Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Drivers of airborne human-to-human pathogen transmission

Identifieur interne : 001308 ( Pmc/Corpus ); précédent : 001307; suivant : 001309

Drivers of airborne human-to-human pathogen transmission

Auteurs : Sander Herfst ; Michael Böhringer ; Basel Karo ; Philip Lawrence ; Nicola S. Lewis ; Michael J. Mina ; Charles J. Russell ; John Steel ; Rik L. De Swart ; Christian Menge

Source :

RBID : PMC:7102691

Abstract

Highlights

Chain of pathogen transmission between individual donor and recipient is modeled.

Related pairs of efficient and inefficient ‘airborne’ pathogens are contrasted.

Drivers operate on tissue, individual, community, country, and global levels.

Pandemic risk is heightened by pathogen evolution and changes in host interaction.

Ultimate drivers include socio-economic developments and climate changes.


Url:
DOI: 10.1016/j.coviro.2016.11.006
PubMed: 27918958
PubMed Central: 7102691

Links to Exploration step

PMC:7102691

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Drivers of airborne human-to-human pathogen transmission</title>
<author>
<name sortKey="Herfst, Sander" sort="Herfst, Sander" uniqKey="Herfst S" first="Sander" last="Herfst">Sander Herfst</name>
<affiliation>
<nlm:aff id="aff0005">Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bohringer, Michael" sort="Bohringer, Michael" uniqKey="Bohringer M" first="Michael" last="Böhringer">Michael Böhringer</name>
<affiliation>
<nlm:aff id="aff0010">Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Naumburger Str. 96a, 07743 Jena, Germany</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Karo, Basel" sort="Karo, Basel" uniqKey="Karo B" first="Basel" last="Karo">Basel Karo</name>
<affiliation>
<nlm:aff id="aff3">Robert Koch Institut, Department for Infectious Disease Epidemiology, Seestr. 10, 13353 Berlin, Germany</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff0015">PhD Programme “Epidemiology”, Braunschweig-Hannover, Germany</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lawrence, Philip" sort="Lawrence, Philip" uniqKey="Lawrence P" first="Philip" last="Lawrence">Philip Lawrence</name>
<affiliation>
<nlm:aff id="aff0020">Université de Lyon, UMRS 449, Laboratoire de Biologie Générale, Université Catholique de Lyon – EPHE, Lyon 69288, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff0025">Molecular Basis of Viral Pathogenicity, International Centre for Research in Infectiology (CIRI), INSERM U1111 – CNRS UMR5308, Université Lyon 1, Ecole Normale Supérieure de Lyon, Lyon 69007, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lewis, Nicola S" sort="Lewis, Nicola S" uniqKey="Lewis N" first="Nicola S" last="Lewis">Nicola S. Lewis</name>
<affiliation>
<nlm:aff id="aff0030">Centre for Pathogen Evolution, Department of Zoology, University of Cambridge, Downing Street, Cambridge, United Kingdom</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mina, Michael J" sort="Mina, Michael J" uniqKey="Mina M" first="Michael J" last="Mina">Michael J. Mina</name>
<affiliation>
<nlm:aff id="aff0035">Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Russell, Charles J" sort="Russell, Charles J" uniqKey="Russell C" first="Charles J" last="Russell">Charles J. Russell</name>
<affiliation>
<nlm:aff id="aff0040">Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Steel, John" sort="Steel, John" uniqKey="Steel J" first="John" last="Steel">John Steel</name>
<affiliation>
<nlm:aff id="aff0045">Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="De Swart, Rik L" sort="De Swart, Rik L" uniqKey="De Swart R" first="Rik L" last="De Swart">Rik L. De Swart</name>
<affiliation>
<nlm:aff id="aff0005">Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Menge, Christian" sort="Menge, Christian" uniqKey="Menge C" first="Christian" last="Menge">Christian Menge</name>
<affiliation>
<nlm:aff id="aff0050">Friedrich-Loeffler-Institut, Institute of Molecular Pathogenesis, Naumburger Str. 96a, 07743 Jena, Germany</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">27918958</idno>
<idno type="pmc">7102691</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7102691</idno>
<idno type="RBID">PMC:7102691</idno>
<idno type="doi">10.1016/j.coviro.2016.11.006</idno>
<date when="2016">2016</date>
<idno type="wicri:Area/Pmc/Corpus">001308</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">001308</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Drivers of airborne human-to-human pathogen transmission</title>
<author>
<name sortKey="Herfst, Sander" sort="Herfst, Sander" uniqKey="Herfst S" first="Sander" last="Herfst">Sander Herfst</name>
<affiliation>
<nlm:aff id="aff0005">Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bohringer, Michael" sort="Bohringer, Michael" uniqKey="Bohringer M" first="Michael" last="Böhringer">Michael Böhringer</name>
<affiliation>
<nlm:aff id="aff0010">Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Naumburger Str. 96a, 07743 Jena, Germany</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Karo, Basel" sort="Karo, Basel" uniqKey="Karo B" first="Basel" last="Karo">Basel Karo</name>
<affiliation>
<nlm:aff id="aff3">Robert Koch Institut, Department for Infectious Disease Epidemiology, Seestr. 10, 13353 Berlin, Germany</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff0015">PhD Programme “Epidemiology”, Braunschweig-Hannover, Germany</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lawrence, Philip" sort="Lawrence, Philip" uniqKey="Lawrence P" first="Philip" last="Lawrence">Philip Lawrence</name>
<affiliation>
<nlm:aff id="aff0020">Université de Lyon, UMRS 449, Laboratoire de Biologie Générale, Université Catholique de Lyon – EPHE, Lyon 69288, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff0025">Molecular Basis of Viral Pathogenicity, International Centre for Research in Infectiology (CIRI), INSERM U1111 – CNRS UMR5308, Université Lyon 1, Ecole Normale Supérieure de Lyon, Lyon 69007, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lewis, Nicola S" sort="Lewis, Nicola S" uniqKey="Lewis N" first="Nicola S" last="Lewis">Nicola S. Lewis</name>
<affiliation>
<nlm:aff id="aff0030">Centre for Pathogen Evolution, Department of Zoology, University of Cambridge, Downing Street, Cambridge, United Kingdom</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mina, Michael J" sort="Mina, Michael J" uniqKey="Mina M" first="Michael J" last="Mina">Michael J. Mina</name>
<affiliation>
<nlm:aff id="aff0035">Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Russell, Charles J" sort="Russell, Charles J" uniqKey="Russell C" first="Charles J" last="Russell">Charles J. Russell</name>
<affiliation>
<nlm:aff id="aff0040">Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Steel, John" sort="Steel, John" uniqKey="Steel J" first="John" last="Steel">John Steel</name>
<affiliation>
<nlm:aff id="aff0045">Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="De Swart, Rik L" sort="De Swart, Rik L" uniqKey="De Swart R" first="Rik L" last="De Swart">Rik L. De Swart</name>
<affiliation>
<nlm:aff id="aff0005">Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Menge, Christian" sort="Menge, Christian" uniqKey="Menge C" first="Christian" last="Menge">Christian Menge</name>
<affiliation>
<nlm:aff id="aff0050">Friedrich-Loeffler-Institut, Institute of Molecular Pathogenesis, Naumburger Str. 96a, 07743 Jena, Germany</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Current Opinion in Virology</title>
<idno type="ISSN">1879-6257</idno>
<idno type="eISSN">1879-6265</idno>
<imprint>
<date when="2016">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<title>Highlights</title>
<p>
<list list-type="simple" id="lis0005">
<list-item id="lsti0005">
<label></label>
<p id="par0005">Chain of pathogen transmission between individual donor and recipient is modeled.</p>
</list-item>
<list-item id="lsti0010">
<label></label>
<p id="par0010">Related pairs of efficient and inefficient ‘airborne’ pathogens are contrasted.</p>
</list-item>
<list-item id="lsti0015">
<label></label>
<p id="par0015">Drivers operate on tissue, individual, community, country, and global levels.</p>
</list-item>
<list-item id="lsti0020">
<label></label>
<p id="par0020">Pandemic risk is heightened by pathogen evolution and changes in host interaction.</p>
</list-item>
<list-item id="lsti0025">
<label></label>
<p id="par0025">Ultimate drivers include socio-economic developments and climate changes.</p>
</list-item>
</list>
</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Linster, M" uniqKey="Linster M">M. Linster</name>
</author>
<author>
<name sortKey="Van Boheemen, S" uniqKey="Van Boheemen S">S. van Boheemen</name>
</author>
<author>
<name sortKey="De Graaf, M" uniqKey="De Graaf M">M. de Graaf</name>
</author>
<author>
<name sortKey="Schrauwen, E J A" uniqKey="Schrauwen E">E.J.A. Schrauwen</name>
</author>
<author>
<name sortKey="Lexmond, P" uniqKey="Lexmond P">P. Lexmond</name>
</author>
<author>
<name sortKey="M Nz, B" uniqKey="M Nz B">B. Mänz</name>
</author>
<author>
<name sortKey="Bestebroer, T M" uniqKey="Bestebroer T">T.M. Bestebroer</name>
</author>
<author>
<name sortKey="Baumann, J" uniqKey="Baumann J">J. Baumann</name>
</author>
<author>
<name sortKey="Van Riel, D" uniqKey="Van Riel D">D. van Riel</name>
</author>
<author>
<name sortKey="Rimmelzwaan, G F" uniqKey="Rimmelzwaan G">G.F. Rimmelzwaan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Coker, R" uniqKey="Coker R">R. Coker</name>
</author>
<author>
<name sortKey="Rushton, J" uniqKey="Rushton J">J. Rushton</name>
</author>
<author>
<name sortKey="Mounier Jack, S" uniqKey="Mounier Jack S">S. Mounier-Jack</name>
</author>
<author>
<name sortKey="Karimuribo, E" uniqKey="Karimuribo E">E. Karimuribo</name>
</author>
<author>
<name sortKey="Lutumba, P" uniqKey="Lutumba P">P. Lutumba</name>
</author>
<author>
<name sortKey="Kambarage, D" uniqKey="Kambarage D">D. Kambarage</name>
</author>
<author>
<name sortKey="Pfeiffer, D U" uniqKey="Pfeiffer D">D.U. Pfeiffer</name>
</author>
<author>
<name sortKey="St Rk, K" uniqKey="St Rk K">K. Stärk</name>
</author>
<author>
<name sortKey="Rweyemamu, M" uniqKey="Rweyemamu M">M. Rweyemamu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gortazar, C" uniqKey="Gortazar C">C. Gortazar</name>
</author>
<author>
<name sortKey="Reperant, L A" uniqKey="Reperant L">L.A. Reperant</name>
</author>
<author>
<name sortKey="Kuiken, T" uniqKey="Kuiken T">T. Kuiken</name>
</author>
<author>
<name sortKey="De La Fuente, J" uniqKey="De La Fuente J">J. de la Fuente</name>
</author>
<author>
<name sortKey="Boadella, M" uniqKey="Boadella M">M. Boadella</name>
</author>
<author>
<name sortKey="Martinez Lopez, B" uniqKey="Martinez Lopez B">B. Martínez-Lopez</name>
</author>
<author>
<name sortKey="Ruiz Fons, F" uniqKey="Ruiz Fons F">F. Ruiz-Fons</name>
</author>
<author>
<name sortKey="Estrada Pe A, A" uniqKey="Estrada Pe A A">A. Estrada-Peña</name>
</author>
<author>
<name sortKey="Drosten, C" uniqKey="Drosten C">C. Drosten</name>
</author>
<author>
<name sortKey="Medley, G" uniqKey="Medley G">G. Medley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bunyan, D" uniqKey="Bunyan D">D. Bunyan</name>
</author>
<author>
<name sortKey="Ritchie, L" uniqKey="Ritchie L">L. Ritchie</name>
</author>
<author>
<name sortKey="Jenkins, D" uniqKey="Jenkins D">D. Jenkins</name>
</author>
<author>
<name sortKey="Coia, J E" uniqKey="Coia J">J.E. Coia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fernstrom, A" uniqKey="Fernstrom A">A. Fernstrom</name>
</author>
<author>
<name sortKey="Goldblatt, M" uniqKey="Goldblatt M">M. Goldblatt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Milton, D K" uniqKey="Milton D">D.K. Milton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Burke, C W" uniqKey="Burke C">C.W. Burke</name>
</author>
<author>
<name sortKey="Bridges, O" uniqKey="Bridges O">O. Bridges</name>
</author>
<author>
<name sortKey="Brown, S" uniqKey="Brown S">S. Brown</name>
</author>
<author>
<name sortKey="Rahija, R" uniqKey="Rahija R">R. Rahija</name>
</author>
<author>
<name sortKey="Russell, C J" uniqKey="Russell C">C.J. Russell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Loudon, R G" uniqKey="Loudon R">R.G. Loudon</name>
</author>
<author>
<name sortKey="Roberts, R M" uniqKey="Roberts R">R.M. Roberts</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Duguid, J P" uniqKey="Duguid J">J.P. Duguid</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Papineni, R S" uniqKey="Papineni R">R.S. Papineni</name>
</author>
<author>
<name sortKey="Rosenthal, F S" uniqKey="Rosenthal F">F.S. Rosenthal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lowen, A C" uniqKey="Lowen A">A.C. Lowen</name>
</author>
<author>
<name sortKey="Steel, J" uniqKey="Steel J">J. Steel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lowen, A C" uniqKey="Lowen A">A.C. Lowen</name>
</author>
<author>
<name sortKey="Mubareka, S" uniqKey="Mubareka S">S. Mubareka</name>
</author>
<author>
<name sortKey="Steel, J" uniqKey="Steel J">J. Steel</name>
</author>
<author>
<name sortKey="Palese, P" uniqKey="Palese P">P. Palese</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Steel, J" uniqKey="Steel J">J. Steel</name>
</author>
<author>
<name sortKey="Palese, P" uniqKey="Palese P">P. Palese</name>
</author>
<author>
<name sortKey="Lowen, A C" uniqKey="Lowen A">A.C. Lowen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Polozov, I V" uniqKey="Polozov I">I.V. Polozov</name>
</author>
<author>
<name sortKey="Bezrukov, L" uniqKey="Bezrukov L">L. Bezrukov</name>
</author>
<author>
<name sortKey="Gawrisch, K" uniqKey="Gawrisch K">K. Gawrisch</name>
</author>
<author>
<name sortKey="Zimmerberg, J" uniqKey="Zimmerberg J">J. Zimmerberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Theunissen, H J" uniqKey="Theunissen H">H.J. Theunissen</name>
</author>
<author>
<name sortKey="Lemmens Den Toom, N A" uniqKey="Lemmens Den Toom N">N.A. Lemmens-den Toom</name>
</author>
<author>
<name sortKey="Burggraaf, A" uniqKey="Burggraaf A">A. Burggraaf</name>
</author>
<author>
<name sortKey="Stolz, E" uniqKey="Stolz E">E. Stolz</name>
</author>
<author>
<name sortKey="Michel, M F" uniqKey="Michel M">M.F. Michel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, W" uniqKey="Yang W">W. Yang</name>
</author>
<author>
<name sortKey="Marr, L C" uniqKey="Marr L">L.C. Marr</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cheng, Y H" uniqKey="Cheng Y">Y.H. Cheng</name>
</author>
<author>
<name sortKey="Wang, C H" uniqKey="Wang C">C.H. Wang</name>
</author>
<author>
<name sortKey="You, S H" uniqKey="You S">S.H. You</name>
</author>
<author>
<name sortKey="Hsieh, N H" uniqKey="Hsieh N">N.H. Hsieh</name>
</author>
<author>
<name sortKey="Chen, W Y" uniqKey="Chen W">W.Y. Chen</name>
</author>
<author>
<name sortKey="Chio, C P" uniqKey="Chio C">C.P. Chio</name>
</author>
<author>
<name sortKey="Liao, C M" uniqKey="Liao C">C.M. Liao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bean, B" uniqKey="Bean B">B. Bean</name>
</author>
<author>
<name sortKey="Moore, B M" uniqKey="Moore B">B.M. Moore</name>
</author>
<author>
<name sortKey="Sterner, B" uniqKey="Sterner B">B. Sterner</name>
</author>
<author>
<name sortKey="Peterson, L R" uniqKey="Peterson L">L.R. Peterson</name>
</author>
<author>
<name sortKey="Gerding, D N" uniqKey="Gerding D">D.N. Gerding</name>
</author>
<author>
<name sortKey="Balfour, H H" uniqKey="Balfour H">H.H. Balfour</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Boone, S A" uniqKey="Boone S">S.A. Boone</name>
</author>
<author>
<name sortKey="Gerba, C P" uniqKey="Gerba C">C.P. Gerba</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Edward, D F F" uniqKey="Edward D">D.F.F. Edward</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tiwari, A" uniqKey="Tiwari A">A. Tiwari</name>
</author>
<author>
<name sortKey="Patnayak, D P" uniqKey="Patnayak D">D.P. Patnayak</name>
</author>
<author>
<name sortKey="Chander, Y" uniqKey="Chander Y">Y. Chander</name>
</author>
<author>
<name sortKey="Parsad, M" uniqKey="Parsad M">M. Parsad</name>
</author>
<author>
<name sortKey="Goyal, S M" uniqKey="Goyal S">S.M. Goyal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Weber, T P" uniqKey="Weber T">T.P. Weber</name>
</author>
<author>
<name sortKey="Stilianakis, N I" uniqKey="Stilianakis N">N.I. Stilianakis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Darquenne, C" uniqKey="Darquenne C">C. Darquenne</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Methot, P O" uniqKey="Methot P">P.O. Méthot</name>
</author>
<author>
<name sortKey="Alizon, S" uniqKey="Alizon S">S. Alizon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gupta, P" uniqKey="Gupta P">P. Gupta</name>
</author>
<author>
<name sortKey="Sarkar, S" uniqKey="Sarkar S">S. Sarkar</name>
</author>
<author>
<name sortKey="Das, B" uniqKey="Das B">B. Das</name>
</author>
<author>
<name sortKey="Bhattacharjee, S" uniqKey="Bhattacharjee S">S. Bhattacharjee</name>
</author>
<author>
<name sortKey="Tribedi, P" uniqKey="Tribedi P">P. Tribedi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ojha, A K" uniqKey="Ojha A">A.K. Ojha</name>
</author>
<author>
<name sortKey="Baughn, A D" uniqKey="Baughn A">A.D. Baughn</name>
</author>
<author>
<name sortKey="Sambandan, D" uniqKey="Sambandan D">D. Sambandan</name>
</author>
<author>
<name sortKey="Hsu, T" uniqKey="Hsu T">T. Hsu</name>
</author>
<author>
<name sortKey="Trivelli, X" uniqKey="Trivelli X">X. Trivelli</name>
</author>
<author>
<name sortKey="Guerardel, Y" uniqKey="Guerardel Y">Y. Guerardel</name>
</author>
<author>
<name sortKey="Alahari, A" uniqKey="Alahari A">A. Alahari</name>
</author>
<author>
<name sortKey="Kremer, L" uniqKey="Kremer L">L. Kremer</name>
</author>
<author>
<name sortKey="Jacobs, W R" uniqKey="Jacobs W">W.R. Jacobs</name>
</author>
<author>
<name sortKey="Hatfull, G F" uniqKey="Hatfull G">G.F. Hatfull</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pieters, J" uniqKey="Pieters J">J. Pieters</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chiang, J J" uniqKey="Chiang J">J.J. Chiang</name>
</author>
<author>
<name sortKey="Davis, M E" uniqKey="Davis M">M.E. Davis</name>
</author>
<author>
<name sortKey="Gack, M U" uniqKey="Gack M">M.U. Gack</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nuermberger, E" uniqKey="Nuermberger E">E. Nuermberger</name>
</author>
<author>
<name sortKey="Bishai, W R" uniqKey="Bishai W">W.R. Bishai</name>
</author>
<author>
<name sortKey="Grosset, J H" uniqKey="Grosset J">J.H. Grosset</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pulliam, J R C" uniqKey="Pulliam J">J.R.C. Pulliam</name>
</author>
<author>
<name sortKey="Epstein, J H" uniqKey="Epstein J">J.H. Epstein</name>
</author>
<author>
<name sortKey="Dushoff, J" uniqKey="Dushoff J">J. Dushoff</name>
</author>
<author>
<name sortKey="Rahman, S A" uniqKey="Rahman S">S.A. Rahman</name>
</author>
<author>
<name sortKey="Bunning, M" uniqKey="Bunning M">M. Bunning</name>
</author>
<author>
<name sortKey="Jamaluddin, A A" uniqKey="Jamaluddin A">A.A. Jamaluddin</name>
</author>
<author>
<name sortKey="Hyatt, A D" uniqKey="Hyatt A">A.D. Hyatt</name>
</author>
<author>
<name sortKey="Field, H E" uniqKey="Field H">H.E. Field</name>
</author>
<author>
<name sortKey="Dobson, A P" uniqKey="Dobson A">A.P. Dobson</name>
</author>
<author>
<name sortKey="Daszak, P" uniqKey="Daszak P">P. Daszak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pulliam, J R C" uniqKey="Pulliam J">J.R.C. Pulliam</name>
</author>
<author>
<name sortKey="Dushoff, J G" uniqKey="Dushoff J">J.G. Dushoff</name>
</author>
<author>
<name sortKey="Levin, S A" uniqKey="Levin S">S.A. Levin</name>
</author>
<author>
<name sortKey="Dobson, A P" uniqKey="Dobson A">A.P. Dobson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Borderia, A V" uniqKey="Borderia A">A.V. Bordería</name>
</author>
<author>
<name sortKey="Stapleford, K A" uniqKey="Stapleford K">K.A. Stapleford</name>
</author>
<author>
<name sortKey="Vignuzzi, M" uniqKey="Vignuzzi M">M. Vignuzzi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lancaster, K Z" uniqKey="Lancaster K">K.Z. Lancaster</name>
</author>
<author>
<name sortKey="Pfeiffer, J K" uniqKey="Pfeiffer J">J.K. Pfeiffer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pfeiffer, J K" uniqKey="Pfeiffer J">J.K. Pfeiffer</name>
</author>
<author>
<name sortKey="Kirkegaard, K" uniqKey="Kirkegaard K">K. Kirkegaard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vignuzzi, M" uniqKey="Vignuzzi M">M. Vignuzzi</name>
</author>
<author>
<name sortKey="Stone, J K" uniqKey="Stone J">J.K. Stone</name>
</author>
<author>
<name sortKey="Arnold, J J" uniqKey="Arnold J">J.J. Arnold</name>
</author>
<author>
<name sortKey="Cameron, C E" uniqKey="Cameron C">C.E. Cameron</name>
</author>
<author>
<name sortKey="Andino, R" uniqKey="Andino R">R. Andino</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Meng, T" uniqKey="Meng T">T. Meng</name>
</author>
<author>
<name sortKey="Kwang, J" uniqKey="Kwang J">J. Kwang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gagneux, S" uniqKey="Gagneux S">S. Gagneux</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Borrell, S" uniqKey="Borrell S">S. Borrell</name>
</author>
<author>
<name sortKey="Gagneux, S" uniqKey="Gagneux S">S. Gagneux</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stead, W W" uniqKey="Stead W">W.W. Stead</name>
</author>
<author>
<name sortKey="Senner, J W" uniqKey="Senner J">J.W. Senner</name>
</author>
<author>
<name sortKey="Reddick, W T" uniqKey="Reddick W">W.T. Reddick</name>
</author>
<author>
<name sortKey="Lofgren, J P" uniqKey="Lofgren J">J.P. Lofgren</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Crowle, A J" uniqKey="Crowle A">A.J. Crowle</name>
</author>
<author>
<name sortKey="Elkins, N" uniqKey="Elkins N">N. Elkins</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stead, W W" uniqKey="Stead W">W.W. Stead</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ludlow, M" uniqKey="Ludlow M">M. Ludlow</name>
</author>
<author>
<name sortKey="Mcquaid, S" uniqKey="Mcquaid S">S. McQuaid</name>
</author>
<author>
<name sortKey="Milner, D" uniqKey="Milner D">D. Milner</name>
</author>
<author>
<name sortKey="De Swart, R L" uniqKey="De Swart R">R.L. de Swart</name>
</author>
<author>
<name sortKey="Duprex, W P" uniqKey="Duprex W">W.P. Duprex</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lloyd Smith, J O" uniqKey="Lloyd Smith J">J.O. Lloyd-Smith</name>
</author>
<author>
<name sortKey="Schreiber, S J" uniqKey="Schreiber S">S.J. Schreiber</name>
</author>
<author>
<name sortKey="Kopp, P E" uniqKey="Kopp P">P.E. Kopp</name>
</author>
<author>
<name sortKey="Getz, W M" uniqKey="Getz W">W.M. Getz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jones L Pez, E C" uniqKey="Jones L Pez E">E.C. Jones-López</name>
</author>
<author>
<name sortKey="Namugga, O" uniqKey="Namugga O">O. Namugga</name>
</author>
<author>
<name sortKey="Mumbowa, F" uniqKey="Mumbowa F">F. Mumbowa</name>
</author>
<author>
<name sortKey="Ssebidandi, M" uniqKey="Ssebidandi M">M. Ssebidandi</name>
</author>
<author>
<name sortKey="Mbabazi, O" uniqKey="Mbabazi O">O. Mbabazi</name>
</author>
<author>
<name sortKey="Moine, S" uniqKey="Moine S">S. Moine</name>
</author>
<author>
<name sortKey="Mboowa, G" uniqKey="Mboowa G">G. Mboowa</name>
</author>
<author>
<name sortKey="Fox, M P" uniqKey="Fox M">M.P. Fox</name>
</author>
<author>
<name sortKey="Reilly, N" uniqKey="Reilly N">N. Reilly</name>
</author>
<author>
<name sortKey="Ayakaka, I" uniqKey="Ayakaka I">I. Ayakaka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Milton, D K" uniqKey="Milton D">D.K. Milton</name>
</author>
<author>
<name sortKey="Fabian, M P" uniqKey="Fabian M">M.P. Fabian</name>
</author>
<author>
<name sortKey="Cowling, B J" uniqKey="Cowling B">B.J. Cowling</name>
</author>
<author>
<name sortKey="Grantham, M L" uniqKey="Grantham M">M.L. Grantham</name>
</author>
<author>
<name sortKey="Mcdevitt, J J" uniqKey="Mcdevitt J">J.J. McDevitt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fabian, P" uniqKey="Fabian P">P. Fabian</name>
</author>
<author>
<name sortKey="Brain, J" uniqKey="Brain J">J. Brain</name>
</author>
<author>
<name sortKey="Houseman, E A" uniqKey="Houseman E">E.A. Houseman</name>
</author>
<author>
<name sortKey="Gern, J" uniqKey="Gern J">J. Gern</name>
</author>
<author>
<name sortKey="Milton, D K" uniqKey="Milton D">D.K. Milton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wurie, F" uniqKey="Wurie F">F. Wurie</name>
</author>
<author>
<name sortKey="Le Polain De Waroux, O" uniqKey="Le Polain De Waroux O">O. Le Polain de Waroux</name>
</author>
<author>
<name sortKey="Brande, M" uniqKey="Brande M">M. Brande</name>
</author>
<author>
<name sortKey="Dehaan, W" uniqKey="Dehaan W">W. Dehaan</name>
</author>
<author>
<name sortKey="Holdgate, K" uniqKey="Holdgate K">K. Holdgate</name>
</author>
<author>
<name sortKey="Mannan, R" uniqKey="Mannan R">R. Mannan</name>
</author>
<author>
<name sortKey="Milton, D" uniqKey="Milton D">D. Milton</name>
</author>
<author>
<name sortKey="Swerdlow, D" uniqKey="Swerdlow D">D. Swerdlow</name>
</author>
<author>
<name sortKey="Hayward, A" uniqKey="Hayward A">A. Hayward</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wurie, F B" uniqKey="Wurie F">F.B. Wurie</name>
</author>
<author>
<name sortKey="Lawn, S D" uniqKey="Lawn S">S.D. Lawn</name>
</author>
<author>
<name sortKey="Booth, H" uniqKey="Booth H">H. Booth</name>
</author>
<author>
<name sortKey="Sonnenberg, P" uniqKey="Sonnenberg P">P. Sonnenberg</name>
</author>
<author>
<name sortKey="Hayward, A C" uniqKey="Hayward A">A.C. Hayward</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sepkowitz, K A" uniqKey="Sepkowitz K">K.A. Sepkowitz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Friedrich, B" uniqKey="Friedrich B">B. Friedrich</name>
</author>
<author>
<name sortKey="Hacker, J" uniqKey="Hacker J">J. Hacker</name>
</author>
<author>
<name sortKey="Hasnain, S E" uniqKey="Hasnain S">S.E. Hasnain</name>
</author>
<author>
<name sortKey="Mettenleiter, T C" uniqKey="Mettenleiter T">T.C. Mettenleiter</name>
</author>
<author>
<name sortKey="Schell, J" uniqKey="Schell J">J. Schell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fronczek, C F" uniqKey="Fronczek C">C.F. Fronczek</name>
</author>
<author>
<name sortKey="Yoon, J Y" uniqKey="Yoon J">J.-Y. Yoon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nguyen, T M" uniqKey="Nguyen T">T.M. Nguyen</name>
</author>
<author>
<name sortKey="Ilef, D" uniqKey="Ilef D">D. Ilef</name>
</author>
<author>
<name sortKey="Jarraud, S" uniqKey="Jarraud S">S. Jarraud</name>
</author>
<author>
<name sortKey="Rouil, L" uniqKey="Rouil L">L. Rouil</name>
</author>
<author>
<name sortKey="Campese, C" uniqKey="Campese C">C. Campese</name>
</author>
<author>
<name sortKey="Che, D" uniqKey="Che D">D. Che</name>
</author>
<author>
<name sortKey="Haeghebaert, S" uniqKey="Haeghebaert S">S. Haeghebaert</name>
</author>
<author>
<name sortKey="Ganiayre, F" uniqKey="Ganiayre F">F. Ganiayre</name>
</author>
<author>
<name sortKey="Marcel, F" uniqKey="Marcel F">F. Marcel</name>
</author>
<author>
<name sortKey="Etienne, J" uniqKey="Etienne J">J. Etienne</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Correia, A M" uniqKey="Correia A">A.M. Correia</name>
</author>
<author>
<name sortKey="Ferreira, J S" uniqKey="Ferreira J">J.S. Ferreira</name>
</author>
<author>
<name sortKey="Borges, V" uniqKey="Borges V">V. Borges</name>
</author>
<author>
<name sortKey="Nunes, A" uniqKey="Nunes A">A. Nunes</name>
</author>
<author>
<name sortKey="Gomes, B" uniqKey="Gomes B">B. Gomes</name>
</author>
<author>
<name sortKey="Capucho, R" uniqKey="Capucho R">R. Capucho</name>
</author>
<author>
<name sortKey="Goncalves, J" uniqKey="Goncalves J">J. Gonçalves</name>
</author>
<author>
<name sortKey="Antunes, D M" uniqKey="Antunes D">D.M. Antunes</name>
</author>
<author>
<name sortKey="Almeida, S" uniqKey="Almeida S">S. Almeida</name>
</author>
<author>
<name sortKey="Mendes, A" uniqKey="Mendes A">A. Mendes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bentley, S D" uniqKey="Bentley S">S.D. Bentley</name>
</author>
<author>
<name sortKey="Parkhill, J" uniqKey="Parkhill J">J. Parkhill</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="review-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Curr Opin Virol</journal-id>
<journal-id journal-id-type="iso-abbrev">Curr Opin Virol</journal-id>
<journal-title-group>
<journal-title>Current Opinion in Virology</journal-title>
</journal-title-group>
<issn pub-type="ppub">1879-6257</issn>
<issn pub-type="epub">1879-6265</issn>
<publisher>
<publisher-name>The Author(s). Published by Elsevier B.V.</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">27918958</article-id>
<article-id pub-id-type="pmc">7102691</article-id>
<article-id pub-id-type="publisher-id">S1879-6257(16)30186-9</article-id>
<article-id pub-id-type="doi">10.1016/j.coviro.2016.11.006</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Drivers of airborne human-to-human pathogen transmission</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" id="aut0005">
<name>
<surname>Herfst</surname>
<given-names>Sander</given-names>
</name>
<email>s.herfst@erasmusmc.nl</email>
<xref rid="aff0005" ref-type="aff">1</xref>
</contrib>
<contrib contrib-type="author" id="aut0010">
<name>
<surname>Böhringer</surname>
<given-names>Michael</given-names>
</name>
<xref rid="aff0010" ref-type="aff">2</xref>
</contrib>
<contrib contrib-type="author" id="aut0015">
<name>
<surname>Karo</surname>
<given-names>Basel</given-names>
</name>
<xref rid="aff3" ref-type="aff">3</xref>
<xref rid="aff0015" ref-type="aff">4</xref>
</contrib>
<contrib contrib-type="author" id="aut0020">
<name>
<surname>Lawrence</surname>
<given-names>Philip</given-names>
</name>
<xref rid="aff0020" ref-type="aff">5</xref>
<xref rid="aff0025" ref-type="aff">6</xref>
</contrib>
<contrib contrib-type="author" id="aut0025">
<name>
<surname>Lewis</surname>
<given-names>Nicola S</given-names>
</name>
<xref rid="aff0030" ref-type="aff">7</xref>
</contrib>
<contrib contrib-type="author" id="aut0030">
<name>
<surname>Mina</surname>
<given-names>Michael J</given-names>
</name>
<xref rid="aff0035" ref-type="aff">8</xref>
</contrib>
<contrib contrib-type="author" id="aut0035">
<name>
<surname>Russell</surname>
<given-names>Charles J</given-names>
</name>
<xref rid="aff0040" ref-type="aff">9</xref>
</contrib>
<contrib contrib-type="author" id="aut0040">
<name>
<surname>Steel</surname>
<given-names>John</given-names>
</name>
<xref rid="aff0045" ref-type="aff">10</xref>
</contrib>
<contrib contrib-type="author" id="aut0045">
<name>
<surname>de Swart</surname>
<given-names>Rik L</given-names>
</name>
<xref rid="aff0005" ref-type="aff">1</xref>
</contrib>
<contrib contrib-type="author" id="aut0050">
<name>
<surname>Menge</surname>
<given-names>Christian</given-names>
</name>
<xref rid="aff0050" ref-type="aff">11</xref>
</contrib>
</contrib-group>
<aff id="aff0005">
<label>1</label>
Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands</aff>
<aff id="aff0010">
<label>2</label>
Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Naumburger Str. 96a, 07743 Jena, Germany</aff>
<aff id="aff3">
<label>3</label>
Robert Koch Institut, Department for Infectious Disease Epidemiology, Seestr. 10, 13353 Berlin, Germany</aff>
<aff id="aff0015">
<label>4</label>
PhD Programme “Epidemiology”, Braunschweig-Hannover, Germany</aff>
<aff id="aff0020">
<label>5</label>
Université de Lyon, UMRS 449, Laboratoire de Biologie Générale, Université Catholique de Lyon – EPHE, Lyon 69288, France</aff>
<aff id="aff0025">
<label>6</label>
Molecular Basis of Viral Pathogenicity, International Centre for Research in Infectiology (CIRI), INSERM U1111 – CNRS UMR5308, Université Lyon 1, Ecole Normale Supérieure de Lyon, Lyon 69007, France</aff>
<aff id="aff0030">
<label>7</label>
Centre for Pathogen Evolution, Department of Zoology, University of Cambridge, Downing Street, Cambridge, United Kingdom</aff>
<aff id="aff0035">
<label>8</label>
Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA</aff>
<aff id="aff0040">
<label>9</label>
Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA</aff>
<aff id="aff0045">
<label>10</label>
Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA</aff>
<aff id="aff0050">
<label>11</label>
Friedrich-Loeffler-Institut, Institute of Molecular Pathogenesis, Naumburger Str. 96a, 07743 Jena, Germany</aff>
<pub-date pub-type="pmc-release">
<day>2</day>
<month>12</month>
<year>2016</year>
</pub-date>
<pmc-comment> PMC Release delay is 0 months and 0 days and was based on .</pmc-comment>
<pub-date pub-type="ppub">
<month>2</month>
<year>2017</year>
</pub-date>
<pub-date pub-type="epub">
<day>2</day>
<month>12</month>
<year>2016</year>
</pub-date>
<volume>22</volume>
<fpage>22</fpage>
<lpage>29</lpage>
<permissions>
<copyright-statement>© 2016 The Author(s)</copyright-statement>
<copyright-year>2016</copyright-year>
<license>
<license-p>Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.</license-p>
</license>
</permissions>
<abstract abstract-type="author-highlights" id="abs0005">
<title>Highlights</title>
<p>
<list list-type="simple" id="lis0005">
<list-item id="lsti0005">
<label></label>
<p id="par0005">Chain of pathogen transmission between individual donor and recipient is modeled.</p>
</list-item>
<list-item id="lsti0010">
<label></label>
<p id="par0010">Related pairs of efficient and inefficient ‘airborne’ pathogens are contrasted.</p>
</list-item>
<list-item id="lsti0015">
<label></label>
<p id="par0015">Drivers operate on tissue, individual, community, country, and global levels.</p>
</list-item>
<list-item id="lsti0020">
<label></label>
<p id="par0020">Pandemic risk is heightened by pathogen evolution and changes in host interaction.</p>
</list-item>
<list-item id="lsti0025">
<label></label>
<p id="par0025">Ultimate drivers include socio-economic developments and climate changes.</p>
</list-item>
</list>
</p>
</abstract>
<abstract id="abs0010">
<p>Airborne pathogens — either transmitted via aerosol or droplets — include a wide variety of highly infectious and dangerous microbes such as variola virus, measles virus, influenza A viruses,
<italic>Mycobacterium tuberculosis</italic>
,
<italic>Streptococcus pneumoniae</italic>
, and
<italic>Bordetella pertussis</italic>
. Emerging zoonotic pathogens, for example, MERS coronavirus, avian influenza viruses, Coxiella, and Francisella, would have pandemic potential were they to acquire efficient human-to-human transmissibility. Here, we synthesize insights from microbiological, medical, social, and economic sciences to provide known mechanisms of aerosolized transmissibility and identify knowledge gaps that limit emergency preparedness plans. In particular, we propose a framework of drivers facilitating human-to-human transmission with the airspace between individuals as an intermediate stage. The model is expected to enhance identification and risk assessment of novel pathogens.</p>
</abstract>
</article-meta>
</front>
<body>
<p id="par0135">
<boxed-text id="tb0005">
<p id="par0035">
<bold>Current Opinion in Virology</bold>
2017,
<bold>22</bold>
:22–29</p>
<p id="par1035">This review comes from a themed issue on
<bold>Emerging viruses: intraspecies transmission</bold>
</p>
<p id="par1040">Edited by
<bold>Ron A.M Fouchier</bold>
and
<bold>Lin-Fa Wang</bold>
</p>
<p id="par1050">For a complete overview see the
<ext-link ext-link-type="uri" xlink:href="http://www.sciencedirect.com/science/journal/18796257/22" id="intr9065">
<underline>Issue</underline>
</ext-link>
and the
<ext-link ext-link-type="doi" xlink:href="10.1016/j.coviro.2017.02.001" id="intr9070">
<underline>Editorial</underline>
</ext-link>
</p>
<p id="par9220">Available online 2nd December 2016</p>
<p id="par0050">
<ext-link ext-link-type="doi" xlink:href="10.1016/j.coviro.2016.11.006" id="intr0005">
<bold>http://dx.doi.org/10.1016/j.coviro.2016.11.006</bold>
</ext-link>
</p>
<p id="par0055">1879-6257/© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/" id="intr0010">http://creativecommons.org/licenses/by/4.0/</ext-link>
).</p>
</boxed-text>
</p>
<sec id="sec0005">
<title>Introduction</title>
<p id="par0060">The horror of airborne infectious diseases subsided substantially in the 20th century in developed nations, largely due to implementation of hygiene practices and the development of countermeasures such as vaccination and antimicrobials. The recent emergence of zoonotic pathogens such as avian influenza A viruses (e.g. H5N1 and H7N9) and coronaviruses (CoV) (i.e. SARS CoV (severe acute respiratory syndrome) and MERS CoV (Middle East respiratory syndrome)) raises the specter of future pandemics with unprecedented health and economic impacts if these pathogens gain the ability to spread efficiently between humans via the airborne route. While cross-species barriers have helped avoid a human pandemic with highly pathogenic avian influenza A (HPAI) viruses, a limited number of mutations in circulating avian H5N1 viruses would be needed for the acquisition of airborne transmissibility in mammals [
<xref rid="bib0005" ref-type="bibr">1
<sup></sup>
</xref>
]. A global pandemic by SARS CoV was averted largely by fast identification, rapid surveillance and effective quarantine practices. However, not all emerging pathogens can be contained due to a delay in initial detection, an inability to properly assess pandemic risk, or an inability to contain an outbreak at the point of origin. Before 2009, widely circulating H1N1 swine viruses were largely thought to pose little pandemic risk but, despite early attempts to limit spread, pH1N1 caused the first influenza virus pandemic of the 21st century. Implementation of suitable countermeasures is hampered by our limited capability to anticipate the sequence of events following the initial detection of a novel microorganism in an animal or human host. In the immediate future, the occurrence of (i.e. frequency of spill-over events from an animal to the human population), the detection of (i.e. diagnostic capabilities), and the awareness for (i.e. likelihood of public health services to recognize) novel epidemic agents will likely increase qualitatively and quantitatively. Updating of emergency preparedness plans in an evidence-guided process requires an interdisciplinary concept of research and public health efforts taking into account the multifactorial nature of the problem to aid policy formulation [
<xref rid="bib0010" ref-type="bibr">2</xref>
]. Here we build on a conceptual framework for the classification of drivers of human exposure to animal pathogens [
<xref rid="bib0015" ref-type="bibr">3
<sup>••</sup>
</xref>
] and suggest a framework of drivers determining the efficiency of human-to-human transmission involving the airspace.</p>
</sec>
<sec id="sec0010">
<title>Circle of transmission events</title>
<p id="par0065">The airborne transmission of pathogens occurs through ‘aerosol’ and ‘droplet’ means [
<xref rid="bib0020" ref-type="bibr">4</xref>
,
<xref rid="bib0025" ref-type="bibr">5••</xref>
]. In a strict sense,
<italic>airborne transmission</italic>
refers to aerosols (≤5 μm) that can spread over distances greater than 1 m, while
<italic>droplet transmission</italic>
is defined as the transfer of large-particle droplets (>5 μm) over a shorter distance [
<xref rid="bib0025" ref-type="bibr">5
<sup>••</sup>
</xref>
]. Here, we consider airborne transmission of infectious agents in a broader sense as any transmission through the air which consists of four steps (
<xref rid="fig0005" ref-type="fig">Figure 1</xref>
): Firstly, the pathogen is associated with either liquid droplets/aerosols or dust particles when traveling directly from donor to recipient, but may also be deposited on a surface and re-emerge into the air later; secondly, the pathogen is deposited in the recipient, usually by inhalation, resulting in infection of the respiratory tract; thirdly, the pathogen is amplified, either in the respiratory tract or in peripheral tissues; and finally, the pathogen is emergent at the site of shedding (in most cases the upper respiratory tract) in sufficient loads and capable of expulsion. In the process of transmission, the recipient becomes a donor when microbial replication and subsequent pathophysiological events in the host result in release of the pathogen.
<fig id="fig0005">
<label>Figure 1</label>
<caption>
<p>Circle of events leading to human-to-human transmission of airborne pathogens. (1) The pathogen is associated with either small aerosols/large droplets or dust particles when transported through the air from donor to recipient. This may be directly, or via an intermediate stage involving settlement on a surface and re-emergence into the air later. (2) A low infectious dose is sufficient for deposition of the pathogen in the respiratory tract of the recipient. (3) After infection of susceptible cells, pathogens may amplify at the site of deposition only (localized site), or are disseminated from the primary deposition site to peripheral tissues (secondary site) where additional amplification takes place. (4) Eventually, the recipient becomes the donor and pathogens are expelled from the exit site. This is (usually) the respiratory tract, but may also be the secondary site of replication. High infectious loads of the pathogen emerge in the air, and the transmission cycle is repeated.</p>
</caption>
<graphic xlink:href="gr1_lrg"></graphic>
</fig>
</p>
</sec>
<sec id="sec0015">
<title>Drivers impacting on movement of pathogens through the air</title>
<p id="par0070">Airborne transmission of microbes can follow different aerodynamic principles, and some microorganisms are suspected or proven to spread by more than one route [
<xref rid="bib0020" ref-type="bibr">4</xref>
]. Moreover, the mode of transmission and anisotropic delivery of a pathogen into the recipient contributes to disease severity [
<xref rid="bib0030" ref-type="bibr">6</xref>
,
<xref rid="bib0035" ref-type="bibr">7</xref>
]. There are no substantive differences between droplet-size distribution for expulsive methods like sneezing, cough with mouth closed, cough with mouth open, and speaking loudly one hundred words [
<xref rid="bib0040" ref-type="bibr">8</xref>
,
<xref rid="bib0045" ref-type="bibr">9</xref>
,
<xref rid="bib0050" ref-type="bibr">10</xref>
]; however, the number of respiratory droplets that likely contain pathogens can differ [
<xref rid="bib0045" ref-type="bibr">9</xref>
]. After expulsion, successful transmission requires that the pathogen remains infectious throughout airborne movement, with or without an intervening deposition event (
<xref rid="fig0005" ref-type="fig">Figure 1</xref>
). Drivers influencing the success of such a process are those that define the chemico-physical properties of both the air mass and the vehicle or carrier, including temperature, ultraviolet (UV) radiation, relative (RH) and absolute humidity, and air ventilation (inside) or air movement (outside) [
<xref rid="bib0045" ref-type="bibr">9</xref>
]. Their interplay ultimately determines pathogen movement and stability [
<xref rid="bib0055" ref-type="bibr">11</xref>
,
<xref rid="bib0060" ref-type="bibr">12</xref>
,
<xref rid="bib0065" ref-type="bibr">13</xref>
]. Pathogen survival is also influenced by pathogen structure, for example, enveloped viruses are less stable outside the host than non-enveloped viruses [
<xref rid="bib0070" ref-type="bibr">14</xref>
]. Among
<italic>Chlamydia</italic>
(
<italic>Ch.</italic>
)
<italic>pneumoniae</italic>
,
<italic>Ch. trachomatis</italic>
LGV2,
<italic>Streptococcus</italic>
(
<italic>S.</italic>
)
<italic>pneumoniae</italic>
,
<italic>S. faecalis</italic>
,
<italic>Klebsiella pneumoniae</italic>
, and cytomegalovirus, the survival of
<italic>Ch. pneumoniae</italic>
(and
<italic>S. faecalis</italic>
) in aerosols was superior [
<xref rid="bib0075" ref-type="bibr">15</xref>
]. Variation in RH might influence not only environmental stability of the pathogen but also the droplet size [
<xref rid="bib0080" ref-type="bibr">16</xref>
] which in turn defines deposition rate [
<xref rid="bib0080" ref-type="bibr">16</xref>
,
<xref rid="bib0085" ref-type="bibr">17</xref>
]. Eighty percent of droplets emitted from a cough deposit within 10 min, and highest deposition rates for all droplet-nuclei sizes range within 1 m horizontal distance [
<xref rid="bib0085" ref-type="bibr">17</xref>
]. Pathogens like influenza virus can persist in the environment for hours to days and have been found on surfaces in healthcare settings [
<xref rid="bib0090" ref-type="bibr">18</xref>
,
<xref rid="bib0095" ref-type="bibr">19</xref>
,
<xref rid="bib0100" ref-type="bibr">20</xref>
,
<xref rid="bib0105" ref-type="bibr">21</xref>
]. UV radiation is the major inactivating factor for influenza viruses in the outdoor environment (reviewed in [
<xref rid="bib0110" ref-type="bibr">22</xref>
]).</p>
</sec>
<sec id="sec0020">
<title>Drivers impacting on the infection of the recipient</title>
<p id="par0075">Pathogen-containing large particles (>6 μm) deposit predominantly in the upper airway, medium-sized particles (2–6 μm) mainly in central and small airways, and small particles (<2 μm) predominantly in the alveolar region of the lungs [
<xref rid="bib0115" ref-type="bibr">23</xref>
]. In general, airborne pathogens tend to have a relatively low infectious dose 50% (ID
<sub>50</sub>
) value. At any specific site of deposition within a host, ID
<sub>50</sub>
of a pathogen is determined by factors such as local immune responses and the cellular and tissue tropism defined by distribution of receptors and/or adherence factors, tissue temperature, pH, polymerase activity of the pathogen, and activating proteases. Co-infections may alter immune responses and factors that govern tropism.</p>
</sec>
<sec id="sec0025">
<title>Drivers impacting on pathogen amplification in the host</title>
<p id="par0080">Pathogens amplify either at the site of initial deposition in the respiratory tract or in peripheral tissues. For influenza virus or human respiratory syncytial virus, this is the site of initial entry whilst other pathogens have either distinct secondary amplification sites or replicate both locally and systemically, for example, Measles virus (MeV), Nipah virus and
<italic>Mycobacterium</italic>
(
<italic>M.</italic>
)
<italic>tuberculosis</italic>
(
<xref rid="fig0005" ref-type="fig">Figure 1</xref>
).</p>
<p id="par0085">Microorganisms often damage host tissue through the release of toxins and toxic metabolites, as a direct result of replication, or as a consequence of activation and infiltration of immune cells [
<xref rid="bib0120" ref-type="bibr">24
<sup>••</sup>
</xref>
]. This may allow the pathogen to spread in the body and replicate to sufficient numbers to favor onward transmission. Self-assembly in highly organized, surface-attached, and matrix encapsulated structures called biofilms enhances microbial survival in stressful environments [
<xref rid="bib0125" ref-type="bibr">25
<sup></sup>
</xref>
] and may even harbor drug-tolerant populations. Biofilms of
<italic>M. tuberculosis</italic>
can contain resistant populations that persist despite exposure to high levels of antibiotics [
<xref rid="bib0130" ref-type="bibr">26</xref>
]. A third strategy is followed by many human pathogens that have at some stage evolved or acquired a range of mechanisms allowing host immune antagonism [
<xref rid="bib0135" ref-type="bibr">27</xref>
,
<xref rid="bib0140" ref-type="bibr">28•</xref>
] to successfully replicate to high loads in the presence of innate and/or adaptive immunity [
<xref rid="bib0145" ref-type="bibr">29</xref>
]. However, several rounds of stuttering chains of transmission may be required before a pathogen can successfully emerge into a new host population. Multiple forays of the pathogen into the population may serve to create a level of immunity, thus establishing conditions favoring more prolonged outbreaks following a reintroduction of the infectious agent [
<xref rid="bib0150" ref-type="bibr">30</xref>
,
<xref rid="bib0155" ref-type="bibr">31</xref>
] which then enables sustained pathogen/human host co-evolution.</p>
<p id="par0090">Evolution to allow host adaptation and/or airborne transmissibility can be driven by changes in pathogen population genetics at the consensus level but also by genetic variability of the entire population. RNA viruses exist as a population of closely related genetic variants within the host. The ability of a pathogen to generate a genetically diverse population is considered critical to allow adaption when faced with a range of selective pressures [
<xref rid="bib0160" ref-type="bibr">32</xref>
,
<xref rid="bib0165" ref-type="bibr">33</xref>
]. High-fidelity poliovirus mutants that produce viral populations with little genetic diversity are attenuated despite apparent overall identical consensus sequences to wildtype strains [
<xref rid="bib0170" ref-type="bibr">34</xref>
,
<xref rid="bib0175" ref-type="bibr">35</xref>
,
<xref rid="bib0180" ref-type="bibr">36</xref>
]. Factors enabling acquisition of novel traits through high mutation rate, and/or a propensity to acquire novel genetic material through re-assortment or recombination are important drivers at the level of pathogen replication, amplification and adaptation within the host. Bacteria additionally deploy transfer of mobile genetic elements (plasmids, transposons and bacteriophages) to acquire novel virulence factors, toxins and/or antimicrobial resistance. Microbial adaptation by drug resistance is often attained at the cost of decreased fitness, as illustrated by a reduced growth rate of
<italic>M. tuberculosis</italic>
strains resistant to isoniazid [
<xref rid="bib0185" ref-type="bibr">37</xref>
], but multi-drug resistant (MDR) strains can be up to 10 times more or 10 times less transmissible than pan-susceptible strains [
<xref rid="bib0190" ref-type="bibr">38</xref>
]. Heredity of susceptibility on the host side enhances the risk of disease and transmission, as seen historically with the selection of populations with innate tuberculosis resistance by the evolutionary pressure of several, hundred-year-old epidemics in Europe and North America [
<xref rid="bib0195" ref-type="bibr">39</xref>
,
<xref rid="bib0200" ref-type="bibr">40</xref>
,
<xref rid="bib0205" ref-type="bibr">41</xref>
].</p>
</sec>
<sec id="sec0030">
<title>Drivers impacting on pathogen expulsion by the donor</title>
<p id="par0095">The high viral load in the upper respiratory tract combined with a strong cough reflex drives efficient host-to-host human transmission of MeV [
<xref rid="bib0210" ref-type="bibr">42</xref>
]. At the level of virus amplification in host epithelia, lesions are observed in the later stages of disease as well as extensive infiltration of infected tissue by immune cells. It is currently unclear to what extent the host immune response contributes to formation of pathological lesions and to the transmissibility of the virus. Levels of exhalation of infected particles significantly vary interpersonally [
<xref rid="bib0215" ref-type="bibr">43
<sup>••</sup>
</xref>
], for example, for
<italic>M. tuberculosis</italic>
[
<xref rid="bib0220" ref-type="bibr">44</xref>
] and for influenza A virus [
<xref rid="bib0225" ref-type="bibr">45</xref>
], both in healthy and in virus-infected persons [
<xref rid="bib0050" ref-type="bibr">10</xref>
,
<xref rid="bib0230" ref-type="bibr">46</xref>
], as well as intra-individually over time [
<xref rid="bib0235" ref-type="bibr">47</xref>
]. Drivers of airborne transmissibility appear to be closely linked to disease progression and severity, to the incubation period and onset of symptoms in
<italic>M. tuberculosis</italic>
[
<xref rid="bib0240" ref-type="bibr">48</xref>
].</p>
</sec>
<sec id="sec0035">
<title>Framework for the classification of drivers</title>
<p id="par0100">Determinants that confer efficient airborne transmissibility for zoonotic pathogens among humans, thus permitting pandemic emergence, can be defined as qualitative or quantitative changes in key factors that govern one or more of the four stages of the transmission circle. The sum of changes in spatial and temporal terms that facilitate or limit the progression to successive stages of the circle corresponds to the evolution of emerging pathogens. To predict the likelihood that a certain pathogen identified in, or next to, a human being (index patient) will become a pandemic threat, a multilevel framework of drivers has to be considered. Categorized in a descriptive manner, drivers may act at the level of cells and tissues, of individuals, communities and countries, or even on a global scale. However, drivers are highly interactive and may be effective at different scales or levels. As an example, host susceptibility might be directly encoded for in the host genome (e.g. by the presence or absence, by the expression or silencing of genes encoding for pathogen receptors). Once the transmitted pathogen finds an entry into such a susceptible human host, its interaction with the host immune system ultimately determines whether infection is established and whether it progresses to a point where onward transmission to a new host is facilitated. These interactions are influenced at the individual or host level by other drivers governing an immune response. These drivers in turn may include the host genetic background as genetic entities impact on the kind of immune response (e.g. Th1 versus Th2 bias) developed by an individual or a group of individuals within a population. Pre-existing immunity or the presence of concurrent infections or disruption to the normal functioning of the immune system including co-morbidities which may represent more distal drivers or in turn modulate more distal drivers, play important roles. With effective treatment, the contagiousness of a particular disease may be reduced not only by decreasing the number of the pathogens in the infected site and those that will be expectorated but also by introducing, for example, antibiotic into the infectious droplet nuclei [
<xref rid="bib0245" ref-type="bibr">49</xref>
]. Many drivers are acting at the tissue or individual level but are themselves subject to modification at the community level by, for example, the frequency and intensity of social contact and the composition of the group a person is interacting with, for example, in terms of health and hygiene standard and age distribution. Examples are tuberculosis in the working class in the age of industrialization and the Spanish flu during World War I. More distal factors are relevant at the country level including (the variability of) host population genetics (susceptibility of the population as a whole), demography, public health strategies for treatment or vaccination or access to medical care, which are likewise, to some extent, governed by socio-economic drivers. Air pollution, land use, urbanization and socio-economic changes are important drivers of emergence of airborne infections at the supranational level. Although human population densities have continued to rise and reach unprecedented levels, airborne diseases of public concern in developed countries in the second half of the 20th century have typically comprised relatively self-limiting or preventable diseases like the common cold, seasonal flu and MeV. Continuous developments like agglomeration of settlement areas in developing countries, along with urbanization and rural depopulation, and exponentially increasing human movement in numbers and distances on a global scale, however, may outpace contemporary achievements in disease prevention. Climatic changes also occur at a global level, which could have serious impact on infectious diseases in humans and animals [
<xref rid="bib0250" ref-type="bibr">50</xref>
]. Extreme weather conditions alter seasonal patterns of emergence and expansion of diseases even though direct proof for the influence of climate change on regional, national, supranational or global level on the emergence of new or frequency of established infections is difficult to obtain. To mirror the complexity of the problem we suggest a concise and weighted framework of drivers (
<xref rid="fig0010" ref-type="fig">Figure 2</xref>
) taking into consideration different levels, from cell and tissue through to global scale but also the multitude of influences between these levels. While some drivers at an outer level may only imprint on one driver in the level below, other drivers can impact several lower level drivers and in sum may be equally important to drivers considered to act from an outer level. Classification of drivers as acting at a more proximal or more distal level also is not exclusive and inverted imprinting may occur under several circumstances as outlined above.
<fig id="fig0010">
<label>Figure 2</label>
<caption>
<p>Framework for the classification of drivers of human-to-human transmission of zoonotic pathogens by the airborne route (interhuman barrier). These drivers operate on tissue, individual, community, country, and global levels. The presented framework also makes provisions for the multitude of influences between levels highlighting that some drivers have implications for several lower level drivers and in sum may be equally important to drivers considered to act from an outer level.</p>
</caption>
<graphic xlink:href="gr2_lrg"></graphic>
</fig>
</p>
</sec>
<sec id="sec0040">
<title>Knowledge gaps and future prospect</title>
<p id="par0105">Despite decades of research on ‘airborne transmission factors’, surprisingly few quantitative data is available for factors impacting the majority of infectious diseases that transmit via this route. Furthermore, for some microorganisms, for example, for coronaviruses, epidemiological or experimental evidence that transmission of the pathogens via the airborne route is successful or even contributes importantly to epidemic or pandemic spread of the agent remains weak. A large body of work is focused on influenza viruses and the indoor environment, likely because perturbations of the indoor pathogen transmission ecosystem are easier to generate and quantify. Published studies assessing viable pathogen counts directly from subject's respiratory maneuvers are restricted to a few respiratory pathogens (influenza A virus,
<italic>M. tuberculosis</italic>
,
<italic>P. aeruginosa</italic>
,
<italic>S. pyogenes</italic>
). Evaluation of factors underlying the highly variable levels of pathogen shedding, for example, by long-term examination of individuals to determine how pathogen load changes during infection of the respiratory tract with different viruses and bacterial species are urgently needed. Current technical developments may open novel experimental opportunities [
<xref rid="bib0255" ref-type="bibr">51
<sup></sup>
</xref>
]. When designing such studies, consideration of zoonotic and human-specific pathogens as well as delineating strategies employed by both viruses and bacterial pathogens will help to identify commonalities in the strategies followed by successful airborne pathogens. Especially investigation of organisms assumed to have no capacity of human-to-human transmission via the airborne route in suitable animal models will help explain why some pathogens, despite having a very low infectious dose, are likely not directly transmitted from infected persons. Examples would be the human-to-human transmission of
<italic>Yersinia pestis</italic>
versus
<italic>Francisella tularensis</italic>
, or the assessment why
<italic>Legionella pneumophila</italic>
transmission can occur over long distances from artificial sources [
<xref rid="bib0260" ref-type="bibr">52</xref>
], but usually not inter-personally (with the exception of a first described case [
<xref rid="bib0265" ref-type="bibr">53</xref>
]).</p>
<p id="par0110">Beyond representing an ever-increasing ethical and economic burden, the recent more frequent occurrence of zoonotic pathogens in the human population also inheres in the unique opportunity to further our knowledge of the prerequisites for airborne pandemic spread. Genomics-based methods have already allowed a significant advance in our understanding of the evolution and spread of bacterial pathogens. In the developed world, whole genome sequencing is being established for routine use in clinical microbiology, both for tracking transmission and spread of pathogens, as well as prediction of drug-resistance profiles, allowing rapid outbreak detection and analysis in almost real-time, as evolution occurs in the wild [
<xref rid="bib0270" ref-type="bibr">54
<sup>••</sup>
</xref>
]. Except for influenza A viruses, genetic correlates (surrogates) of the ability of a zoonotic pathogen to efficiently overcome the interspecies barrier and allow rapid spread within the human population are poorly defined. Any emergence of novel molecular patterns in microorganisms results from an evolutionary process driven by factors not encoded for in genomes and determined by the frequencies of genome alterations occurring under natural conditions. The broad introduction of ‘omic's’ technologies, advances in global data exchange capabilities and the advent of (bio)informatic tools allowing processing of large data collections (‘big data’) have put the technical capacity to integrate phenotypic data from clinical, from epidemiological and from experimental studies
<italic>in vitro</italic>
and
<italic>in vivo</italic>
at our disposal, with relevant target species like livestock in particular, and allow genome-wide association studies. Deploying the categorization of drivers and the relative level of their impact as suggested herein will allow for a weighting of the different drivers in the specific framework for any particular pathogen, and help to predict the pandemic potential of airborne pathogens.</p>
</sec>
<sec id="sec0045">
<title>References and recommended reading</title>
<p id="par0115">Papers of particular interest, published within the period of review, have been highlighted as:
<list list-type="simple" id="lis0010">
<list-item id="lsti0030">
<p id="par0120">• of special interest</p>
</list-item>
<list-item id="lsti0035">
<p id="par0125">•• of outstanding interest</p>
</list-item>
</list>
</p>
</sec>
</body>
<back>
<ref-list id="bibl0005">
<title>References</title>
<ref id="bib0005">
<label>1•</label>
<element-citation publication-type="journal" id="sbref0005">
<person-group person-group-type="author">
<name>
<surname>Linster</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>van Boheemen</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>de Graaf</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Schrauwen</surname>
<given-names>E.J.A.</given-names>
</name>
<name>
<surname>Lexmond</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Mänz</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Bestebroer</surname>
<given-names>T.M.</given-names>
</name>
<name>
<surname>Baumann</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>van Riel</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Rimmelzwaan</surname>
<given-names>G.F.</given-names>
</name>
</person-group>
<article-title>Identification, characterization, and natural selection of mutations driving airborne transmission of A/H5N1 virus</article-title>
<source>Cell</source>
<volume>157</volume>
<year>2014</year>
<fpage>329</fpage>
<lpage>339</lpage>
<pub-id pub-id-type="pmid">24725402</pub-id>
</element-citation>
<note>
<p>The authors show the phenotypic properties required for a fully avian highly pathogenic A/H5N1 influenza virus to become airborne-transmissible in the ferret transmission model.</p>
</note>
</ref>
<ref id="bib0010">
<label>2</label>
<element-citation publication-type="journal" id="sbref0010">
<person-group person-group-type="author">
<name>
<surname>Coker</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Rushton</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Mounier-Jack</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Karimuribo</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Lutumba</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Kambarage</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Pfeiffer</surname>
<given-names>D.U.</given-names>
</name>
<name>
<surname>Stärk</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Rweyemamu</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Towards a conceptual framework to support one-health research for policy on emerging zoonoses</article-title>
<source>Lancet Infect Dis</source>
<volume>11</volume>
<year>2011</year>
<fpage>326</fpage>
<lpage>331</lpage>
<pub-id pub-id-type="pmid">21376670</pub-id>
</element-citation>
</ref>
<ref id="bib0015">
<label>3••</label>
<element-citation publication-type="journal" id="sbref0015">
<person-group person-group-type="author">
<name>
<surname>Gortazar</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Reperant</surname>
<given-names>L.A.</given-names>
</name>
<name>
<surname>Kuiken</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>de la Fuente</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Boadella</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Martínez-Lopez</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Ruiz-Fons</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Estrada-Peña</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Drosten</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Medley</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Crossing the interspecies barrier: opening the door to zoonotic pathogens</article-title>
<source>PLoS Pathog</source>
<volume>10</volume>
<year>2014</year>
<fpage>e1004129</fpage>
<pub-id pub-id-type="pmid">24945247</pub-id>
</element-citation>
<note>
<p>Article provides the conceptual framework of drivers this review is built upon.</p>
</note>
</ref>
<ref id="bib0020">
<label>4</label>
<element-citation publication-type="journal" id="sbref0020">
<person-group person-group-type="author">
<name>
<surname>Bunyan</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Ritchie</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Jenkins</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Coia</surname>
<given-names>J.E.</given-names>
</name>
</person-group>
<article-title>Respiratory and facial protection: a critical review of recent literature</article-title>
<source>J Hosp Infect</source>
<volume>85</volume>
<year>2013</year>
<fpage>165</fpage>
<lpage>169</lpage>
<pub-id pub-id-type="pmid">24035256</pub-id>
</element-citation>
</ref>
<ref id="bib0025">
<label>5••</label>
<element-citation publication-type="journal" id="sbref0025">
<person-group person-group-type="author">
<name>
<surname>Fernstrom</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Goldblatt</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Aerobiology and its role in the transmission of infectious diseases</article-title>
<source>J Pathog</source>
<volume>2013</volume>
<year>2013</year>
<fpage>493960</fpage>
<pub-id pub-id-type="pmid">23365758</pub-id>
</element-citation>
<note>
<p>Review of aerobiological variables affecting airborne transmission and common origin of infectious particles.</p>
</note>
</ref>
<ref id="bib0030">
<label>6</label>
<element-citation publication-type="journal" id="sbref0030">
<person-group person-group-type="author">
<name>
<surname>Milton</surname>
<given-names>D.K.</given-names>
</name>
</person-group>
<article-title>What was the primary mode of smallpox transmission? Implications for biodefense</article-title>
<source>Front Cell Infect Microbiol</source>
<volume>2</volume>
<year>2012</year>
<fpage>150</fpage>
<pub-id pub-id-type="pmid">23226686</pub-id>
</element-citation>
</ref>
<ref id="bib0035">
<label>7</label>
<element-citation publication-type="journal" id="sbref0035">
<person-group person-group-type="author">
<name>
<surname>Burke</surname>
<given-names>C.W.</given-names>
</name>
<name>
<surname>Bridges</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Rahija</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Russell</surname>
<given-names>C.J.</given-names>
</name>
</person-group>
<article-title>Mode of parainfluenza virus transmission determines the dynamics of primary infection and protection from reinfection</article-title>
<source>PLoS Pathog</source>
<volume>9</volume>
<year>2013</year>
<fpage>e1003786</fpage>
<pub-id pub-id-type="pmid">24278024</pub-id>
</element-citation>
</ref>
<ref id="bib0040">
<label>8</label>
<element-citation publication-type="journal" id="sbref0040">
<person-group person-group-type="author">
<name>
<surname>Loudon</surname>
<given-names>R.G.</given-names>
</name>
<name>
<surname>Roberts</surname>
<given-names>R.M.</given-names>
</name>
</person-group>
<article-title>Droplet expulsion from the respiratory tract</article-title>
<source>Am Rev Respir Dis</source>
<volume>95</volume>
<year>1967</year>
<fpage>435</fpage>
<lpage>442</lpage>
<pub-id pub-id-type="pmid">6018703</pub-id>
</element-citation>
</ref>
<ref id="bib0045">
<label>9</label>
<element-citation publication-type="journal" id="sbref0045">
<person-group person-group-type="author">
<name>
<surname>Duguid</surname>
<given-names>J.P.</given-names>
</name>
</person-group>
<article-title>The size and the duration of air-carriage of respiratory droplets and droplet-nuclei</article-title>
<source>J Hyg</source>
<volume>44</volume>
<year>1946</year>
<fpage>471</fpage>
<lpage>479</lpage>
<pub-id pub-id-type="pmid">20475760</pub-id>
</element-citation>
</ref>
<ref id="bib0050">
<label>10</label>
<element-citation publication-type="journal" id="sbref0050">
<person-group person-group-type="author">
<name>
<surname>Papineni</surname>
<given-names>R.S.</given-names>
</name>
<name>
<surname>Rosenthal</surname>
<given-names>F.S.</given-names>
</name>
</person-group>
<article-title>The size distribution of droplets in the exhaled breath of healthy human subjects</article-title>
<source>J Aerosol Med</source>
<volume>10</volume>
<year>1997</year>
<fpage>105</fpage>
<lpage>116</lpage>
<pub-id pub-id-type="pmid">10168531</pub-id>
</element-citation>
</ref>
<ref id="bib0055">
<label>11</label>
<element-citation publication-type="journal" id="sbref0055">
<person-group person-group-type="author">
<name>
<surname>Lowen</surname>
<given-names>A.C.</given-names>
</name>
<name>
<surname>Steel</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Roles of humidity and temperature in shaping influenza seasonality</article-title>
<source>J Virol</source>
<volume>88</volume>
<year>2014</year>
<fpage>7692</fpage>
<lpage>7695</lpage>
<pub-id pub-id-type="pmid">24789791</pub-id>
</element-citation>
</ref>
<ref id="bib0060">
<label>12</label>
<element-citation publication-type="journal" id="sbref0060">
<person-group person-group-type="author">
<name>
<surname>Lowen</surname>
<given-names>A.C.</given-names>
</name>
<name>
<surname>Mubareka</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Steel</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Palese</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Influenza virus transmission is dependent on relative humidity and temperature</article-title>
<source>PLoS Pathog</source>
<volume>3</volume>
<year>2007</year>
<fpage>1470</fpage>
<lpage>1476</lpage>
<pub-id pub-id-type="pmid">17953482</pub-id>
</element-citation>
</ref>
<ref id="bib0065">
<label>13</label>
<element-citation publication-type="journal" id="sbref0065">
<person-group person-group-type="author">
<name>
<surname>Steel</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Palese</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Lowen</surname>
<given-names>A.C.</given-names>
</name>
</person-group>
<article-title>Transmission of a 2009 pandemic influenza virus shows a sensitivity to temperature and humidity similar to that of an H3N2 seasonal strain</article-title>
<source>J Virol</source>
<volume>85</volume>
<year>2010</year>
<fpage>1400</fpage>
<lpage>1402</lpage>
<pub-id pub-id-type="pmid">21084485</pub-id>
</element-citation>
</ref>
<ref id="bib0070">
<label>14</label>
<element-citation publication-type="journal" id="sbref0070">
<person-group person-group-type="author">
<name>
<surname>Polozov</surname>
<given-names>I.V.</given-names>
</name>
<name>
<surname>Bezrukov</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Gawrisch</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Zimmerberg</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Progressive ordering with decreasing temperature of the phospholipids of influenza virus</article-title>
<source>Nat Chem Biol</source>
<volume>4</volume>
<year>2008</year>
<fpage>248</fpage>
<lpage>255</lpage>
<pub-id pub-id-type="pmid">18311130</pub-id>
</element-citation>
</ref>
<ref id="bib0075">
<label>15</label>
<element-citation publication-type="journal" id="sbref0075">
<person-group person-group-type="author">
<name>
<surname>Theunissen</surname>
<given-names>H.J.</given-names>
</name>
<name>
<surname>Lemmens-den Toom</surname>
<given-names>N.A.</given-names>
</name>
<name>
<surname>Burggraaf</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Stolz</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Michel</surname>
<given-names>M.F.</given-names>
</name>
</person-group>
<article-title>Influence of temperature and relative humidity on the survival of
<italic>Chlamydia pneumoniae</italic>
in aerosols</article-title>
<source>Appl Environ Microbiol</source>
<volume>59</volume>
<year>1993</year>
<fpage>2589</fpage>
<lpage>2593</lpage>
<pub-id pub-id-type="pmid">8368846</pub-id>
</element-citation>
</ref>
<ref id="bib0080">
<label>16</label>
<element-citation publication-type="journal" id="sbref0080">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Marr</surname>
<given-names>L.C.</given-names>
</name>
</person-group>
<article-title>Dynamics of airborne influenza A viruses indoors and dependence on humidity</article-title>
<source>PLoS ONE</source>
<volume>6</volume>
<year>2011</year>
<fpage>e21481</fpage>
<pub-id pub-id-type="pmid">21731764</pub-id>
</element-citation>
</ref>
<ref id="bib0085">
<label>17</label>
<element-citation publication-type="journal" id="sbref0085">
<person-group person-group-type="author">
<name>
<surname>Cheng</surname>
<given-names>Y.H.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>C.H.</given-names>
</name>
<name>
<surname>You</surname>
<given-names>S.H.</given-names>
</name>
<name>
<surname>Hsieh</surname>
<given-names>N.H.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>W.Y.</given-names>
</name>
<name>
<surname>Chio</surname>
<given-names>C.P.</given-names>
</name>
<name>
<surname>Liao</surname>
<given-names>C.M.</given-names>
</name>
</person-group>
<article-title>Assessing coughing-induced influenza droplet transmission and implications for infection risk control</article-title>
<source>Epidemiol Infect</source>
<volume>144</volume>
<year>2016</year>
<fpage>333</fpage>
<lpage>345</lpage>
<pub-id pub-id-type="pmid">26211781</pub-id>
</element-citation>
</ref>
<ref id="bib0090">
<label>18</label>
<element-citation publication-type="journal" id="sbref0090">
<person-group person-group-type="author">
<name>
<surname>Bean</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Moore</surname>
<given-names>B.M.</given-names>
</name>
<name>
<surname>Sterner</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Peterson</surname>
<given-names>L.R.</given-names>
</name>
<name>
<surname>Gerding</surname>
<given-names>D.N.</given-names>
</name>
<name>
<surname>Balfour</surname>
<given-names>H.H.</given-names>
<suffix>Jr.</suffix>
</name>
</person-group>
<article-title>Survival of influenza viruses on environmental surfaces</article-title>
<source>J Infect Dis</source>
<volume>146</volume>
<year>1982</year>
<fpage>47</fpage>
<lpage>51</lpage>
<pub-id pub-id-type="pmid">6282993</pub-id>
</element-citation>
</ref>
<ref id="bib0095">
<label>19</label>
<element-citation publication-type="journal" id="sbref0095">
<person-group person-group-type="author">
<name>
<surname>Boone</surname>
<given-names>S.A.</given-names>
</name>
<name>
<surname>Gerba</surname>
<given-names>C.P.</given-names>
</name>
</person-group>
<article-title>Significance of fomites in the spread of respiratory and enteric viral disease</article-title>
<source>Appl Environ Microbiol</source>
<volume>73</volume>
<year>2007</year>
<fpage>1687</fpage>
<lpage>1696</lpage>
<pub-id pub-id-type="pmid">17220247</pub-id>
</element-citation>
</ref>
<ref id="bib0100">
<label>20</label>
<element-citation publication-type="journal" id="sbref0100">
<person-group person-group-type="author">
<name>
<surname>Edward</surname>
<given-names>D.F.F.</given-names>
</name>
</person-group>
<article-title>Resistance of influenza virus to drying and its demonstration on dust</article-title>
<source>Lancet</source>
<volume>238</volume>
<year>1941</year>
<fpage>664</fpage>
<lpage>666</lpage>
</element-citation>
</ref>
<ref id="bib0105">
<label>21</label>
<element-citation publication-type="journal" id="sbref0105">
<person-group person-group-type="author">
<name>
<surname>Tiwari</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Patnayak</surname>
<given-names>D.P.</given-names>
</name>
<name>
<surname>Chander</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Parsad</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Goyal</surname>
<given-names>S.M.</given-names>
</name>
</person-group>
<article-title>Survival of two avian respiratory viruses on porous and nonporous surfaces</article-title>
<source>Avian Dis</source>
<volume>50</volume>
<year>2006</year>
<fpage>284</fpage>
<lpage>287</lpage>
<pub-id pub-id-type="pmid">16863083</pub-id>
</element-citation>
</ref>
<ref id="bib0110">
<label>22</label>
<element-citation publication-type="journal" id="sbref0110">
<person-group person-group-type="author">
<name>
<surname>Weber</surname>
<given-names>T.P.</given-names>
</name>
<name>
<surname>Stilianakis</surname>
<given-names>N.I.</given-names>
</name>
</person-group>
<article-title>Inactivation of influenza A viruses in the environment and modes of transmission: a critical review</article-title>
<source>J Infect</source>
<volume>57</volume>
<year>2008</year>
<fpage>361</fpage>
<lpage>373</lpage>
<pub-id pub-id-type="pmid">18848358</pub-id>
</element-citation>
</ref>
<ref id="bib0115">
<label>23</label>
<element-citation publication-type="journal" id="sbref0115">
<person-group person-group-type="author">
<name>
<surname>Darquenne</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>Aerosol deposition in health and disease</article-title>
<source>J Aerosol Med Pulm Drug Deliv</source>
<volume>25</volume>
<year>2012</year>
<fpage>140</fpage>
<lpage>147</lpage>
<pub-id pub-id-type="pmid">22686623</pub-id>
</element-citation>
</ref>
<ref id="bib0120">
<label>24••</label>
<element-citation publication-type="journal" id="sbref0120">
<person-group person-group-type="author">
<name>
<surname>Méthot</surname>
<given-names>P.O.</given-names>
</name>
<name>
<surname>Alizon</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>What is a pathogen? Toward a process view of host–parasite interactions</article-title>
<source>Virulence</source>
<volume>5</volume>
<year>2014</year>
<fpage>775</fpage>
<lpage>785</lpage>
<pub-id pub-id-type="pmid">25483864</pub-id>
</element-citation>
<note>
<p>Review of pathogenicity/virulence as a dynamical feature of an interaction between a host and microbes.</p>
</note>
</ref>
<ref id="bib0125">
<label>25•</label>
<element-citation publication-type="journal" id="sbref0125">
<person-group person-group-type="author">
<name>
<surname>Gupta</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Sarkar</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Das</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Bhattacharjee</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Tribedi</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Biofilm, pathogenesis and prevention — a journey to break the wall: a review</article-title>
<source>Arch Microbiol</source>
<volume>198</volume>
<year>2016</year>
<fpage>1</fpage>
<lpage>15</lpage>
<pub-id pub-id-type="pmid">26377585</pub-id>
</element-citation>
<note>
<p>Review of biofilm formation, possible mechanisms of drug resistance in biofilms and recent therapeutic approaches involved in successful eradication of biofilms.</p>
</note>
</ref>
<ref id="bib0130">
<label>26</label>
<element-citation publication-type="journal" id="sbref0130">
<person-group person-group-type="author">
<name>
<surname>Ojha</surname>
<given-names>A.K.</given-names>
</name>
<name>
<surname>Baughn</surname>
<given-names>A.D.</given-names>
</name>
<name>
<surname>Sambandan</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Hsu</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Trivelli</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Guerardel</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Alahari</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Kremer</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Jacobs</surname>
<given-names>W.R.</given-names>
<suffix>Jr.</suffix>
</name>
<name>
<surname>Hatfull</surname>
<given-names>G.F.</given-names>
</name>
</person-group>
<article-title>Growth of Mycobacterium tuberculosis biofilms containing free mycolic acids and harbouring drug-tolerant bacteria</article-title>
<source>Mol Microbiol</source>
<volume>69</volume>
<year>2008</year>
<fpage>164</fpage>
<lpage>174</lpage>
<pub-id pub-id-type="pmid">18466296</pub-id>
</element-citation>
</ref>
<ref id="bib0135">
<label>27</label>
<element-citation publication-type="journal" id="sbref0135">
<person-group person-group-type="author">
<name>
<surname>Pieters</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Mycobacterium tuberculosis and the macrophage: maintaining a balance</article-title>
<source>Cell Host Microbe</source>
<volume>3</volume>
<year>2008</year>
<fpage>399</fpage>
<lpage>407</lpage>
<pub-id pub-id-type="pmid">18541216</pub-id>
</element-citation>
</ref>
<ref id="bib0140">
<label>28•</label>
<element-citation publication-type="journal" id="sbref0140">
<person-group person-group-type="author">
<name>
<surname>Chiang</surname>
<given-names>J.J.</given-names>
</name>
<name>
<surname>Davis</surname>
<given-names>M.E.</given-names>
</name>
<name>
<surname>Gack</surname>
<given-names>M.U.</given-names>
</name>
</person-group>
<article-title>Regulation of RIG-I-like receptor signaling by host and viral proteins</article-title>
<source>Cytokine Growth Factor Rev</source>
<volume>25</volume>
<year>2014</year>
<fpage>491</fpage>
<lpage>505</lpage>
<pub-id pub-id-type="pmid">25023063</pub-id>
</element-citation>
<note>
<p>Review covering recent progress in our knowledge of the regulation of cellular antiviral signaling pathways by host factors and viral antagonistic proteins.</p>
</note>
</ref>
<ref id="bib0145">
<label>29</label>
<element-citation publication-type="journal" id="sbref0145">
<person-group person-group-type="author">
<name>
<surname>Nuermberger</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Bishai</surname>
<given-names>W.R.</given-names>
</name>
<name>
<surname>Grosset</surname>
<given-names>J.H.</given-names>
</name>
</person-group>
<article-title>Latent tuberculosis infection</article-title>
<source>Semin Respir Crit Care Med</source>
<volume>25</volume>
<year>2004</year>
<fpage>317</fpage>
<lpage>336</lpage>
<pub-id pub-id-type="pmid">16088473</pub-id>
</element-citation>
</ref>
<ref id="bib0150">
<label>30</label>
<element-citation publication-type="journal" id="sbref0150">
<person-group person-group-type="author">
<name>
<surname>Pulliam</surname>
<given-names>J.R.C.</given-names>
</name>
<name>
<surname>Epstein</surname>
<given-names>J.H.</given-names>
</name>
<name>
<surname>Dushoff</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Rahman</surname>
<given-names>S.A.</given-names>
</name>
<name>
<surname>Bunning</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Jamaluddin</surname>
<given-names>A.A.</given-names>
</name>
<name>
<surname>Hyatt</surname>
<given-names>A.D.</given-names>
</name>
<name>
<surname>Field</surname>
<given-names>H.E.</given-names>
</name>
<name>
<surname>Dobson</surname>
<given-names>A.P.</given-names>
</name>
<name>
<surname>Daszak</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Agricultural intensification, priming for persistence and the emergence of Nipah virus: a lethal bat-borne zoonosis</article-title>
<source>J R Soc Interface</source>
<volume>9</volume>
<year>2011</year>
<fpage>89</fpage>
<lpage>101</lpage>
<pub-id pub-id-type="pmid">21632614</pub-id>
</element-citation>
</ref>
<ref id="bib0155">
<label>31</label>
<element-citation publication-type="journal" id="sbref0155">
<person-group person-group-type="author">
<name>
<surname>Pulliam</surname>
<given-names>J.R.C.</given-names>
</name>
<name>
<surname>Dushoff</surname>
<given-names>J.G.</given-names>
</name>
<name>
<surname>Levin</surname>
<given-names>S.A.</given-names>
</name>
<name>
<surname>Dobson</surname>
<given-names>A.P.</given-names>
</name>
</person-group>
<article-title>Epidemic enhancement in partially immune populations</article-title>
<source>PLoS ONE</source>
<volume>2</volume>
<year>2007</year>
<fpage>e165</fpage>
<pub-id pub-id-type="pmid">17225866</pub-id>
</element-citation>
</ref>
<ref id="bib0160">
<label>32</label>
<element-citation publication-type="journal" id="sbref0160">
<person-group person-group-type="author">
<name>
<surname>Bordería</surname>
<given-names>A.V.</given-names>
</name>
<name>
<surname>Stapleford</surname>
<given-names>K.A.</given-names>
</name>
<name>
<surname>Vignuzzi</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>RNA virus population diversity: implications for inter-species transmission</article-title>
<source>Curr Opin Virol</source>
<volume>1</volume>
<year>2011</year>
<fpage>643</fpage>
<lpage>648</lpage>
<pub-id pub-id-type="pmid">22440922</pub-id>
</element-citation>
</ref>
<ref id="bib0165">
<label>33</label>
<element-citation publication-type="journal" id="sbref0165">
<person-group person-group-type="author">
<name>
<surname>Lancaster</surname>
<given-names>K.Z.</given-names>
</name>
<name>
<surname>Pfeiffer</surname>
<given-names>J.K.</given-names>
</name>
</person-group>
<article-title>Viral population dynamics and virulence thresholds</article-title>
<source>Curr Opin Microbiol</source>
<volume>15</volume>
<year>2012</year>
<fpage>525</fpage>
<lpage>530</lpage>
<pub-id pub-id-type="pmid">22658738</pub-id>
</element-citation>
</ref>
<ref id="bib0170">
<label>34</label>
<element-citation publication-type="journal" id="sbref0170">
<person-group person-group-type="author">
<name>
<surname>Pfeiffer</surname>
<given-names>J.K.</given-names>
</name>
<name>
<surname>Kirkegaard</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Increased fidelity reduces poliovirus fitness and virulence under selective pressure in mice</article-title>
<source>PLoS Pathog</source>
<volume>1</volume>
<year>2005</year>
<fpage>e11</fpage>
<pub-id pub-id-type="pmid">16220146</pub-id>
</element-citation>
</ref>
<ref id="bib0175">
<label>35</label>
<element-citation publication-type="journal" id="sbref0175">
<person-group person-group-type="author">
<name>
<surname>Vignuzzi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Stone</surname>
<given-names>J.K.</given-names>
</name>
<name>
<surname>Arnold</surname>
<given-names>J.J.</given-names>
</name>
<name>
<surname>Cameron</surname>
<given-names>C.E.</given-names>
</name>
<name>
<surname>Andino</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population</article-title>
<source>Nature</source>
<volume>439</volume>
<year>2005</year>
<fpage>344</fpage>
<lpage>348</lpage>
<pub-id pub-id-type="pmid">16327776</pub-id>
</element-citation>
</ref>
<ref id="bib0180">
<label>36</label>
<element-citation publication-type="journal" id="sbref0180">
<person-group person-group-type="author">
<name>
<surname>Meng</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Kwang</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Attenuation of human enterovirus 71 high-replication-fidelity variants in AG129 mice</article-title>
<source>J Virol</source>
<volume>88</volume>
<year>2014</year>
<fpage>5803</fpage>
<lpage>5815</lpage>
<pub-id pub-id-type="pmid">24623423</pub-id>
</element-citation>
</ref>
<ref id="bib0185">
<label>37</label>
<element-citation publication-type="journal" id="sbref0185">
<person-group person-group-type="author">
<name>
<surname>Gagneux</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Fitness cost of drug resistance in Mycobacterium tuberculosis</article-title>
<source>Clin Microbiol Infect</source>
<volume>15</volume>
<year>2009</year>
<fpage>66</fpage>
<lpage>68</lpage>
</element-citation>
</ref>
<ref id="bib0190">
<label>38</label>
<element-citation publication-type="journal" id="sbref0190">
<person-group person-group-type="author">
<name>
<surname>Borrell</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Gagneux</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Infectiousness, reproductive fitness and evolution of drug-resistant Mycobacterium tuberculosis</article-title>
<source>Int J Tuberc Lung Dis</source>
<volume>13</volume>
<year>2009</year>
<fpage>1456</fpage>
<lpage>1466</lpage>
<pub-id pub-id-type="pmid">19919762</pub-id>
</element-citation>
</ref>
<ref id="bib0195">
<label>39</label>
<element-citation publication-type="journal" id="sbref0195">
<person-group person-group-type="author">
<name>
<surname>Stead</surname>
<given-names>W.W.</given-names>
</name>
<name>
<surname>Senner</surname>
<given-names>J.W.</given-names>
</name>
<name>
<surname>Reddick</surname>
<given-names>W.T.</given-names>
</name>
<name>
<surname>Lofgren</surname>
<given-names>J.P.</given-names>
</name>
</person-group>
<article-title>Racial differences in susceptibility to infection by Mycobacterium tuberculosis</article-title>
<source>N Engl J Med</source>
<volume>322</volume>
<year>1990</year>
<fpage>422</fpage>
<lpage>427</lpage>
<pub-id pub-id-type="pmid">2300105</pub-id>
</element-citation>
</ref>
<ref id="bib0200">
<label>40</label>
<element-citation publication-type="journal" id="sbref0200">
<person-group person-group-type="author">
<name>
<surname>Crowle</surname>
<given-names>A.J.</given-names>
</name>
<name>
<surname>Elkins</surname>
<given-names>N.</given-names>
</name>
</person-group>
<article-title>Relative permissiveness of macrophages from black and white people for virulent tubercle bacilli</article-title>
<source>Infect Immun</source>
<volume>58</volume>
<year>1990</year>
<fpage>632</fpage>
<lpage>638</lpage>
<pub-id pub-id-type="pmid">2106489</pub-id>
</element-citation>
</ref>
<ref id="bib0205">
<label>41</label>
<element-citation publication-type="journal" id="sbref0205">
<person-group person-group-type="author">
<name>
<surname>Stead</surname>
<given-names>W.W.</given-names>
</name>
</person-group>
<article-title>Genetics and resistance to tuberculosis. Could resistance be enhanced by genetic engineering?</article-title>
<source>Ann Intern Med</source>
<volume>116</volume>
<year>1992</year>
<fpage>937</fpage>
<lpage>941</lpage>
<pub-id pub-id-type="pmid">1580452</pub-id>
</element-citation>
</ref>
<ref id="bib0210">
<label>42</label>
<element-citation publication-type="journal" id="sbref0210">
<person-group person-group-type="author">
<name>
<surname>Ludlow</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>McQuaid</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Milner</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>de Swart</surname>
<given-names>R.L.</given-names>
</name>
<name>
<surname>Duprex</surname>
<given-names>W.P.</given-names>
</name>
</person-group>
<article-title>Pathological consequences of systemic measles virus infection</article-title>
<source>J Pathol</source>
<volume>235</volume>
<year>2015</year>
<fpage>253</fpage>
<lpage>265</lpage>
<pub-id pub-id-type="pmid">25294240</pub-id>
</element-citation>
</ref>
<ref id="bib0215">
<label>43••</label>
<element-citation publication-type="journal" id="sbref0215">
<person-group person-group-type="author">
<name>
<surname>Lloyd-Smith</surname>
<given-names>J.O.</given-names>
</name>
<name>
<surname>Schreiber</surname>
<given-names>S.J.</given-names>
</name>
<name>
<surname>Kopp</surname>
<given-names>P.E.</given-names>
</name>
<name>
<surname>Getz</surname>
<given-names>W.M.</given-names>
</name>
</person-group>
<article-title>Superspreading and the effect of individual variation on disease emergence</article-title>
<source>Nature</source>
<volume>438</volume>
<year>2005</year>
<fpage>355</fpage>
<lpage>359</lpage>
<pub-id pub-id-type="pmid">16292310</pub-id>
</element-citation>
<note>
<p>An integrated theoretical and statistical analysis of the influence of individual variation in infectiousness on disease emergence. The authors conclude that superspreading is a normal feature of infectious diseases.</p>
</note>
</ref>
<ref id="bib0220">
<label>44</label>
<element-citation publication-type="journal" id="sbref0220">
<person-group person-group-type="author">
<name>
<surname>Jones-López</surname>
<given-names>E.C.</given-names>
</name>
<name>
<surname>Namugga</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Mumbowa</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Ssebidandi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Mbabazi</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Moine</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Mboowa</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Fox</surname>
<given-names>M.P.</given-names>
</name>
<name>
<surname>Reilly</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Ayakaka</surname>
<given-names>I.</given-names>
</name>
</person-group>
<article-title>Cough aerosols of Mycobacterium tuberculosis predict new infection: a household contact study</article-title>
<source>Am J Respir Crit Care Med</source>
<volume>187</volume>
<year>2013</year>
<fpage>1007</fpage>
<lpage>1015</lpage>
<pub-id pub-id-type="pmid">23306539</pub-id>
</element-citation>
</ref>
<ref id="bib0225">
<label>45</label>
<element-citation publication-type="journal" id="sbref0225">
<person-group person-group-type="author">
<name>
<surname>Milton</surname>
<given-names>D.K.</given-names>
</name>
<name>
<surname>Fabian</surname>
<given-names>M.P.</given-names>
</name>
<name>
<surname>Cowling</surname>
<given-names>B.J.</given-names>
</name>
<name>
<surname>Grantham</surname>
<given-names>M.L.</given-names>
</name>
<name>
<surname>McDevitt</surname>
<given-names>J.J.</given-names>
</name>
</person-group>
<article-title>Influenza virus aerosols in human exhaled breath: particle size, culturability, and effect of surgical masks</article-title>
<source>PLoS Pathog</source>
<volume>9</volume>
<year>2013</year>
<fpage>e1003205</fpage>
<pub-id pub-id-type="pmid">23505369</pub-id>
</element-citation>
</ref>
<ref id="bib0230">
<label>46</label>
<element-citation publication-type="journal" id="sbref0230">
<person-group person-group-type="author">
<name>
<surname>Fabian</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Brain</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Houseman</surname>
<given-names>E.A.</given-names>
</name>
<name>
<surname>Gern</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Milton</surname>
<given-names>D.K.</given-names>
</name>
</person-group>
<article-title>Origin of exhaled breath particles from healthy and human rhinovirus-infected subjects</article-title>
<source>J Aerosol Med Pulm Drug Deliv</source>
<volume>24</volume>
<year>2011</year>
<fpage>137</fpage>
<lpage>147</lpage>
<pub-id pub-id-type="pmid">21361786</pub-id>
</element-citation>
</ref>
<ref id="bib0235">
<label>47</label>
<element-citation publication-type="journal" id="sbref0235">
<person-group person-group-type="author">
<name>
<surname>Wurie</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Le Polain de Waroux</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Brande</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Dehaan</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Holdgate</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Mannan</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Milton</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Swerdlow</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Hayward</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Characteristics of exhaled particle production in healthy volunteers: possible implications for infectious disease transmission</article-title>
<source>F1000Res</source>
<volume>2</volume>
<year>2013</year>
<fpage>14</fpage>
<pub-id pub-id-type="pmid">24555026</pub-id>
</element-citation>
</ref>
<ref id="bib0240">
<label>48</label>
<element-citation publication-type="journal" id="sbref0240">
<person-group person-group-type="author">
<name>
<surname>Wurie</surname>
<given-names>F.B.</given-names>
</name>
<name>
<surname>Lawn</surname>
<given-names>S.D.</given-names>
</name>
<name>
<surname>Booth</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Sonnenberg</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Hayward</surname>
<given-names>A.C.</given-names>
</name>
</person-group>
<article-title>Bioaerosol production by patients with tuberculosis during normal tidal breathing: implications for transmission risk</article-title>
<source>Thorax</source>
<volume>71</volume>
<year>2016</year>
<fpage>549</fpage>
<lpage>554</lpage>
<pub-id pub-id-type="pmid">26917579</pub-id>
</element-citation>
</ref>
<ref id="bib0245">
<label>49</label>
<element-citation publication-type="journal" id="sbref0245">
<person-group person-group-type="author">
<name>
<surname>Sepkowitz</surname>
<given-names>K.A.</given-names>
</name>
</person-group>
<article-title>How contagious is tuberculosis?</article-title>
<source>Clin Infect Dis</source>
<volume>23</volume>
<year>1996</year>
<fpage>954</fpage>
<lpage>962</lpage>
<pub-id pub-id-type="pmid">8922785</pub-id>
</element-citation>
</ref>
<ref id="bib0250">
<label>50</label>
<element-citation publication-type="book" id="sbref0250">
<person-group person-group-type="editor">
<name>
<surname>Friedrich</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Hacker</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Hasnain</surname>
<given-names>S.E.</given-names>
</name>
<name>
<surname>Mettenleiter</surname>
<given-names>T.C.</given-names>
</name>
<name>
<surname>Schell</surname>
<given-names>J.</given-names>
</name>
</person-group>
<source>Climate Change and Infections Diseases</source>
<year>2010</year>
<publisher-name>Nova Acta Leopoldina</publisher-name>
</element-citation>
</ref>
<ref id="bib0255">
<label>51•</label>
<element-citation publication-type="journal" id="sbref0255">
<person-group person-group-type="author">
<name>
<surname>Fronczek</surname>
<given-names>C.F.</given-names>
</name>
<name>
<surname>Yoon</surname>
<given-names>J.-Y.</given-names>
</name>
</person-group>
<article-title>Biosensors for monitoring airborne pathogens</article-title>
<source>J Lab Autom</source>
<volume>20</volume>
<year>2015</year>
<fpage>390</fpage>
<lpage>410</lpage>
<pub-id pub-id-type="pmid">25862683</pub-id>
</element-citation>
<note>
<p>Review of current laboratory-based methods to monitor airborne pathogens.</p>
</note>
</ref>
<ref id="bib0260">
<label>52</label>
<element-citation publication-type="journal" id="sbref0260">
<person-group person-group-type="author">
<name>
<surname>Nguyen</surname>
<given-names>T.M.</given-names>
</name>
<name>
<surname>Ilef</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Jarraud</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Rouil</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Campese</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Che</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Haeghebaert</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Ganiayre</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Marcel</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Etienne</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>A community-wide outbreak of legionnaires disease linked to industrial cooling towers — how far can contaminated aerosols spread?</article-title>
<source>J Infect Dis</source>
<volume>193</volume>
<year>2006</year>
<fpage>102</fpage>
<lpage>111</lpage>
<pub-id pub-id-type="pmid">16323138</pub-id>
</element-citation>
</ref>
<ref id="bib0265">
<label>53</label>
<element-citation publication-type="journal" id="sbref0265">
<person-group person-group-type="author">
<name>
<surname>Correia</surname>
<given-names>A.M.</given-names>
</name>
<name>
<surname>Ferreira</surname>
<given-names>J.S.</given-names>
</name>
<name>
<surname>Borges</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Nunes</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Gomes</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Capucho</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Gonçalves</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Antunes</surname>
<given-names>D.M.</given-names>
</name>
<name>
<surname>Almeida</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Mendes</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Probable person-to-person transmission of Legionnaires’ disease</article-title>
<source>N Engl J Med</source>
<volume>374</volume>
<year>2016</year>
<fpage>497</fpage>
<lpage>498</lpage>
<pub-id pub-id-type="pmid">26840151</pub-id>
</element-citation>
</ref>
<ref id="bib0270">
<label>54••</label>
<element-citation publication-type="journal" id="sbref0270">
<person-group person-group-type="author">
<name>
<surname>Bentley</surname>
<given-names>S.D.</given-names>
</name>
<name>
<surname>Parkhill</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Genomic perspectives on the evolution and spread of bacterial pathogens</article-title>
<source>Proc Biol Sci</source>
<volume>282</volume>
<year>2015</year>
<fpage>20150488</fpage>
<pub-id pub-id-type="pmid">26702036</pub-id>
</element-citation>
<note>
<p>Summarizing impact and options of whole genome sequencing implemented in clinical microbiology for our understanding of pathogen evolution and epidemiology.</p>
</note>
</ref>
</ref-list>
<ack id="ack0005">
<title>Acknowledgements</title>
<p>The expert workshop was financially supported by the
<funding-source id="gs1">European Commission</funding-source>
(FP7 programme in the framework of the project ‘Antigone — ANTIcipating the Global Onset of Novel Epidemics’, project number 278976). The research of SH is funded by an
<funding-source id="gs2">NWO VIDI</funding-source>
grant (contract number 91715372). The sponsors had no role in the collection, analysis and interpretation of data, in the writing of the report; and in the decision to submit the article for publication.</p>
</ack>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001308 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 001308 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:7102691
   |texte=   Drivers of airborne human-to-human pathogen transmission
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:27918958" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021