">ELISA: 88% (502/571)</td>
<td rowspan="1" colspan="1">Male: 86% (210/245) Female: 92%
<break></break>
(302/328)</td>
<td rowspan="1" colspan="1">1–2Y: 83%
<break></break>
3–8Y: 91%
<break></break>
9–16Y: 88%</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">Farm</td>
<td rowspan="1" colspan="1">Cattle and sheep: 0% (0/10)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Hemida
<italic>et al</italic>
. [
<xref rid="ref24" ref-type="bibr">24</xref>
]</td>
<td rowspan="1" colspan="1">Longitudinal</td>
<td rowspan="1" colspan="1">KSA</td>
<td rowspan="1" colspan="1">2014–2015</td>
<td rowspan="1" colspan="1">Nasal: 4% (3/70)
<break></break>
<break></break>
Rectal: 0% (0/70)</td>
<td rowspan="1" colspan="1">ppNT: 100% (70/70)</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">⩽2Y: 19% (3/16)
<break></break>
>2Y: 0% (0/39)</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">Farm</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Kasem
<italic>et al</italic>
. [
<xref rid="ref38" ref-type="bibr">38</xref>
]</td>
<td rowspan="1" colspan="1">Human outbreak investigation</td>
<td rowspan="1" colspan="1">KSA</td>
<td rowspan="1" colspan="1">2014–2016</td>
<td rowspan="1" colspan="1">Nasal: 10% (75/780)
<break></break>
<break></break>
(camels with MERS patients contact)</td>
<td rowspan="1" colspan="1">ELISA: 71% (422/595)</td>
<td rowspan="1" colspan="1">Male: PCR 20% (49/245) ELISA 84% (127/152)
<break></break>
<break></break>
Female: PCR 5% (26/535) ELISA 67%
<break></break>
(295/443)</td>
<td rowspan="1" colspan="1">⩽2Y: PCR 15% (46/298) ELISA 57% (145/251)
<break></break>
2–4Y: PCR 6% (13/202) ELISA 79% (120/156)
<break></break>
4–6Y: PCR 4% (6/144) ELISA 81% (79/98)
<break></break>
>6Y: PCR 7% (10/136) ELISA 87% (78/90)</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">Farm</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Miguel
<italic>et al</italic>
. [
<xref rid="ref39" ref-type="bibr">39</xref>
]</td>
<td rowspan="1" colspan="1">Cross-sectional</td>
<td rowspan="1" colspan="1">Burkina Faso Ethiopia
<break></break>
Morocco</td>
<td rowspan="1" colspan="1">2015</td>
<td rowspan="1" colspan="1">Nasal: 5% (27/525)
<break></break>
Nasal: 11% (70/632)
<break></break>
Nasal: 1% (5/343)</td>
<td rowspan="1" colspan="1">ppNT: 80% (421/525)
<break></break>
95% (600/632)
<break></break>
77% (265/343)</td>
<td rowspan="1" colspan="1">Seropositivity and CR-positive rate higher in females</td>
<td rowspan="1" colspan="1">Seropositivity rates increased, MERS RNA detection rate decreased with age</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Munyua
<italic>et al</italic>
. [
<xref rid="ref75" ref-type="bibr">75</xref>
]</td>
<td rowspan="1" colspan="1">Cross-sectional</td>
<td rowspan="1" colspan="1">Kenya</td>
<td rowspan="1" colspan="1">2013</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">ELISA 90% (789/877)</td>
<td rowspan="1" colspan="1">Male: 81% (173/213)
<break></break>
Female 93% (616/664)</td>
<td rowspan="1" colspan="1">1–4Y: 73% (209/285)
<break></break>
4–6Y: 99% (116/117)
<break></break>
>6Y: 98% (466/476)</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">Farm: 71% (10/14)
<break></break>
Nomadic: 91% (698/771)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Saqib
<italic>et al</italic>
. [
<xref rid="ref35" ref-type="bibr">35</xref>
]</td>
<td rowspan="1" colspan="1">Cross-sectional</td>
<td rowspan="1" colspan="1">Pakistan</td>
<td rowspan="1" colspan="1">2012–2015</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">ELISA: 56% (315/565)
<break></break>
MN: 39% (223/565)</td>
<td rowspan="1" colspan="1">Male: ELISA/MN: 44% (96/217)
<break></break>
<break></break>
Female: ELISA/MN: 36% (127/348)</td>
<td rowspan="1" colspan="1">⩽2Y: MN 29% (26/89)
<break></break>
2–5Y: 30% (62/208)
<break></break>
5–10Y: 51% (92/180)
<break></break>
>10Y: 49% (43/88)</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Yusof
<italic>et al</italic>
. [
<xref rid="ref41" ref-type="bibr">41</xref>
]
<break></break>
<break></break>
Li
<italic>et al</italic>
. [
<xref rid="ref76" ref-type="bibr">76</xref>
]</td>
<td rowspan="1" colspan="1">Cross-sectional</td>
<td rowspan="1" colspan="1">UAE</td>
<td rowspan="1" colspan="1">2015</td>
<td rowspan="1" colspan="1">Nasal: 29% (109/376)</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">Male: 27% (73/269)
<break></break>
Female: 31% (33/107) </td>
<td rowspan="1" colspan="1"><1Y: 32% (81/255)
<break></break>
>1Y: 21% (25/121)</td>
<td rowspan="1" colspan="1">Local: 25% (53/210) Oman: 50% (53/106): 5% (3/60)</td>
<td rowspan="1" colspan="1">Market</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">David
<italic>et al</italic>
. [
<xref rid="ref43" ref-type="bibr">43</xref>
]</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">Israel</td>
<td rowspan="1" colspan="1">2012–2017 (serum)
<break></break>
2015–2017 (nasal swab)</td>
<td rowspan="1" colspan="1">Nasal: 0% (0/540)</td>
<td rowspan="1" colspan="1">VNT: 62% (254/411)</td>
<td rowspan="1" colspan="1">Male: PCR 0% (0/54)
<break></break>
Female: PCR: 0% (0/486)</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">Farm</td>
<td rowspan="1" colspan="1">Llama PCR 0% (0/19)
<break></break>
ELISA: 37% (7/19)
<break></break>
VNT: 32% (6/19)
<break></break>
Alpaca PCR 0% (0/102)
<break></break>
ELISA 34% (35/102)
<break></break>
VNT: 32% (30/102)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Chu
<italic>et al</italic>
. [
<xref rid="ref65" ref-type="bibr">65</xref>
]</td>
<td rowspan="1" colspan="1">Cross-sectional</td>
<td rowspan="1" colspan="1">Ethiopia</td>
<td rowspan="1" colspan="1">2016–2017</td>
<td rowspan="1" colspan="1">Nasal: 5% (5/102)</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Harrath
<italic>et al</italic>
. [
<xref rid="ref77" ref-type="bibr">77</xref>
]</td>
<td rowspan="1" colspan="1">Cross-sectional</td>
<td rowspan="1" colspan="1">KSA</td>
<td rowspan="1" colspan="1">2016</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">ELISA: 84% (144/171)</td>
<td rowspan="1" colspan="1">Male: 83% (77/93)
<break></break>
Female: 87% (68/78)</td>
<td rowspan="1" colspan="1"><2Y: 93% (66/71)
<break></break>
2–5Y: 78% (78/100)</td>
<td rowspan="1" colspan="1">Local</td>
<td rowspan="1" colspan="1">Farm</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Islam
<italic>et al</italic>
. [
<xref rid="ref34" ref-type="bibr">34</xref>
]</td>
<td rowspan="1" colspan="1">Cross-sectional</td>
<td rowspan="1" colspan="1">Bangladesh</td>
<td rowspan="1" colspan="1">2015</td>
<td rowspan="1" colspan="1">Nasal: 0% (0/55)</td>
<td rowspan="1" colspan="1">ELISA/ppNT: 31% (17/55)</td>
<td rowspan="1" colspan="1">Male: ppNT 34% (10/29)
<break></break>
Female: ppNT 27% (7/26)</td>
<td rowspan="1" colspan="1"><2Y: ELISA/ppNT 9% (1/11)
<break></break>
⩾2: ELISA/ppNT 36% (16/44)</td>
<td rowspan="1" colspan="1">Local: ELISA/ppNT 4% (1/24)
<break></break>
<break></break>
India: ELISA/ppNT 52% (16/31)</td>
<td rowspan="1" colspan="1">Market: 63% (12/19)
<break></break>
Farm: 14% (5/36)</td>
<td rowspan="1" colspan="1">Sheep: PCR 0% (0/18) ELISA/ppNT 0% (0/18)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Kasem
<italic>et al</italic>
. [
<xref rid="ref78" ref-type="bibr">78</xref>
]</td>
<td rowspan="1" colspan="1">Cross-sectional</td>
<td rowspan="1" colspan="1">KSA</td>
<td rowspan="1" colspan="1">2015–2017</td>
<td rowspan="1" colspan="1">Nasal: 56% (394/698)</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"><2Y: 72% (303/423) >2Y: 33% (91/275)</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">Market: 42% (184/435)
<break></break>
Abattoir: 80% (210/263)</td>
<td rowspan="1" colspan="1"></td>
</tr>
</tbody>
</table>
</alternatives>
</table-wrap>
</p>
</sec>
<sec id="sec3-2">
<title>Distribution and trade of camels</title>
<p>Most recent FAO statistics estimate the world population of camel to be around 29 million [
<xref rid="ref11" ref-type="bibr">11</xref>
], of which approximately 95% are dromedary camels [
<xref rid="ref13" ref-type="bibr">13</xref>
]. However, it is believed that the true population size is even larger due to inaccurate statistics and feral camels, such as the feral dromedary camel population in Australia that is estimated to be around 1 million [
<xref rid="ref14" ref-type="bibr">14</xref>
]. Over 80% of the camel population lives in Africa. The main camel countries are Chad (6 400 000), Ethiopia (1 200 000), Kenya (2 986 057), Mali (1 028 700), Mauritania (1 379 417), Niger (1 698 110), Sudan (4 830 000), Somalia (7 100 000) and Pakistan (1 000 000) [
<xref rid="ref12" ref-type="bibr">12</xref>
] (
<xref rid="tab02" ref-type="table">Table 2</xref>
).
<table-wrap id="tab02" orientation="portrait" position="float">
<label>Table 2.</label>
<caption>
<p>Camel population and density</p>
</caption>
<alternatives>
<graphic xlink:href="S095026881800345X_tab2"></graphic>
<table frame="hsides" rules="groups">
<col align="left" width="1*" span="1"></col>
<col align="left" width="1*" span="1"></col>
<col align="char" char="." width="1*" span="1"></col>
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">Country</th>
<th align="center" rowspan="1" colspan="1">Camel population (OIE, 2016)</th>
<th align="center" rowspan="1" colspan="1">Camel density (OIE, 2016)
<break></break>
(
<italic>Animals per square kilometre</italic>
)</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="1" colspan="1">Africa</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Algeria</td>
<td rowspan="1" colspan="1">354 565 (OIE, 2014)</td>
<td rowspan="1" colspan="1">0.15 (OIE, 2014)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Burkino Faso</td>
<td rowspan="1" colspan="1">19 097</td>
<td rowspan="1" colspan="1">0.07</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Djibouti</td>
<td rowspan="1" colspan="1">50 000</td>
<td rowspan="1" colspan="1">2.17</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Egypt</td>
<td rowspan="1" colspan="1">66 233</td>
<td rowspan="1" colspan="1">0.07</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Eritrea</td>
<td rowspan="1" colspan="1">385 283</td>
<td rowspan="1" colspan="1">3.18</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Ethiopia</td>
<td rowspan="1" colspan="1">1 200 000</td>
<td rowspan="1" colspan="1">1.06</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Kenya</td>
<td rowspan="1" colspan="1">2 986 057</td>
<td rowspan="1" colspan="1">5.12</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Libya</td>
<td rowspan="1" colspan="1">110 000</td>
<td rowspan="1" colspan="1">0.06</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Mali</td>
<td rowspan="1" colspan="1">1 028 700</td>
<td rowspan="1" colspan="1">0.83</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Mauritania</td>
<td rowspan="1" colspan="1">1 379 417 (OIE, 2013)</td>
<td rowspan="1" colspan="1">1.34 (OIE, 2013)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Morocco</td>
<td rowspan="1" colspan="1">197 550 (OIE, 2014)</td>
<td rowspan="1" colspan="1">0.44 (OIE, 2014)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Niger</td>
<td rowspan="1" colspan="1">1 698 110 (OIE, 2013)</td>
<td rowspan="1" colspan="1">1.34 (OIE, 2013)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Nigeria</td>
<td rowspan="1" colspan="1">279 397</td>
<td rowspan="1" colspan="1">0.3</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Sudan</td>
<td rowspan="1" colspan="1">4 830 000</td>
<td rowspan="1" colspan="1">1.93</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Somalia</td>
<td rowspan="1" colspan="1">7 100 000</td>
<td rowspan="1" colspan="1">11.13</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Chad</td>
<td rowspan="1" colspan="1">6 400 000</td>
<td rowspan="1" colspan="1">4.98</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Tunisia</td>
<td rowspan="1" colspan="1">56 021</td>
<td rowspan="1" colspan="1">0.34</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Middle East/Central Asia
<xref ref-type="table-fn" rid="tfn2_1">
<sup>a</sup>
</xref>
</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Afghanistan</td>
<td rowspan="1" colspan="1">175 270</td>
<td rowspan="1" colspan="1">0.21</td>
</tr>
<tr>
<td rowspan="1" colspan="1">India
<xref ref-type="table-fn" rid="tfn2_2">
<sup>b</sup>
</xref>
</td>
<td rowspan="1" colspan="1">400 000 (OIE, 2015)</td>
<td rowspan="1" colspan="1">0.12 (OIE, 2015)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Iran
<xref ref-type="table-fn" rid="tfn2_2">
<sup>b</sup>
</xref>
</td>
<td rowspan="1" colspan="1">171 500</td>
<td rowspan="1" colspan="1">0.10</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Iraq</td>
<td rowspan="1" colspan="1">81 205</td>
<td rowspan="1" colspan="1">0.19</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Jordan</td>
<td rowspan="1" colspan="1">10 872 (OIE, 2014)</td>
<td rowspan="1" colspan="1">0.12 (OIE, 2014)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Kazakhstan
<xref ref-type="table-fn" rid="tfn2_2">
<sup>b</sup>
</xref>
</td>
<td rowspan="1" colspan="1">170 513</td>
<td rowspan="1" colspan="1">0.06</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Kuwait</td>
<td rowspan="1" colspan="1">80 790</td>
<td rowspan="1" colspan="1">4.53</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Oman</td>
<td rowspan="1" colspan="1">257 713</td>
<td rowspan="1" colspan="1">1.21</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Pakistan
<xref ref-type="table-fn" rid="tfn2_2">
<sup>b</sup>
</xref>
</td>
<td rowspan="1" colspan="1">1 000 000</td>
<td rowspan="1" colspan="1">1.24</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Qatar</td>
<td rowspan="1" colspan="1">77 417 (OIE, 2014)</td>
<td rowspan="1" colspan="1">6.77 (OIE, 2014)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Saudi Arabia</td>
<td rowspan="1" colspan="1">481 138</td>
<td rowspan="1" colspan="1">0.25</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Syria</td>
<td rowspan="1" colspan="1">45 610</td>
<td rowspan="1" colspan="1">0.25</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Turkmenistan
<xref ref-type="table-fn" rid="tfn2_2">
<sup>b</sup>
</xref>
</td>
<td rowspan="1" colspan="1">122 900</td>
<td rowspan="1" colspan="1">0.25</td>
</tr>
<tr>
<td rowspan="1" colspan="1">UAE</td>
<td rowspan="1" colspan="1">392 667</td>
<td rowspan="1" colspan="1">4.74</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Uzbekistan
<xref ref-type="table-fn" rid="tfn2_2">
<sup>b</sup>
</xref>
</td>
<td rowspan="1" colspan="1">14 800</td>
<td rowspan="1" colspan="1">0.03</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Yemen</td>
<td rowspan="1" colspan="1">459 366</td>
<td rowspan="1" colspan="1">0.87</td>
</tr>
</tbody>
</table>
</alternatives>
<table-wrap-foot>
<fn id="tfn2_1">
<label>a</label>
<p>Excluding China and Mongolia because the large majority of camel population are Bactrian camels.</p>
</fn>
<fn id="tfn2_2">
<label>b</label>
<p>Camel population exists of both dromedary and Bactrian camels[
<xref rid="ref66" ref-type="bibr">66</xref>
].</p>
</fn>
</table-wrap-foot>
</table-wrap>
</p>
<p>A large number of camels are being transported from the Horn of Africa to the Middle East each year. These are mainly meat camels coming from the east of Africa going to Egypt, Libya and the Gulf states, and Sudanese camels that are being imported into the Middle East to participate in camel racing competitions [
<xref rid="ref15" ref-type="bibr">15</xref>
]. For example, the FAO reported that Somalia exported 77 000 camels in 2014 [
<xref rid="ref16" ref-type="bibr">16</xref>
]. The largest camel market in Africa is the Birqash market near Cairo (Egypt), where camels from Sudan and Ethiopia are most common, but trade routes include animals from Chad, Somalia, Eritrea and Kenya [
<xref rid="ref17" ref-type="bibr">17</xref>
]. Imported camels are usually quarantined for 2–3 days at the border before they are allowed to enter Egypt [
<xref rid="ref17" ref-type="bibr">17</xref>
]. Most Somali and Sudanese camels that are exported to the KSA are shipped from the ports of Berbera and Bosaso in North Somalia to the KSA ports of Jizan and Jeddah [
<xref rid="ref15" ref-type="bibr">15</xref>
].</p>
</sec>
<sec id="sec3-3">
<title>Clinical and pathological features of MERS-CoV infections in dromedary camels</title>
<p>In general, only minor clinical signs of disease have been observed in animals infected with MERS-CoV and most MERS-CoV infections do not appear to cause any symptoms [
<xref rid="ref9" ref-type="bibr">9</xref>
]. Disease symptoms that have been described after experimental and field infections are coughing and sneezing, respiratory discharge, fever and loss of appetite [
<xref rid="ref18" ref-type="bibr">18</xref>
<xref rid="ref20" ref-type="bibr">20</xref>
]. Although MERS-CoV RNA can be detected in several organs after experimental infection, in studies of natural infectious virus it has only been detected in the tissues of the upper and lower respiratory tract and regional lymph nodes of the respiratory system in part of the infected camels. Histologically, a mild-to-moderate inflammation and necrosis could also be seen on the upper and lower respiratory tract. No viral antigen or lesions were detected in the alveoli. Histopathological examination showed that the nasal respiratory epithelium is the principal site of MERS-CoV replication in camels [
<xref rid="ref18" ref-type="bibr">18</xref>
,
<xref rid="ref21" ref-type="bibr">21</xref>
].</p>
</sec>
<sec id="sec3-4">
<title>Virus shedding and antibody response</title>
<p>In one study investigating experimental infection of camels, MERS-CoV shedding started 1–2 days post-infection (dpi). In that study, infectious virus could be detected until 7 dpi, and viral RNA until 35 dpi in nasal swab samples and, in lower amounts, in oral swab samples [
<xref rid="ref18" ref-type="bibr">18</xref>
]. No infectious virus or viral RNA was detected in faecal or urine samples [
<xref rid="ref18" ref-type="bibr">18</xref>
]. Viral RNA detection in nasal, but also rectal swabs of camels after experimental infection until day 14, has been confirmed in a recent vaccine study [
<xref rid="ref21" ref-type="bibr">21</xref>
].</p>
<p>In the field surveys included in this review, MERS-CoV RNA has been described in rectal swab samples, although other field studies report negative results [
<xref rid="ref3" ref-type="bibr">3</xref>
,
<xref rid="ref22" ref-type="bibr">22</xref>
<xref rid="ref24" ref-type="bibr">24</xref>
] and when viral RNA can be detected, the positivity rate of rectal swabs is lower compared with nasal swab samples [
<xref rid="ref19" ref-type="bibr">19</xref>
,
<xref rid="ref25" ref-type="bibr">25</xref>
<xref rid="ref27" ref-type="bibr">27</xref>
]. Oral swabs are usually negative or show a lower positivity rate even when nasal swabs test positive for MERS-CoV RNA [
<xref rid="ref3" ref-type="bibr">3</xref>
,
<xref rid="ref19" ref-type="bibr">19</xref>
,
<xref rid="ref26" ref-type="bibr">26</xref>
]. Some studies have reported MERS-CoV RNA in milk samples [
<xref rid="ref27" ref-type="bibr">27</xref>
,
<xref rid="ref28" ref-type="bibr">28</xref>
]. Longitudinal studies of camel herds show that PCR results of nasal swabs can remain positive after 2 weeks [
<xref rid="ref27" ref-type="bibr">27</xref>
,
<xref rid="ref29" ref-type="bibr">29</xref>
]. When an interval of sampling of 1 or 2 months was maintained, nasal swabs become negative for viral RNA in the next sampling round [
<xref rid="ref24" ref-type="bibr">24</xref>
,
<xref rid="ref30" ref-type="bibr">30</xref>
].</p>
<p>MERS-CoV infections have also been detected in camels with MERS-CoV antibodies, both in calves with maternal antibodies as well as older camels that had already acquired antibodies from a previous infection. However, virus replication and thus the virus load is generally lower in infected seropositive animals compared with seronegative camels [
<xref rid="ref19" ref-type="bibr">19</xref>
,
<xref rid="ref21" ref-type="bibr">21</xref>
,
<xref rid="ref23" ref-type="bibr">23</xref>
,
<xref rid="ref24" ref-type="bibr">24</xref>
,
<xref rid="ref30" ref-type="bibr">30</xref>
,
<xref rid="ref31" ref-type="bibr">31</xref>
].</p>
<p>Little is known about the longevity of antibody titres after infection from longitudinal studies. A study following camels on a closed farm found that neutralizing antibodies remained consistent during a year [
<xref rid="ref30" ref-type="bibr">30</xref>
], while other studies found that antibody titres rapidly drop by 1–4-fold within a period often as short as 2 weeks [
<xref rid="ref24" ref-type="bibr">24</xref>
,
<xref rid="ref27" ref-type="bibr">27</xref>
].</p>
</sec>
<sec id="sec3-5">
<title>Worldwide distribution of MERS-CoV in dromedary camels</title>
<p>The first evidence of MERS-CoV in camels described so far is the detection of antibodies to MERS-CoV in camel sera from Somalia and Sudan from 1983 of which 81% tested positive [
<xref rid="ref32" ref-type="bibr">32</xref>
]. Additional serological evidence of the widespread presence of MERS-CoV infection in camels, included in this review, has been found in 18 additional countries: Bangladesh, Burkina Faso, Egypt, Ethiopia, Iraq, Israel, Jordan, Kenya, KSA, Mali, Morocco, Nigeria, Oman, Pakistan, Qatar, Spain, Tunisia and the UAE (
<xref ref-type="fig" rid="fig02">Fig. 2</xref>
). In addition, Promed mail reported that virus-positive camels had been found in Kuwait and Iran, the latter reportedly in imported animals (Archive number 20140612.2534919 and 20141029.2912385). In 11 countries, serological findings were complemented with the finding of viral RNA in dromedary camels: Burkina Faso, Egypt, Ethiopia, Iraq, Jordan, KSA, Morocco, Nigeria, Oman, Qatar and the UAE. Investigations of MERS-CoV circulation amongst dromedary camels in Australia, Japan, Kazakhstan, USA and Canada did not find any proof of MERS-CoV circulation. All countries where MERS-CoV circulates in the camel population, with the exception of Spain (Canary Islands), Pakistan and Bangladesh, are located in the Middle East or Africa [
<xref rid="ref4" ref-type="bibr">4</xref>
,
<xref rid="ref33" ref-type="bibr">33</xref>
]. One out of 17 camels that had MERS-CoV antibodies in Bangladesh was born in Bangladesh, 16 others were imported from India [
<xref rid="ref34" ref-type="bibr">34</xref>
]. However, there have not been any additional reports of MERS-CoV in camels in India. There is no record of foreign origin of the seropositive camels from Pakistan [
<xref rid="ref35" ref-type="bibr">35</xref>
]. Moreover, in previous studies there had already been evidence of seropositive camels that originate from Pakistan [
<xref rid="ref37" ref-type="bibr">37</xref>
,
<xref rid="ref58" ref-type="bibr">58</xref>
].
<fig id="fig02" orientation="portrait" position="float">
<label>Fig. 2.</label>
<caption>
<p>Virological and serological evidence for MERS CoV in dromedary camels.</p>
</caption>
<graphic xlink:href="S095026881800345X_fig2"></graphic>
</fig>
</p>
<p>When combining serology data from all papers included in this review, the overall median seroprevalence of camels in Africa is 81% (6106/8526; range 28–98%), compared with a median seroprevalence of 93% (3230/3846; range 53–100%) in camels from the Middle East. Based on viral shedding studies from African countries, the median rate of viral shedding was 5% (1108/6318; range 1–15%), compared with 12% in camels from the Middle East (1191/14902; range 0–100%).</p>
</sec>
<sec id="sec3-6">
<title>Risk factors of MERS-CoV in dromedary camels</title>
<sec id="sec3-6-1">
<title>Age</title>
<p>The seroprevalence of MERS-CoV antibodies increases with age in camels, while the fraction of camels that test positive for MERS-CoV RNA in their nasal swabs decreases with age [
<xref rid="ref17" ref-type="bibr">17</xref>
,
<xref rid="ref31" ref-type="bibr">31</xref>
,
<xref rid="ref36" ref-type="bibr">36</xref>
,
<xref rid="ref38" ref-type="bibr">38</xref>
,
<xref rid="ref39" ref-type="bibr">39</xref>
]. When all serological results of papers that included sufficient age information is combined, the median seroprevalence of camels aged under 2 years is 52% (992/1972; range 0–100%), while the age groups 2–5 years (702/924; range 30–100%) and over 5 years old (1226/1370; range 0–100%) had a combined median seroprevalence of 97%. In the virological studies reporting age breakdown, the median rate of nasal shedding in 0–2 years old camels was 34% (718/2612; range 0–100%) of cases, compared with 2% (91/1142; range 0–100%) in camels older than 2 years.</p>
</sec>
<sec id="sec3-6-2">
<title>Sex</title>
<p>Some individual studies show a significantly higher seroprevalence in female camels compared with males [
<xref rid="ref27" ref-type="bibr">27</xref>
,
<xref rid="ref39" ref-type="bibr">39</xref>
], while others show the opposite [
<xref rid="ref38" ref-type="bibr">38</xref>
] or do not find any significant difference [
<xref rid="ref17" ref-type="bibr">17</xref>
,
<xref rid="ref35" ref-type="bibr">35</xref>
]. Similar disagreeing results are published for the presence of MERS-CoV RNA in male
<italic>vs.</italic>
female camels [
<xref rid="ref17" ref-type="bibr">17</xref>
,
<xref rid="ref27" ref-type="bibr">27</xref>
,
<xref rid="ref38" ref-type="bibr">38</xref>
,
<xref rid="ref39" ref-type="bibr">39</xref>
].</p>
<p>In the studies in this review where sex of camels was recorded, a total of 4810 serum samples from female camels and 3458 samples from male camels were collected and analysed for MERS-CoV antibodies, compared with 2007
<italic>vs.</italic>
2505 nasal swabs for viral RNA testing. Approximately three times more female camels were sampled at farms, while male camels were in the majority in studies that looked at MERS-CoV prevalence of camels at slaughterhouses, live animal markets and quarantine areas. The overall median seroprevalence of male and female camels in our review is 50% and 67%, respectively (range 0–100%; excluding results from Israel and Kazakhstan). The median percentage of presence of viral RNA is 18% in nasal swabs of male camels (range 0–21%) compared with 9% in female camels (range 0–100%), in our review.</p>
</sec>
<sec id="sec3-6-3">
<title>Sampling location and herd characteristics</title>
<p>In several studies, camels that were sampled at animal markets or quarantine facilities were seropositive more often than camels at farms [
<xref rid="ref17" ref-type="bibr">17</xref>
,
<xref rid="ref22" ref-type="bibr">22</xref>
,
<xref rid="ref27" ref-type="bibr">27</xref>
,
<xref rid="ref34" ref-type="bibr">34</xref>
]. Combining serological laboratory results of camels in our review with sufficient background information with regard to the sampling location does not result in the same pattern, with a median seroprevalence of 84% (5632/8115; range 0–100%; excluding Australia and Spain) in camels from farms and 80% (943/1005; range 28–98%) in the camel population sampled at markets and quarantine facilities. Studies in Egypt found a significantly higher PCR positivity rate in camels sampled in abattoirs or quarantine facilities, but these results could not be confirmed by other papers in this review [
<xref rid="ref17" ref-type="bibr">17</xref>
,
<xref rid="ref27" ref-type="bibr">27</xref>
].</p>
<p>When comparing differences in seroprevalence or virus RNA-positive rate in nomadic
<italic>vs.</italic>
sedentary camel herds, some authors did not find a statistical difference between the two herd management types [
<xref rid="ref39" ref-type="bibr">39</xref>
,
<xref rid="ref40" ref-type="bibr">40</xref>
], while others found some evidence of higher seroprevalences in nomadic herds [
<xref rid="ref27" ref-type="bibr">27</xref>
,
<xref rid="ref36" ref-type="bibr">36</xref>
]. One study in Kenya looked at the differences between herds with different levels of isolation, and did not find significant differences in MERS-CoV antibody levels [
<xref rid="ref40" ref-type="bibr">40</xref>
].</p>
</sec>
<sec id="sec3-6-4">
<title>Animal origin</title>
<p>Most studies that compared local camels with imported camels suggested that imported camels are seropositive for MERS-CoV more often [
<xref rid="ref9" ref-type="bibr">9</xref>
,
<xref rid="ref17" ref-type="bibr">17</xref>
,
<xref rid="ref27" ref-type="bibr">27</xref>
,
<xref rid="ref34" ref-type="bibr">34</xref>
,
<xref rid="ref41" ref-type="bibr">41</xref>
], although not all differences were significant.</p>
<p>Two studies in Egypt found a significantly higher RNA positivity rate in imported camels from East Africa compared with domestically bred camels [
<xref rid="ref17" ref-type="bibr">17</xref>
,
<xref rid="ref27" ref-type="bibr">27</xref>
], while another study executed in the KSA found a significantly higher number of MERS-CoV RNA-positive results amongst local camels
<italic>vs.</italic>
camels from Sudan and Somalia [
<xref rid="ref22" ref-type="bibr">22</xref>
].</p>
</sec>
<sec id="sec3-6-5">
<title>Seasonal variation in MERS-CoV circulation in the camel population</title>
<p>Although MERS-CoV was detected almost year-round in camels, some studies show a relatively higher seroprevalence and viral detection during the cooler winter months [
<xref rid="ref17" ref-type="bibr">17</xref>
,
<xref rid="ref20" ref-type="bibr">20</xref>
,
<xref rid="ref27" ref-type="bibr">27</xref>
,
<xref rid="ref38" ref-type="bibr">38</xref>
].</p>
</sec>
</sec>
<sec id="sec3-7">
<title>MERS-CoV in non-dromedary animals</title>
<p>MERS-CoV antibodies have been detected in llamas and alpacas in Israel and in alpacas in Qatar [
<xref rid="ref42" ref-type="bibr">42</xref>
,
<xref rid="ref43" ref-type="bibr">43</xref>
]. To date, no MERS-CoV antibodies or viral RNA have been detected in Bactrian camels [
<xref rid="ref4" ref-type="bibr">4</xref>
,
<xref rid="ref37" ref-type="bibr">37</xref>
,
<xref rid="ref44" ref-type="bibr">44</xref>
<xref rid="ref47" ref-type="bibr">47</xref>
] (
<xref rid="tab01" ref-type="table">Table 1</xref>
and
<xref rid="tab03" ref-type="table">Table 3</xref>
). Swine, goats and horses that were included in the field surveys in our review all tested negative for MERS-CoV RNA and antibodies [
<xref rid="ref4" ref-type="bibr">4</xref>
,
<xref rid="ref17" ref-type="bibr">17</xref>
,
<xref rid="ref31" ref-type="bibr">31</xref>
,
<xref rid="ref48" ref-type="bibr">48</xref>
<xref rid="ref52" ref-type="bibr">52</xref>
]. MERS-CoV antibodies were detected in two studies in sheep in Egypt and Qatar, although in very low numbers [
<xref rid="ref17" ref-type="bibr">17</xref>
,
<xref rid="ref51" ref-type="bibr">51</xref>
]. However, most surveys that investigated sheep did not find evidence of MERS-CoV infection or exposure [
<xref rid="ref4" ref-type="bibr">4</xref>
,
<xref rid="ref23" ref-type="bibr">23</xref>
,
<xref rid="ref29" ref-type="bibr">29</xref>
,
<xref rid="ref31" ref-type="bibr">31</xref>
,
<xref rid="ref34" ref-type="bibr">34</xref>
,
<xref rid="ref48" ref-type="bibr">48</xref>
<xref rid="ref51" ref-type="bibr">51</xref>
,
<xref rid="ref53" ref-type="bibr">53</xref>
].
<table-wrap id="tab03" orientation="portrait" position="float">
<label>Table 3.</label>
<caption>
<p>MERS-CoV in non-dromedary animals in the field</p>
</caption>
<alternatives>
<graphic xlink:href="S095026881800345X_tab3"></graphic>
<table frame="hsides" rules="groups">
<col align="left" width="1*" span="1"></col>
<col align="left" width="1*" span="1"></col>
<col align="left" width="1*" span="1"></col>
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">Species</th>
<th align="center" rowspan="1" colspan="1">Seroprevalence</th>
<th align="center" rowspan="1" colspan="1">Viral RNA
<xref ref-type="table-fn" rid="tfn3_1">
<sup>a</sup>
</xref>
</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="1" colspan="1">Bactrian camel</td>
<td rowspan="1" colspan="1">0% (0/505) (Netherlands, Chile [
<xref rid="ref4" ref-type="bibr">4</xref>
]; UAE [
<xref rid="ref37" ref-type="bibr">37</xref>
]; Mongolia [
<xref rid="ref44" ref-type="bibr">44</xref>
]; China [
<xref rid="ref45" ref-type="bibr">45</xref>
]; Kazachstan [
<xref rid="ref46" ref-type="bibr">46</xref>
]; Japan [
<xref rid="ref47" ref-type="bibr">47</xref>
])</td>
<td rowspan="1" colspan="1">0/390 (China [
<xref rid="ref45" ref-type="bibr">45</xref>
], Mongolia [
<xref rid="ref44" ref-type="bibr">44</xref>
])</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Alpaca</td>
<td rowspan="1" colspan="1">24% (30/126) (Israel(+) [
<xref rid="ref43" ref-type="bibr">43</xref>
], Netherlands, Chile [
<xref rid="ref4" ref-type="bibr">4</xref>
])
<break></break>
<italic>100% (15/15), Qatar</italic>
[
<xref rid="ref42" ref-type="bibr">42</xref>
]
<xref ref-type="table-fn" rid="tfn3_2">
<sup>b</sup>
</xref>
</td>
<td rowspan="1" colspan="1">0% (0/102) (Israel [
<xref rid="ref43" ref-type="bibr">43</xref>
])
<break></break>
<italic>0% (0/15)</italic>
(
<italic>Qatar:</italic>
[
<xref rid="ref42" ref-type="bibr">42</xref>
])
<xref ref-type="table-fn" rid="tfn3_2">
<sup>b</sup>
</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Llama</td>
<td rowspan="1" colspan="1">23% (6/26) (Israel (+) [
<xref rid="ref43" ref-type="bibr">43</xref>
], Netherlands, Chile [
<xref rid="ref4" ref-type="bibr">4</xref>
])</td>
<td rowspan="1" colspan="1">0% (0/19) (Israel [
<xref rid="ref43" ref-type="bibr">43</xref>
])</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Guanaco</td>
<td rowspan="1" colspan="1">0% (0/2) (Chile [
<xref rid="ref4" ref-type="bibr">4</xref>
])</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Cattle and buffalos</td>
<td rowspan="1" colspan="1">0% (0/258) (KSA [
<xref rid="ref50" ref-type="bibr">50</xref>
]; Egypt [
<xref rid="ref27" ref-type="bibr">27</xref>
,
<xref rid="ref48" ref-type="bibr">48</xref>
]; The Netherlands [
<xref rid="ref4" ref-type="bibr">4</xref>
]; Jordan [
<xref rid="ref23" ref-type="bibr">23</xref>
,
<xref rid="ref51" ref-type="bibr">51</xref>
])</td>
<td rowspan="1" colspan="1">0% (0/35) (Egypt [
<xref rid="ref27" ref-type="bibr">27</xref>
])</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Swine</td>
<td rowspan="1" colspan="1">0% (0/260) (Egypt [
<xref rid="ref48" ref-type="bibr">48</xref>
])</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Sheep</td>
<td rowspan="1" colspan="1">0.2% (1/482)
<xref ref-type="table-fn" rid="tfn3_3">
<sup>c</sup>
</xref>
(KSA [
<xref rid="ref31" ref-type="bibr">31</xref>
,
<xref rid="ref50" ref-type="bibr">50</xref>
]; Egypt (+) [
<xref rid="ref27" ref-type="bibr">27</xref>
,
<xref rid="ref48" ref-type="bibr">48</xref>
], The Netherlands [
<xref rid="ref4" ref-type="bibr">4</xref>
]; Jordan [
<xref rid="ref23" ref-type="bibr">23</xref>
,
<xref rid="ref51" ref-type="bibr">51</xref>
]; UAE [
<xref rid="ref29" ref-type="bibr">29</xref>
,
<xref rid="ref49" ref-type="bibr">49</xref>
]; Bangladesh [
<xref rid="ref34" ref-type="bibr">34</xref>
])</td>
<td rowspan="1" colspan="1">0% (0/307) (Jordan [
<xref rid="ref51" ref-type="bibr">51</xref>
]; KSA [
<xref rid="ref31" ref-type="bibr">31</xref>
]; Egypt [
<xref rid="ref27" ref-type="bibr">27</xref>
]; Bangladesh [
<xref rid="ref34" ref-type="bibr">34</xref>
])</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Goats</td>
<td rowspan="1" colspan="1">0% (0/399) (KSA [
<xref rid="ref31" ref-type="bibr">31</xref>
,
<xref rid="ref50" ref-type="bibr">50</xref>
]; Egypt [
<xref rid="ref27" ref-type="bibr">27</xref>
,
<xref rid="ref48" ref-type="bibr">48</xref>
]; Spain, The Netherlands [
<xref rid="ref4" ref-type="bibr">4</xref>
]; Jordan [
<xref rid="ref51" ref-type="bibr">51</xref>
])</td>
<td rowspan="1" colspan="1">0% (0/72) (KSA [
<xref rid="ref31" ref-type="bibr">31</xref>
]; Egypt [
<xref rid="ref27" ref-type="bibr">27</xref>
])</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Horses, donkeys</td>
<td rowspan="1" colspan="1">0% (0/22) (Egypt [
<xref rid="ref27" ref-type="bibr">27</xref>
]; UAE [
<xref rid="ref49" ref-type="bibr">49</xref>
])
<break></break>
<italic>0% (0/192)(UAE</italic>
[
<xref rid="ref52" ref-type="bibr">52</xref>
])
<xref ref-type="table-fn" rid="tfn3_2">
<sup>b</sup>
</xref>
</td>
<td rowspan="1" colspan="1">0% (0/19) (Egypt [
<xref rid="ref27" ref-type="bibr">27</xref>
])</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Birds</td>
<td rowspan="1" colspan="1">0% (0/444) (KSA [
<xref rid="ref50" ref-type="bibr">50</xref>
]; HK [
<xref rid="ref48" ref-type="bibr">48</xref>
])</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Bats</td>
<td rowspan="1" colspan="1">0% (0/91) (Egypt [
<xref rid="ref27" ref-type="bibr">27</xref>
])</td>
<td rowspan="1" colspan="1"></td>
</tr>
</tbody>
</table>
</alternatives>
<table-wrap-foot>
<fn id="tfn3_1">
<label>a</label>
<p>MERS-CoV RNA in nasal swabs.</p>
</fn>
<fn id="tfn3_2">
<label>b</label>
<p>Articles that were not included in the original literature search, because no camels were investigated in these studies.</p>
</fn>
<fn id="tfn3_3">
<label>c</label>
<p>Six additional sera from sheep in Qatar tested positive by protein microarray (pMA), but could not be confirmed by NT.</p>
</fn>
</table-wrap-foot>
</table-wrap>
</p>
</sec>
</sec>
<sec sec-type="discussion" id="sec4">
<title>Discussion</title>
<p>The publications in this review show that the MERS-CoV mainly circulates in dromedary camel populations in the Middle East and part of Africa, and has been infecting dromedary camels in Africa for more than three decades. Antibodies have also been found in Arabic camel sera from the early 90s [
<xref rid="ref31" ref-type="bibr">31</xref>
,
<xref rid="ref32" ref-type="bibr">32</xref>
]. However, MERS-CoV was discovered until 2012, after the first human cases appeared [
<xref rid="ref1" ref-type="bibr">1</xref>
], which is probably due to the minor clinical symptoms of MERS-CoV infections in camels [
<xref rid="ref18" ref-type="bibr">18</xref>
]. Most camel surveys were conducted in the Middle East and some northern and eastern African countries, but significant data gaps currently still exist in the north and west of Africa, in countries that have camel populations of 100 000 to more than a million animals, such as Algeria, Libya, Mauritania and Niger. Even less is known about the central Asian region. Some evidence of MERS-CoV circulation in camels of Pakistan and Bangladesh was recently published, but data is lacking from Afghanistan and India. Knowledge on the presence of MERS-CoV in the animal reservoir is a crucial first step to assess whether MERS-CoV could be a relevant public health threat in these regions.</p>
<p>MERS-CoV infections are mainly detected in calves and young camels [
<xref rid="ref30" ref-type="bibr">30</xref>
,
<xref rid="ref31" ref-type="bibr">31</xref>
]. The research included in this review shows that the IgG positivity rate increases gradually in dromedary camels of increasing age while the MERS-CoV RNA detection rate decreases. Maternal IgG antibodies in camels are acquired through the intake of colostrum during the first 24 h post-parturition. After 24 h, antibody levels in the dam's milk decrease rapidly [
<xref rid="ref54" ref-type="bibr">54</xref>
]. One study showed that maternal antibodies in calves peak at 7 days post-parturition and decline in the following 6 months. After 5–6 months, over half of the calves did not have maternal neutralizing antibodies in their serum any longer [
<xref rid="ref30" ref-type="bibr">30</xref>
]. However, in other field studies, the titre of MERS-CoV-specific antibodies is still low at 1 month of age and increases with age in dromedary calves [
<xref rid="ref27" ref-type="bibr">27</xref>
,
<xref rid="ref55" ref-type="bibr">55</xref>
]. A lower or undetectable antibody levels in young camels is likely to explain the higher MERS-CoV RNA detection rate. In adult camels, a much higher MERS-CoV seroprevalence can be found, which is probably due to a long-lasting immune response against a MERS-CoV infection or multiple re-infections with MERS-CoV. Immunity is not sterilizing, as MERS-CoV infection and shedding have also been shown in adult camels that have MERS-CoV antibodies [
<xref rid="ref19" ref-type="bibr">19</xref>
,
<xref rid="ref21" ref-type="bibr">21</xref>
,
<xref rid="ref23" ref-type="bibr">23</xref>
,
<xref rid="ref24" ref-type="bibr">24</xref>
,
<xref rid="ref30" ref-type="bibr">30</xref>
,
<xref rid="ref31" ref-type="bibr">31</xref>
].</p>
<p>Several articles have analysed seroprevalence and virus shedding data in relation to factors, other than age, that may explain differences in seroprevalence and MERS-CoV RNA-positive rate in camels, such as sex, sampling location, herd characteristics and animal origin. Our review shows that there is considerable heterogeneity in results. In addition, comparison between studies is difficult given the lack of standardisation of study designs. A key factor to consider when comparing studies is the difference in distribution of male and female camels amongst different disciplines of camel husbandry. Females are mainly used for milking and reproduction. As a result, they often stay at farms. Male camels, especially of young age (<1 year old), are the predominant sex in slaughterhouses and amongst camels used for transport [
<xref rid="ref39" ref-type="bibr">39</xref>
,
<xref rid="ref56" ref-type="bibr">56</xref>
]. This also influences the risk profile of acquiring a MERS-CoV infection. Female camels are in closer contact with calves, who are more susceptible to infection and shed virus in higher quantities compared with older camels [
<xref rid="ref30" ref-type="bibr">30</xref>
]. On the other hand, meat and transport camels (predominantly male) travel more, leading to increased contact with other camels and camel herds, and therefore a higher chance of exposure to MERS-CoV. Some papers in this review suggest that there is a generally lower infection rate of domestically bred camels and camels on farms compared with imported camels and camels on animal markets or in quarantine facilities. This may be explained by the same increased contact rate and mixing of camel herds, leading to an increased chance of MERS-CoV exposure and spread.</p>
<p>The increase in MERS-CoV circulation in winter and spring can have multiple explanations. Firstly, the winter is the calving season [
<xref rid="ref10" ref-type="bibr">10</xref>
], which leads to a larger proportion of young animals that usually have a higher number of MERS-CoV infections and virus excretion. Moreover, in winter season, there is a major increase of camel and human movements due to camel racing competitions, camel breeding, trading and movements to grazing grounds, which increases the chance of virus spread. Additionally, cooler temperatures may facilitate coronavirus survival in the environment [
<xref rid="ref57" ref-type="bibr">57</xref>
].</p>
<p>In experimental studies, llama's and alpaca's are shown to be susceptible to infection with MERS-CoV [
<xref rid="ref58" ref-type="bibr">58</xref>
,
<xref rid="ref59" ref-type="bibr">59</xref>
], which was confirmed by two papers in our review, describing serologically positive llamas and alpacas in Israel and alpacas with MERS-CoV neutralizing antibodies in Qatar [
<xref rid="ref42" ref-type="bibr">42</xref>
,
<xref rid="ref43" ref-type="bibr">43</xref>
]. In experimental settings, animal-to-animal transmission has been shown for alpacas, making them a possible risk population for human infections [
<xref rid="ref58" ref-type="bibr">58</xref>
]. Two studies in our review also found anti-MERS-CoV antibodies in sheep [
<xref rid="ref17" ref-type="bibr">17</xref>
,
<xref rid="ref51" ref-type="bibr">51</xref>
] but experimental inoculation of sheep did not result in MERS-CoV replication or antibody development [
<xref rid="ref59" ref-type="bibr">59</xref>
,
<xref rid="ref60" ref-type="bibr">60</xref>
]. However, the DPP4 receptor, the entry receptor for MERS-CoV, is present in sheep tissues, making it possible for the virus to bind to the sheep respiratory tract which may explain the finding of MERS-CoV antibodies [
<xref rid="ref61" ref-type="bibr">61</xref>
]. Pigs also express the DPP4 receptor in their respiratory tract, and viral replication in experimental settings has been shown for pigs, but no antibodies or MERS-CoV RNA have been found in pigs during field surveys [
<xref rid="ref48" ref-type="bibr">48</xref>
,
<xref rid="ref59" ref-type="bibr">59</xref>
]. This may be explained by the limited viral shedding in pigs and the absence of animal-to-animal transmission [
<xref rid="ref62" ref-type="bibr">62</xref>
,
<xref rid="ref63" ref-type="bibr">63</xref>
].</p>
<p>We show that dromedary camels are present in large parts of the African and Asian continent, and that MERS infections in dromedary camels are widespread. However, human infections due to spill-over from the dromedary camel reservoir have not been reported in Africa [
<xref rid="ref10" ref-type="bibr">10</xref>
]. Several explanations for the difference in human cases between the Arabian Peninsula and Africa have been suggested, such as differences in cultural habits, camel husbandry, prevalence of comorbidities, under detection or genetic factors in the local population [
<xref rid="ref64" ref-type="bibr">64</xref>
]. Moreover, West African viruses were found to be phylogenetically and phenotypically distinct from the MERS-CoV viruses that caused human disease in the Middle East [
<xref rid="ref65" ref-type="bibr">65</xref>
].</p>
<p>Increased knowledge on the animal reservoir of MERS-CoV needs to be combined with research on MERS prevalence and risk factors in humans to assess the true public health risk. Moreover, the absence of human disease, combined with the mild symptoms in camels, caused by MERS, will likely have a negative effect on the willingness to implement interventions and the cost-effectiveness of possible interventions in some areas.</p>
</sec>
<sec sec-type="conclusion" id="sec5">
<title>Conclusion</title>
<p>Since the discovery of MERS-CoV in 2012, the dromedary camel has been identified as the animal reservoir of human infections with the MERS-CoV. However, the exact route of human primary infections is still unknown. Moreover, the scale of the spread and prevalence of MERS-CoV in the camel reservoir is not fully known yet since there is still a lack of MERS-CoV prevalence data in some countries that harbour a very significant proportion of the world camel population. However, knowledge of the animal reservoir of MERS-CoV is essential to develop intervention and control measures to prevent human infections. Prospective studies that include representative sampling of camels of different age groups and sex, within the different husbandry practices, are needed to fully understand the patterns of MERS-CoV circulation. Such studies are important as they may give more information on critical control points for interventions to reduce the circulation of MERS-CoV and/or exposure of humans.</p>
</sec>
</body>
<back>
<ack>
<sec id="nts3" sec-type="COI-statement">
<title>Conflict of interest</title>
<p>None.</p>
</sec>
</ack>
<notes id="nts1" notes-type="other">
<title>Author ORCIDs</title>
<p>R. S. Sikkema,
<uri xlink:type="simple" xlink:href="https://orcid.org/0000-0001-7331-6274">0000-0001-7331-6274</uri>
</p>
</notes>
<notes id="nts2" notes-type="other">
<title>Financial support</title>
<p>This study was financially supported by the European Commission's H2020 programme under contract number 643476 (
<uri xlink:type="simple" xlink:href="http://www.compare-europe.eu/">http://www.compare-europe.eu/</uri>
).</p>
</notes>
<ref-list id="reflist1">
<title>References</title>
<ref id="ref1">
<label>1.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Zaki</surname>
<given-names>AM</given-names>
</name>
<etal></etal>
(
<year>2012</year>
)
<article-title>Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia</article-title>
.
<source>The New England Journal of Medicine</source>
<volume>367</volume>
,
<fpage>1814</fpage>
<lpage>1820</lpage>
.
<pub-id pub-id-type="pmid">23075143</pub-id>
</mixed-citation>
</ref>
<ref id="ref2">
<label>2.</label>
<mixed-citation publication-type="other">
<collab>WHO-EMRO</collab>
. MERS situation update March. Available at
<uri xlink:type="simple" xlink:href="http://www.emro.who.int/images/stories/mers-cov/MERS-CoV_March_2018.pdf?ua=1">http://www.emro.who.int/images/stories/mers-cov/MERS-CoV_March_2018.pdf?ua=1</uri>
(Accessed
<date-in-citation content-type="access-date">2 May 2018</date-in-citation>
).</mixed-citation>
</ref>
<ref id="ref3">
<label>3.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Haagmans</surname>
<given-names>BL</given-names>
</name>
<etal></etal>
(
<year>2014</year>
)
<article-title>Middle East respiratory syndrome coronavirus in dromedary camels: an outbreak investigation</article-title>
.
<source>The Lancet Infectious Diseases</source>
<volume>14</volume>
,
<fpage>140</fpage>
<lpage>145</lpage>
.
<pub-id pub-id-type="pmid">24355866</pub-id>
</mixed-citation>
</ref>
<ref id="ref4">
<label>4.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Reusken</surname>
<given-names>CB</given-names>
</name>
<etal></etal>
(
<year>2013</year>
)
<article-title>Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological study</article-title>
.
<source>The Lancet Infectious Diseases</source>
<volume>13</volume>
,
<fpage>859</fpage>
<lpage>866</lpage>
.
<pub-id pub-id-type="pmid">23933067</pub-id>
</mixed-citation>
</ref>
<ref id="ref5">
<label>5.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Hui</surname>
<given-names>DS</given-names>
</name>
<etal></etal>
(
<year>2018</year>
)
<article-title>Middle East respiratory syndrome coronavirus: risk factors and determinants of primary, household, and nosocomial transmission</article-title>
.
<source>The Lancet Infectious Diseases</source>
<volume>18</volume>
,
<fpage>e217</fpage>
<lpage>e227</lpage>
.
<pub-id pub-id-type="pmid">29680581</pub-id>
</mixed-citation>
</ref>
<ref id="ref6">
<label>6.</label>
<mixed-citation publication-type="other">
<collab>WHO/MERS/RA</collab>
. WHO MERS-CoV Global Summary and Assessment of Risk. Available at
<uri xlink:type="simple" xlink:href="http://www.who.int/emergencies/mers-cov/risk-assessment-july-2017.pdf">http://www.who.int/emergencies/mers-cov/risk-assessment-july-2017.pdf</uri>
(Accessed
<date-in-citation content-type="access-date">2 May 2018</date-in-citation>
).</mixed-citation>
</ref>
<ref id="ref7">
<label>7.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Dudas</surname>
<given-names>G</given-names>
</name>
<etal></etal>
(
<year>2018</year>
)
<article-title>MERS-CoV spillover at the camel-human interface</article-title>
.
<source>Elife</source>
<volume>7</volume>
,
<elocation-id>e31257</elocation-id>
.
<pub-id pub-id-type="pmid">29336306</pub-id>
</mixed-citation>
</ref>
<ref id="ref8">
<label>8.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Anthony</surname>
<given-names>SJ</given-names>
</name>
<etal></etal>
(
<year>2017</year>
)
<article-title>Further evidence for bats as the evolutionary source of Middle East respiratory syndrome coronavirus</article-title>
.
<source>mBio</source>
<volume>8</volume>
,
<elocation-id>e00373-17</elocation-id>
.
<pub-id pub-id-type="pmid">28377531</pub-id>
</mixed-citation>
</ref>
<ref id="ref9">
<label>9.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Chu</surname>
<given-names>DK</given-names>
</name>
<etal></etal>
(
<year>2014</year>
)
<article-title>MERS coronaviruses in dromedary camels, Egypt</article-title>
.
<source>Emerging Infectious Diseases</source>
<volume>20</volume>
,
<fpage>1049</fpage>
<lpage>1053</lpage>
.
<pub-id pub-id-type="pmid">24856660</pub-id>
</mixed-citation>
</ref>
<ref id="ref10">
<label>10.</label>
<mixed-citation publication-type="other">
<collab>FAO MERS-CoV situation updates</collab>
. Available at
<uri xlink:type="simple" xlink:href="http://www.fao.org/ag/againfo/programmes/en/empres/mers/situation_update.html">http://www.fao.org/ag/againfo/programmes/en/empres/mers/situation_update.html</uri>
(Accessed
<date-in-citation content-type="access-date">2 May 2018</date-in-citation>
).</mixed-citation>
</ref>
<ref id="ref11">
<label>11.</label>
<mixed-citation publication-type="other">
<collab>FAO FAOSTAT</collab>
. Available at
<uri xlink:type="simple" xlink:href="http://www.fao.org/faostat/en/#data">http://www.fao.org/faostat/en/#data</uri>
(Accessed
<date-in-citation content-type="access-date">2 May 2018</date-in-citation>
).</mixed-citation>
</ref>
<ref id="ref12">
<label>12.</label>
<mixed-citation publication-type="other">
<collab>OIE World Animal Health Information System (WAHIS)</collab>
. Available at
<uri xlink:type="simple" xlink:href="http://www.oie.int/wahis_2/public/wahid.php/Wahidhome/Home/indexcontent/newlang/en">http://www.oie.int/wahis_2/public/wahid.php/Wahidhome/Home/indexcontent/newlang/en</uri>
(Accessed
<date-in-citation content-type="access-date">2 May 2018</date-in-citation>
).</mixed-citation>
</ref>
<ref id="ref13">
<label>13.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Faye</surname>
<given-names>B</given-names>
</name>
<etal></etal>
(
<year>2013</year>
)
<article-title>La production de viande de chameau: état des connaissances, situation actuelle et perspectives</article-title>
.
<source>INRA Productions Animales</source>
<volume>26</volume>
,
<fpage>247</fpage>
<lpage>258</lpage>
.</mixed-citation>
</ref>
<ref id="ref14">
<label>14.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Saalfeld</surname>
<given-names>WK</given-names>
</name>
and
<name>
<surname>Edwards</surname>
<given-names>GP</given-names>
</name>
(
<year>2010</year>
)
<article-title>Distribution and abundance of the feral camel (
<italic>Camelus dromedarius</italic>
) in Australia</article-title>
.
<source>The Rangeland Journal</source>
<volume>32</volume>
,
<fpage>1</fpage>
<lpage>9</lpage>
.</mixed-citation>
</ref>
<ref id="ref15">
<label>15.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Younan</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Bornstein</surname>
<given-names>S</given-names>
</name>
and
<name>
<surname>Gluecks</surname>
<given-names>IV</given-names>
</name>
(
<year>2016</year>
)
<article-title>MERS and the dromedary camel trade between Africa and the Middle East</article-title>
.
<source>Tropical Animal Health and Production</source>
<volume>48</volume>
,
<fpage>1277</fpage>
<lpage>1282</lpage>
.
<pub-id pub-id-type="pmid">27324244</pub-id>
</mixed-citation>
</ref>
<ref id="ref16">
<label>16.</label>
<mixed-citation publication-type="other">
<collab>FAO</collab>
(
<year>2018</year>
) Somalia registers record exports of 5 million livestock in 2014. Available at
<uri xlink:type="simple" xlink:href="http://www.fao.org/news/story/en/item/283777/icode/">http://www.fao.org/news/story/en/item/283777/icode/</uri>
(Accessed
<date-in-citation content-type="access-date">19 June 2018</date-in-citation>
).</mixed-citation>
</ref>
<ref id="ref17">
<label>17.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Ali</surname>
<given-names>M</given-names>
</name>
<etal></etal>
(
<year>2017</year>
)
<article-title>Cross-sectional surveillance of Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels and other mammals in Egypt, August 2015 to January 2016</article-title>
.
<source>Eurosurveilancel</source>
<volume>22</volume>
,
<fpage>30487</fpage>
.</mixed-citation>
</ref>
<ref id="ref18">
<label>18.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Adney</surname>
<given-names>DR</given-names>
</name>
<etal></etal>
(
<year>2014</year>
)
<article-title>Replication and shedding of MERS-CoV in upper respiratory tract of inoculated dromedary camels</article-title>
.
<source>Emerging Infectious Diseases</source>
<volume>20</volume>
,
<fpage>1999</fpage>
<lpage>2005</lpage>
.
<pub-id pub-id-type="pmid">25418529</pub-id>
</mixed-citation>
</ref>
<ref id="ref19">
<label>19.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Hemida</surname>
<given-names>MG</given-names>
</name>
<etal></etal>
(
<year>2014</year>
)
<article-title>MERS coronavirus in dromedary camel herd, Saudi Arabia</article-title>
.
<source>Emerging Infectious Diseases</source>
<volume>20</volume>
,
<fpage>1231</fpage>
<lpage>1234</lpage>
.
<pub-id pub-id-type="pmid">24964193</pub-id>
</mixed-citation>
</ref>
<ref id="ref20">
<label>20.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Khalafalla</surname>
<given-names>AI</given-names>
</name>
<etal></etal>
(
<year>2015</year>
)
<article-title>MERS-CoV in upper respiratory tract and lungs of dromedary camels, Saudi Arabia, 2013–2014</article-title>
.
<source>Emerging Infectious Diseases</source>
<volume>21</volume>
,
<fpage>1153</fpage>
<lpage>1158</lpage>
.
<pub-id pub-id-type="pmid">26079346</pub-id>
</mixed-citation>
</ref>
<ref id="ref21">
<label>21.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Haagmans</surname>
<given-names>BL</given-names>
</name>
<etal></etal>
(
<year>2016</year>
)
<article-title>An orthopoxvirus-based vaccine reduces virus excretion after MERS-CoV infection in dromedary camels</article-title>
.
<source>Science</source>
<volume>351</volume>
,
<fpage>77</fpage>
<lpage>81</lpage>
.
<pub-id pub-id-type="pmid">26678878</pub-id>
</mixed-citation>
</ref>
<ref id="ref22">
<label>22.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Sabir</surname>
<given-names>JS</given-names>
</name>
<etal></etal>
(
<year>2016</year>
)
<article-title>Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia</article-title>
.
<source>Science</source>
<volume>351</volume>
,
<fpage>81</fpage>
<lpage>84</lpage>
.
<pub-id pub-id-type="pmid">26678874</pub-id>
</mixed-citation>
</ref>
<ref id="ref23">
<label>23.</label>
<mixed-citation publication-type="journal">
<name>
<surname>van Doremalen</surname>
<given-names>N</given-names>
</name>
<etal></etal>
(
<year>2017</year>
)
<article-title>High prevalence of Middle East respiratory coronavirus in young dromedary camels in Jordan</article-title>
.
<source>Vector-Borne and Zoonotic Diseases</source>
<volume>17</volume>
,
<fpage>155</fpage>
<lpage>159</lpage>
.
<pub-id pub-id-type="pmid">28009529</pub-id>
</mixed-citation>
</ref>
<ref id="ref24">
<label>24.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Hemida</surname>
<given-names>MG</given-names>
</name>
<etal></etal>
(
<year>2017</year>
)
<article-title>Longitudinal study of Middle East respiratory syndrome coronavirus infection in dromedary camel herds in Saudi Arabia, 2014–2015</article-title>
.
<source>Emerging Microbes & Infections</source>
<volume>6</volume>
,
<elocation-id>e56</elocation-id>
.
<pub-id pub-id-type="pmid">28634355</pub-id>
</mixed-citation>
</ref>
<ref id="ref25">
<label>25.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Woo</surname>
<given-names>PC</given-names>
</name>
<etal></etal>
(
<year>2014</year>
)
<article-title>Novel betacoronavirus in dromedaries of the Middle East, 2013</article-title>
.
<source>Emerging Infectious Diseases</source>
<volume>20</volume>
,
<fpage>560</fpage>
<lpage>572</lpage>
.
<pub-id pub-id-type="pmid">24655427</pub-id>
</mixed-citation>
</ref>
<ref id="ref26">
<label>26.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Farag</surname>
<given-names>EA</given-names>
</name>
<etal></etal>
(
<year>2015</year>
)
<article-title>High proportion of MERS-CoV shedding dromedaries at slaughterhouse with a potential epidemiological link to human cases, Qatar 2014</article-title>
.
<source>Infection Ecology & Epidemiology</source>
<volume>5</volume>
,
<fpage>28305</fpage>
.
<pub-id pub-id-type="pmid">26183160</pub-id>
</mixed-citation>
</ref>
<ref id="ref27">
<label>27.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Ali</surname>
<given-names>MA</given-names>
</name>
<etal></etal>
(
<year>2017</year>
)
<article-title>Systematic, active surveillance for Middle East respiratory syndrome coronavirus in camels in Egypt</article-title>
.
<source>Emerging Microbes& Infections</source>
<volume>6</volume>
,
<elocation-id>e1</elocation-id>
.
<pub-id pub-id-type="pmid">28050021</pub-id>
</mixed-citation>
</ref>
<ref id="ref28">
<label>28.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Reusken</surname>
<given-names>CB</given-names>
</name>
<etal></etal>
(
<year>2014</year>
)
<article-title>Middle East respiratory syndrome coronavirus (MERS-CoV) RNA and neutralising antibodies in milk collected according to local customs from dromedary camels, Qatar, April 2014</article-title>
.
<source>Eurosurveillance</source>
<volume>19</volume>
,
<fpage>20829</fpage>
.
<pub-id pub-id-type="pmid">24957745</pub-id>
</mixed-citation>
</ref>
<ref id="ref29">
<label>29.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Muhairi</surname>
<given-names>SA</given-names>
</name>
<etal></etal>
(
<year>2016</year>
)
<article-title>Epidemiological investigation of Middle East respiratory syndrome coronavirus in dromedary camel farms linked with human infection in Abu Dhabi Emirate, United Arab Emirates</article-title>
.
<source>Virus Genes</source>
<volume>52</volume>
,
<fpage>848</fpage>
<lpage>854</lpage>
.
<pub-id pub-id-type="pmid">27357298</pub-id>
</mixed-citation>
</ref>
<ref id="ref30">
<label>30.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Meyer</surname>
<given-names>B</given-names>
</name>
<etal></etal>
(
<year>2016</year>
)
<article-title>Time course of MERS-CoV infection and immunity in dromedary camels</article-title>
.
<source>Emerging Infectious Diseases</source>
<volume>22</volume>
,
<fpage>2171</fpage>
<lpage>2173</lpage>
.
<pub-id pub-id-type="pmid">27224315</pub-id>
</mixed-citation>
</ref>
<ref id="ref31">
<label>31.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Alagaili</surname>
<given-names>AN</given-names>
</name>
<etal></etal>
(
<year>2014</year>
)
<article-title>Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia</article-title>
.
<source>MBio</source>
<volume>5</volume>
,
<fpage>e00884</fpage>
<lpage>14</lpage>
.
<pub-id pub-id-type="pmid">24570370</pub-id>
</mixed-citation>
</ref>
<ref id="ref32">
<label>32.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Muller</surname>
<given-names>MA</given-names>
</name>
<etal></etal>
(
<year>2014</year>
)
<article-title>MERS coronavirus neutralizing antibodies in camels, Eastern Africa, 1983–1997</article-title>
.
<source>Emerging Infectious Diseases</source>
<volume>20</volume>
,
<fpage>2093</fpage>
<lpage>2095</lpage>
.
<pub-id pub-id-type="pmid">25425139</pub-id>
</mixed-citation>
</ref>
<ref id="ref33">
<label>33.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Gutierrez</surname>
<given-names>C</given-names>
</name>
<etal></etal>
(
<year>2015</year>
)
<article-title>Presence of antibodies but no evidence for circulation of MERS-CoV in dromedaries on the Canary Islands, 2015</article-title>
.
<source>Eurosurveillance</source>
<volume>20</volume>
,
<fpage>30019</fpage>
.</mixed-citation>
</ref>
<ref id="ref34">
<label>34.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Islam</surname>
<given-names>A</given-names>
</name>
<etal></etal>
(
<year>2018</year>
)
<article-title>Middle East respiratory syndrome coronavirus antibodies in dromedary camels, Bangladesh, 2015</article-title>
.
<source>Emerging Infectious Diseases</source>
<volume>24</volume>
,
<fpage>926</fpage>
<lpage>928</lpage>
.
<pub-id pub-id-type="pmid">29664373</pub-id>
</mixed-citation>
</ref>
<ref id="ref35">
<label>35.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Saqib</surname>
<given-names>M</given-names>
</name>
<etal></etal>
(
<year>2017</year>
)
<article-title>Serologic evidence for MERS-CoV infection in dromedary camels, Punjab, Pakistan, 2012–2015</article-title>
.
<source>Emerging Infectious Diseases</source>
<volume>23</volume>
,
<fpage>550</fpage>
<lpage>551</lpage>
.
<pub-id pub-id-type="pmid">28221127</pub-id>
</mixed-citation>
</ref>
<ref id="ref36">
<label>36.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Corman</surname>
<given-names>VM</given-names>
</name>
<etal></etal>
(
<year>2014</year>
)
<article-title>Antibodies against MERS coronavirus in dromedary camels, Kenya, 1992–2013</article-title>
.
<source>Emerging Infectious Diseases</source>
<volume>20</volume>
,
<fpage>1319</fpage>
<lpage>1322</lpage>
.
<pub-id pub-id-type="pmid">25075637</pub-id>
</mixed-citation>
</ref>
<ref id="ref37">
<label>37.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Meyer</surname>
<given-names>B</given-names>
</name>
<etal></etal>
(
<year>2014</year>
)
<article-title>Antibodies against MERS coronavirus in dromedary camels, United Arab Emirates, 2003 and 2013</article-title>
.
<source>Emerging Infectious Diseases</source>
<volume>20</volume>
,
<fpage>552</fpage>
<lpage>559</lpage>
.
<pub-id pub-id-type="pmid">24655412</pub-id>
</mixed-citation>
</ref>
<ref id="ref38">
<label>38.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kasem</surname>
<given-names>S</given-names>
</name>
<etal></etal>
(
<year>2018</year>
)
<article-title>Cross-sectional study of MERS-CoV-specific RNA and antibodies in animals that have had contact with MERS patients in Saudi Arabia</article-title>
.
<source>Journal of Infection and Public Health</source>
<volume>11</volume>
,
<fpage>331</fpage>
<lpage>338</lpage>
.
<pub-id pub-id-type="pmid">28993171</pub-id>
</mixed-citation>
</ref>
<ref id="ref39">
<label>39.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Miguel</surname>
<given-names>E</given-names>
</name>
<etal></etal>
(
<year>2017</year>
)
<article-title>Risk factors for MERS coronavirus infection in dromedary camels in Burkina Faso, Ethiopia, and Morocco, 2015</article-title>
.
<source>Eurosurveillance</source>
<volume>22</volume>
,
<fpage>30498</fpage>
.
<pub-id pub-id-type="pmid">28382915</pub-id>
</mixed-citation>
</ref>
<ref id="ref40">
<label>40.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Deem</surname>
<given-names>SL</given-names>
</name>
<etal></etal>
(
<year>2015</year>
)
<article-title>Serological evidence of MERS-CoV antibodies in dromedary camels (
<italic>Camelus dromedaries</italic>
) in Laikipia County, Kenya</article-title>
.
<source>PLoS ONE</source>
<volume>10</volume>
,
<elocation-id>e0140125</elocation-id>
.
<pub-id pub-id-type="pmid">26473733</pub-id>
</mixed-citation>
</ref>
<ref id="ref41">
<label>41.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Yusof</surname>
<given-names>MF</given-names>
</name>
<etal></etal>
(
<year>2017</year>
)
<article-title>Diversity of Middle East respiratory syndrome coronaviruses in 109 dromedary camels based on full-genome sequencing, Abu Dhabi, United Arab Emirates</article-title>
.
<source>Emerging Microbes& Infections</source>
<volume>6</volume>
,
<elocation-id>e101</elocation-id>
.
<pub-id pub-id-type="pmid">29116217</pub-id>
</mixed-citation>
</ref>
<ref id="ref42">
<label>42.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Reusken</surname>
<given-names>CB</given-names>
</name>
<etal></etal>
(
<year>2016</year>
)
<article-title>MERS-CoV infection of alpaca in a region where MERS-CoV is endemic</article-title>
.
<source>Emerging Infectious Diseases</source>
<volume>22</volume>
,
<fpage>1129</fpage>
<lpage>1131</lpage>
.
<pub-id pub-id-type="pmid">27070501</pub-id>
</mixed-citation>
</ref>
<ref id="ref43">
<label>43.</label>
<mixed-citation publication-type="journal">
<name>
<surname>David</surname>
<given-names>D</given-names>
</name>
<etal></etal>
(
<year>2018</year>
)
<article-title>Middle East respiratory syndrome coronavirus specific antibodies in naturally exposed Israeli llamas, alpacas and camels</article-title>
.
<source>One Health</source>
<volume>5</volume>
,
<fpage>65</fpage>
<lpage>68</lpage>
.
<pub-id pub-id-type="pmid">29911167</pub-id>
</mixed-citation>
</ref>
<ref id="ref44">
<label>44.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Chan</surname>
<given-names>SM</given-names>
</name>
<etal></etal>
(
<year>2015</year>
)
<article-title>Absence of MERS-coronavirus in Bactrian camels, Southern Mongolia, November 2014</article-title>
.
<source>Emerging Infectious Diseases</source>
<volume>21</volume>
,
<fpage>1269</fpage>
<lpage>1271</lpage>
.
<pub-id pub-id-type="pmid">26080032</pub-id>
</mixed-citation>
</ref>
<ref id="ref45">
<label>45.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Liu</surname>
<given-names>R</given-names>
</name>
<etal></etal>
(
<year>2015</year>
)
<article-title>Absence of Middle East respiratory syndrome coronavirus in Bactrian camels in the West Inner Mongolia Autonomous Region of China: surveillance study results from July 2015</article-title>
.
<source>Emerging Microbes & Infections</source>
<volume>4</volume>
,
<elocation-id>e73</elocation-id>
.
<pub-id pub-id-type="pmid">26632875</pub-id>
</mixed-citation>
</ref>
<ref id="ref46">
<label>46.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Miguel</surname>
<given-names>E</given-names>
</name>
<etal></etal>
(
<year>2016</year>
)
<article-title>Absence of Middle East respiratory syndrome coronavirus in camelids, Kazakhstan, 2015</article-title>
.
<source>Emerging Infectious Diseases</source>
<volume>22</volume>
,
<fpage>555</fpage>
<lpage>557</lpage>
.
<pub-id pub-id-type="pmid">26889787</pub-id>
</mixed-citation>
</ref>
<ref id="ref47">
<label>47.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Shirato</surname>
<given-names>K</given-names>
</name>
<etal></etal>
(
<year>2015</year>
)
<article-title>Middle East respiratory syndrome coronavirus infection not found in camels in Japan</article-title>
.
<source>Japanese Journal of Infectious Diseases</source>
<volume>68</volume>
,
<fpage>256</fpage>
<lpage>258</lpage>
.
<pub-id pub-id-type="pmid">25993975</pub-id>
</mixed-citation>
</ref>
<ref id="ref48">
<label>48.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Perera</surname>
<given-names>RA</given-names>
</name>
<etal></etal>
(
<year>2013</year>
)
<article-title>Seroepidemiology for MERS coronavirus using microneutralisation and pseudoparticle virus neutralisation assays reveal a high prevalence of antibody in dromedary camels in Egypt, June 2013</article-title>
.
<source>Eurosurveillance</source>
<volume>18</volume>
,
<fpage>20574</fpage>
.
<pub-id pub-id-type="pmid">24079378</pub-id>
</mixed-citation>
</ref>
<ref id="ref49">
<label>49.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Alexandersen</surname>
<given-names>S</given-names>
</name>
<etal></etal>
(
<year>2014</year>
)
<article-title>Middle East respiratory syndrome coronavirus antibody reactors among camels in Dubai, United Arab Emirates, in 2005</article-title>
.
<source>Transboundary Emerging Diseases</source>
<volume>61</volume>
,
<fpage>105</fpage>
<lpage>108</lpage>
.
<pub-id pub-id-type="pmid">24456414</pub-id>
</mixed-citation>
</ref>
<ref id="ref50">
<label>50.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Hemida</surname>
<given-names>MG</given-names>
</name>
<etal></etal>
(
<year>2013</year>
)
<article-title>Middle East respiratory Syndrome (MERS) coronavirus seroprevalence in domestic livestock in Saudi Arabia, 2010 to 2013</article-title>
.
<source>Eurosurveillance</source>
<volume>18</volume>
,
<fpage>20659</fpage>
.
<pub-id pub-id-type="pmid">24342517</pub-id>
</mixed-citation>
</ref>
<ref id="ref51">
<label>51.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Reusken</surname>
<given-names>CB</given-names>
</name>
<etal></etal>
(
<year>2013</year>
)
<article-title>Middle East respiratory syndrome coronavirus (MERS-CoV) serology in major livestock species in an affected region in Jordan, June to September 2013</article-title>
.
<source>Eurosurveillance</source>
<volume>18</volume>
,
<fpage>20662</fpage>
.
<pub-id pub-id-type="pmid">24342516</pub-id>
</mixed-citation>
</ref>
<ref id="ref52">
<label>52.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Meyer</surname>
<given-names>B</given-names>
</name>
<etal></etal>
(
<year>2015</year>
)
<article-title>Serologic assessment of possibility for MERS-CoV infection in equids</article-title>
.
<source>Emerging Infectious Diseases</source>
<volume>21</volume>
,
<fpage>181</fpage>
<lpage>182</lpage>
.
<pub-id pub-id-type="pmid">25531820</pub-id>
</mixed-citation>
</ref>
<ref id="ref53">
<label>53.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Falzarano</surname>
<given-names>D</given-names>
</name>
<etal></etal>
(
<year>2017</year>
)
<article-title>Dromedary camels in northern Mali have high seropositivity to MERS-CoV</article-title>
.
<source>One Health (Amsterdam, The Netherlands)</source>
<volume>3</volume>
,
<fpage>41</fpage>
<lpage>43</lpage>
.</mixed-citation>
</ref>
<ref id="ref54">
<label>54.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kamber</surname>
<given-names>R</given-names>
</name>
<etal></etal>
(
<year>2001</year>
)
<article-title>Studies on the supply of immunoglobulin G to newborn camel calves (
<italic>Camelus dromedarius</italic>
)</article-title>
.
<source>Journal of Dairy Research</source>
<volume>68</volume>
,
<fpage>1</fpage>
<lpage>7</lpage>
.
<pub-id pub-id-type="pmid">11289259</pub-id>
</mixed-citation>
</ref>
<ref id="ref55">
<label>55.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Wernery</surname>
<given-names>U</given-names>
</name>
<etal></etal>
(
<year>2015</year>
)
<article-title>Acute Middle East respiratory syndrome coronavirus infection in livestock Dromedaries, Dubai, 2014</article-title>
.
<source>Emerging Infectious Diseases</source>
<volume>21</volume>
,
<fpage>1019</fpage>
<lpage>1022</lpage>
.
<pub-id pub-id-type="pmid">25989145</pub-id>
</mixed-citation>
</ref>
<ref id="ref56">
<label>56.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Faye</surname>
<given-names>B</given-names>
</name>
(
<year>2014</year>
)
<article-title>The camel today: assets and potentials</article-title>
.
<source>Anthropozoologica</source>
<volume>49</volume>
,
<fpage>167</fpage>
<lpage>176</lpage>
.</mixed-citation>
</ref>
<ref id="ref57">
<label>57.</label>
<mixed-citation publication-type="journal">
<name>
<surname>van Doremalen</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Bushmaker</surname>
<given-names>T</given-names>
</name>
and
<name>
<surname>Munster</surname>
<given-names>VJ</given-names>
</name>
(
<year>2013</year>
)
<article-title>Stability of Middle East respiratory syndrome coronavirus (MERS-CoV) under different environmental conditions</article-title>
.
<source>Eurosurveillance</source>
<volume>18</volume>
,
<fpage>20590</fpage>
.
<pub-id pub-id-type="pmid">24084338</pub-id>
</mixed-citation>
</ref>
<ref id="ref58">
<label>58.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Crameri</surname>
<given-names>G</given-names>
</name>
<etal></etal>
(
<year>2016</year>
)
<article-title>Experimental infection and response to rechallenge of alpacas with Middle East respiratory syndrome coronavirus</article-title>
.
<source>Emerging Infectious Diseases</source>
<volume>22</volume>
,
<fpage>1071</fpage>
<lpage>1074</lpage>
.
<pub-id pub-id-type="pmid">27070733</pub-id>
</mixed-citation>
</ref>
<ref id="ref59">
<label>59.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Vergara-Alert</surname>
<given-names>J</given-names>
</name>
<etal></etal>
(
<year>2017</year>
)
<article-title>Livestock susceptibility to infection with Middle East respiratory syndrome coronavirus</article-title>
.
<source>Emerging Infectious Diseases</source>
<volume>23</volume>
,
<fpage>232</fpage>
<lpage>240</lpage>
.
<pub-id pub-id-type="pmid">27901465</pub-id>
</mixed-citation>
</ref>
<ref id="ref60">
<label>60.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Adney</surname>
<given-names>DR</given-names>
</name>
<etal></etal>
(
<year>2016</year>
)
<article-title>Inoculation of goats, sheep, and horses with MERS-CoV does not result in productive viral shedding</article-title>
.
<source>Viruses</source>
<volume>8</volume>
,
<elocation-id>E230</elocation-id>
.
<pub-id pub-id-type="pmid">27548203</pub-id>
</mixed-citation>
</ref>
<ref id="ref61">
<label>61.</label>
<mixed-citation publication-type="journal">
<name>
<surname>van Doremalen</surname>
<given-names>N</given-names>
</name>
<etal></etal>
(
<year>2014</year>
)
<article-title>Host species restriction of Middle East respiratory syndrome coronavirus through its receptor, dipeptidyl peptidase 4</article-title>
.
<source>Journal of Virology</source>
<volume>88</volume>
,
<fpage>9220</fpage>
<lpage>9232</lpage>
.
<pub-id pub-id-type="pmid">24899185</pub-id>
</mixed-citation>
</ref>
<ref id="ref62">
<label>62.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Vergara-Alert</surname>
<given-names>J</given-names>
</name>
<etal></etal>
(
<year>2017</year>
)
<article-title>Middle East respiratory syndrome coronavirus experimental transmission using a pig model</article-title>
.
<source>Transboundary Emerging Diseases</source>
<volume>64</volume>
,
<fpage>1342</fpage>
<lpage>1345</lpage>
.
<pub-id pub-id-type="pmid">28653496</pub-id>
</mixed-citation>
</ref>
<ref id="ref63">
<label>63.</label>
<mixed-citation publication-type="journal">
<name>
<surname>de Wit</surname>
<given-names>E</given-names>
</name>
<etal></etal>
(
<year>2017</year>
)
<article-title>Domestic pig unlikely reservoir for MERS-CoV</article-title>
.
<source>Emerging Infectious Diseases</source>
<volume>23</volume>
,
<fpage>985</fpage>
<lpage>988</lpage>
.
<pub-id pub-id-type="pmid">28318484</pub-id>
</mixed-citation>
</ref>
<ref id="ref64">
<label>64.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Liljander</surname>
<given-names>A</given-names>
</name>
<etal></etal>
(
<year>2016</year>
)
<article-title>MERS-CoV antibodies in humans, Africa, 2013–2014</article-title>
.
<source>Emerging Infectious Diseases</source>
<volume>22</volume>
,
<fpage>1086</fpage>
<lpage>1089</lpage>
.
<pub-id pub-id-type="pmid">27071076</pub-id>
</mixed-citation>
</ref>
<ref id="ref65">
<label>65.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Chu</surname>
<given-names>DKW</given-names>
</name>
<etal></etal>
(
<year>2018</year>
)
<article-title>MERS coronaviruses from camels in Africa exhibit region-dependent genetic diversity</article-title>
.
<source>Proceedings of the National Academy of Sciences</source>
<volume>115</volume>
,
<fpage>3144</fpage>
<lpage>3149</lpage>
.</mixed-citation>
</ref>
<ref id="ref66">
<label>66.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Ming</surname>
<given-names>L</given-names>
</name>
<etal></etal>
(
<year>2017</year>
)
<article-title>Genetic diversity and phylogeographic structure of Bactrian camels shown by mitochondrial sequence variations</article-title>
.
<source>Animal Genetics</source>
<volume>48</volume>
,
<fpage>217</fpage>
<lpage>220</lpage>
.
<pub-id pub-id-type="pmid">27775167</pub-id>
</mixed-citation>
</ref>
<ref id="ref67">
<label>67.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Azhar</surname>
<given-names>EI</given-names>
</name>
<etal></etal>
(
<year>2014</year>
)
<article-title>Evidence for camel-to-human transmission of MERS coronavirus</article-title>
.
<source>The New England Journal of Medicine</source>
<volume>370</volume>
,
<fpage>2499</fpage>
<lpage>2505</lpage>
.
<pub-id pub-id-type="pmid">24896817</pub-id>
</mixed-citation>
</ref>
<ref id="ref68">
<label>68.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Memish</surname>
<given-names>ZA</given-names>
</name>
<etal></etal>
(
<year>2014</year>
)
<article-title>Human infection with MERS coronavirus after exposure to infected camels, Saudi Arabia, 2013</article-title>
.
<source>Emerging Infectious Diseases</source>
<volume>20</volume>
,
<fpage>1012</fpage>
<lpage>1015</lpage>
.
<pub-id pub-id-type="pmid">24857749</pub-id>
</mixed-citation>
</ref>
<ref id="ref69">
<label>69.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Hemida</surname>
<given-names>MG</given-names>
</name>
<etal></etal>
(
<year>2014</year>
)
<article-title>Seroepidemiology of Middle East respiratory syndrome (MERS) coronavirus in Saudi Arabia (1993) and Australia (2014) and characterisation of assay specificity</article-title>
.
<source>EuroSurveillance</source>
<volume>19</volume>
, 20828.</mixed-citation>
</ref>
<ref id="ref70">
<label>70.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Nowotny</surname>
<given-names>N</given-names>
</name>
<etal></etal>
(
<year>2014</year>
)
<article-title>Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels, Oman, 2013</article-title>
.
<source>Eurosurveillance</source>
<volume>19</volume>
, 20781.</mixed-citation>
</ref>
<ref id="ref71">
<label>71.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Raj</surname>
<given-names>V</given-names>
</name>
<etal></etal>
(
<year>2014</year>
)
<article-title>Isolation of MERS Coronavirus from a Dromedary Camel, Qatar, 2014</article-title>
.
<source>Emerging Infectious Diseases</source>
<volume>20</volume>
,
<fpage>1339</fpage>
<lpage>1342</lpage>
.
<pub-id pub-id-type="pmid">25075761</pub-id>
</mixed-citation>
</ref>
<ref id="ref72">
<label>72.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Al Hammadi</surname>
<given-names>ZM</given-names>
</name>
<etal></etal>
(
<year>2015</year>
)
<article-title>Asymptomatic MERS-CoV infection in humans possibly linked to infected dromedaries imported from Oman to United Arab Emirates, May 2015</article-title>
.
<source>Emerging Infectious Diseases</source>
<volume>21</volume>
,
<fpage>2197</fpage>
<lpage>2200</lpage>
.
<pub-id pub-id-type="pmid">26584223</pub-id>
</mixed-citation>
</ref>
<ref id="ref73">
<label>73.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Chu</surname>
<given-names>DKW</given-names>
</name>
<etal></etal>
(
<year>2015</year>
)
<article-title>Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels in Nigeria, 2015</article-title>
.
<source>Eurosurveillance</source>
<volume>20</volume>
, 30086.</mixed-citation>
</ref>
<ref id="ref74">
<label>74.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Yusof</surname>
<given-names>MF</given-names>
</name>
<etal></etal>
(
<year>2015</year>
)
<article-title>Prevalence of Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels in Abu Dhabi Emirate, United Arab Emirates</article-title>
.
<source>Virus Genes</source>
<volume>50</volume>
,
<fpage>509</fpage>
<lpage>513</lpage>
.
<pub-id pub-id-type="pmid">25653016</pub-id>
</mixed-citation>
</ref>
<ref id="ref75">
<label>75.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Al-Salihi</surname>
<given-names>SF</given-names>
</name>
<etal></etal>
(
<year>2017</year>
)
<article-title>Phylogenetic analysis of MERSCoV in human and camels in Iraq</article-title>
.
<source>International Journal of Pharmaceutical Research & Allied Sciences</source>
<volume>6</volume>
,
<fpage>53</fpage>
<lpage>58</lpage>
.</mixed-citation>
</ref>
<ref id="ref76">
<label>76.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Munyua</surname>
<given-names>P</given-names>
</name>
<etal></etal>
(
<year>2017</year>
)
<article-title>No serologic evidence of Middle East respiratory syndrome coronavirus infection among camel farmers exposed to highly seropositive camel herds: a household linked study, Kenya, 2013</article-title>
.
<source>American Journal Tropical Medicine and Hygiene</source>
<volume>96</volume>
,
<fpage>1318</fpage>
<lpage>1324</lpage>
.</mixed-citation>
</ref>
<ref id="ref77">
<label>77.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Li</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
(
<year>2017</year>
)
<article-title>Identification of diverse viruses in upper respiratory samples in dromedary camels from United Arab Emirates</article-title>
.
<source>PLOS ONE</source>
<volume>12</volume>
,
<elocation-id>e0184718</elocation-id>
.
<pub-id pub-id-type="pmid">28902913</pub-id>
</mixed-citation>
</ref>
<ref id="ref78">
<label>78.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Harrath</surname>
<given-names>R</given-names>
</name>
<etal></etal>
(
<year>2018</year>
)
<article-title>Sero-prevalence of Middle East respiratory syndrome coronavirus (MERS-CoV) specific antibodies in dromedary camels in Tabuk, Saudi Arabia</article-title>
.
<source>Journal of Medical Virology</source>
<volume>90</volume>
,
<fpage>1285</fpage>
<lpage>1289</lpage>
.
<pub-id pub-id-type="pmid">29663439</pub-id>
</mixed-citation>
</ref>
<ref id="ref79">
<label>79.</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kasem</surname>
<given-names>S</given-names>
</name>
<etal></etal>
(
<year>2018</year>
)
<article-title>The prevalence of Middle East respiratory Syndrome coronavirus (MERS-CoV) infection in livestock and temporal relation to locations and seasons</article-title>
.
<source>Journal of Infection and Public Health</source>
<volume>11</volume>
,
<fpage>884</fpage>
<lpage>888</lpage>
.
<pub-id pub-id-type="pmid">29396257</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001318 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 001318 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:6518605
   |texte=   Global status of Middle East respiratory syndrome coronavirus in dromedary camels: a systematic review
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:30869000" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021