Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

DNA vaccine encoding Middle East respiratory syndrome coronavirus S1 protein induces protective immune responses in mice

Identifieur interne : 001169 ( Pmc/Corpus ); précédent : 001168; suivant : 001170

DNA vaccine encoding Middle East respiratory syndrome coronavirus S1 protein induces protective immune responses in mice

Auteurs : Hang Chi ; Xuexing Zheng ; Xiwen Wang ; Chong Wang ; Hualei Wang ; Weiwei Gai ; Stanley Perlman ; Songtao Yang ; Jincun Zhao ; Xianzhu Xia

Source :

RBID : PMC:5411280

Abstract

Highlights

DNA vaccine encoding MERS-CoV S1 gene induced humoral and cellular immune responses.

High titers of neutralizing antibodies were generated without adjuvant.

Virus loads in lungs significantly decreased in vaccinated and serum received mice.


Url:
DOI: 10.1016/j.vaccine.2017.02.063
PubMed: 28314561
PubMed Central: 5411280

Links to Exploration step

PMC:5411280

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">DNA vaccine encoding Middle East respiratory syndrome coronavirus S1 protein induces protective immune responses in mice</title>
<author>
<name sortKey="Chi, Hang" sort="Chi, Hang" uniqKey="Chi H" first="Hang" last="Chi">Hang Chi</name>
<affiliation>
<nlm:aff id="af005">Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Science, Changchun, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zheng, Xuexing" sort="Zheng, Xuexing" uniqKey="Zheng X" first="Xuexing" last="Zheng">Xuexing Zheng</name>
<affiliation>
<nlm:aff id="af005">Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Science, Changchun, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af010">School of Public Health, Shandong University, Jinan, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Xiwen" sort="Wang, Xiwen" uniqKey="Wang X" first="Xiwen" last="Wang">Xiwen Wang</name>
<affiliation>
<nlm:aff id="af005">Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Science, Changchun, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Chong" sort="Wang, Chong" uniqKey="Wang C" first="Chong" last="Wang">Chong Wang</name>
<affiliation>
<nlm:aff id="af005">Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Science, Changchun, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Hualei" sort="Wang, Hualei" uniqKey="Wang H" first="Hualei" last="Wang">Hualei Wang</name>
<affiliation>
<nlm:aff id="af005">Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Science, Changchun, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af015">Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Gai, Weiwei" sort="Gai, Weiwei" uniqKey="Gai W" first="Weiwei" last="Gai">Weiwei Gai</name>
<affiliation>
<nlm:aff id="af005">Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Science, Changchun, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Perlman, Stanley" sort="Perlman, Stanley" uniqKey="Perlman S" first="Stanley" last="Perlman">Stanley Perlman</name>
<affiliation>
<nlm:aff id="af020">Department of Microbiology, University of Iowa, Iowa City, IA, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yang, Songtao" sort="Yang, Songtao" uniqKey="Yang S" first="Songtao" last="Yang">Songtao Yang</name>
<affiliation>
<nlm:aff id="af005">Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Science, Changchun, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af015">Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Jincun" sort="Zhao, Jincun" uniqKey="Zhao J" first="Jincun" last="Zhao">Jincun Zhao</name>
<affiliation>
<nlm:aff id="af025">State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Xia, Xianzhu" sort="Xia, Xianzhu" uniqKey="Xia X" first="Xianzhu" last="Xia">Xianzhu Xia</name>
<affiliation>
<nlm:aff id="af005">Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Science, Changchun, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af015">Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">28314561</idno>
<idno type="pmc">5411280</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5411280</idno>
<idno type="RBID">PMC:5411280</idno>
<idno type="doi">10.1016/j.vaccine.2017.02.063</idno>
<date when="2017">2017</date>
<idno type="wicri:Area/Pmc/Corpus">001169</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">001169</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">DNA vaccine encoding Middle East respiratory syndrome coronavirus S1 protein induces protective immune responses in mice</title>
<author>
<name sortKey="Chi, Hang" sort="Chi, Hang" uniqKey="Chi H" first="Hang" last="Chi">Hang Chi</name>
<affiliation>
<nlm:aff id="af005">Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Science, Changchun, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zheng, Xuexing" sort="Zheng, Xuexing" uniqKey="Zheng X" first="Xuexing" last="Zheng">Xuexing Zheng</name>
<affiliation>
<nlm:aff id="af005">Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Science, Changchun, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af010">School of Public Health, Shandong University, Jinan, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Xiwen" sort="Wang, Xiwen" uniqKey="Wang X" first="Xiwen" last="Wang">Xiwen Wang</name>
<affiliation>
<nlm:aff id="af005">Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Science, Changchun, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Chong" sort="Wang, Chong" uniqKey="Wang C" first="Chong" last="Wang">Chong Wang</name>
<affiliation>
<nlm:aff id="af005">Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Science, Changchun, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Hualei" sort="Wang, Hualei" uniqKey="Wang H" first="Hualei" last="Wang">Hualei Wang</name>
<affiliation>
<nlm:aff id="af005">Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Science, Changchun, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af015">Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Gai, Weiwei" sort="Gai, Weiwei" uniqKey="Gai W" first="Weiwei" last="Gai">Weiwei Gai</name>
<affiliation>
<nlm:aff id="af005">Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Science, Changchun, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Perlman, Stanley" sort="Perlman, Stanley" uniqKey="Perlman S" first="Stanley" last="Perlman">Stanley Perlman</name>
<affiliation>
<nlm:aff id="af020">Department of Microbiology, University of Iowa, Iowa City, IA, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yang, Songtao" sort="Yang, Songtao" uniqKey="Yang S" first="Songtao" last="Yang">Songtao Yang</name>
<affiliation>
<nlm:aff id="af005">Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Science, Changchun, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af015">Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Jincun" sort="Zhao, Jincun" uniqKey="Zhao J" first="Jincun" last="Zhao">Jincun Zhao</name>
<affiliation>
<nlm:aff id="af025">State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Xia, Xianzhu" sort="Xia, Xianzhu" uniqKey="Xia X" first="Xianzhu" last="Xia">Xianzhu Xia</name>
<affiliation>
<nlm:aff id="af005">Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Science, Changchun, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af015">Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Vaccine</title>
<idno type="ISSN">0264-410X</idno>
<idno type="eISSN">1873-2518</idno>
<imprint>
<date when="2017">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<title>Highlights</title>
<p>
<list list-type="simple" id="l0005">
<list-item id="o0005">
<label></label>
<p id="p0005">DNA vaccine encoding MERS-CoV S1 gene induced humoral and cellular immune responses.</p>
</list-item>
<list-item id="o0010">
<label></label>
<p id="p0010">High titers of neutralizing antibodies were generated without adjuvant.</p>
</list-item>
<list-item id="o0015">
<label></label>
<p id="p0015">Virus loads in lungs significantly decreased in vaccinated and serum received mice.</p>
</list-item>
</list>
</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Zaki, A M" uniqKey="Zaki A">A.M. Zaki</name>
</author>
<author>
<name sortKey="Van Boheemen, S" uniqKey="Van Boheemen S">S. van Boheemen</name>
</author>
<author>
<name sortKey="Bestebroer, T M" uniqKey="Bestebroer T">T.M. Bestebroer</name>
</author>
<author>
<name sortKey="Osterhaus, A D" uniqKey="Osterhaus A">A.D. Osterhaus</name>
</author>
<author>
<name sortKey="Fouchier, R A" uniqKey="Fouchier R">R.A. Fouchier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Groot, R J" uniqKey="De Groot R">R.J. de Groot</name>
</author>
<author>
<name sortKey="Baker, S C" uniqKey="Baker S">S.C. Baker</name>
</author>
<author>
<name sortKey="Baric, R S" uniqKey="Baric R">R.S. Baric</name>
</author>
<author>
<name sortKey="Brown, C S" uniqKey="Brown C">C.S. Brown</name>
</author>
<author>
<name sortKey="Drosten, C" uniqKey="Drosten C">C. Drosten</name>
</author>
<author>
<name sortKey="Enjuanes, L" uniqKey="Enjuanes L">L. Enjuanes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Assiri, A" uniqKey="Assiri A">A. Assiri</name>
</author>
<author>
<name sortKey="Mcgeer, A" uniqKey="Mcgeer A">A. McGeer</name>
</author>
<author>
<name sortKey="Perl, T M" uniqKey="Perl T">T.M. Perl</name>
</author>
<author>
<name sortKey="Price, C S" uniqKey="Price C">C.S. Price</name>
</author>
<author>
<name sortKey="Al Rabeeah, A A" uniqKey="Al Rabeeah A">A.A. Al Rabeeah</name>
</author>
<author>
<name sortKey="Cummings, D A" uniqKey="Cummings D">D.A. Cummings</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ki, M" uniqKey="Ki M">M. Ki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vijay, R" uniqKey="Vijay R">R. Vijay</name>
</author>
<author>
<name sortKey="Perlman, S" uniqKey="Perlman S">S. Perlman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Song, F" uniqKey="Song F">F. Song</name>
</author>
<author>
<name sortKey="Fux, R" uniqKey="Fux R">R. Fux</name>
</author>
<author>
<name sortKey="Provacia, L B" uniqKey="Provacia L">L.B. Provacia</name>
</author>
<author>
<name sortKey="Volz, A" uniqKey="Volz A">A. Volz</name>
</author>
<author>
<name sortKey="Eickmann, M" uniqKey="Eickmann M">M. Eickmann</name>
</author>
<author>
<name sortKey="Becker, S" uniqKey="Becker S">S. Becker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Volz, A" uniqKey="Volz A">A. Volz</name>
</author>
<author>
<name sortKey="Kupke, A" uniqKey="Kupke A">A. Kupke</name>
</author>
<author>
<name sortKey="Song, F" uniqKey="Song F">F. Song</name>
</author>
<author>
<name sortKey="Jany, S" uniqKey="Jany S">S. Jany</name>
</author>
<author>
<name sortKey="Fux, R" uniqKey="Fux R">R. Fux</name>
</author>
<author>
<name sortKey="Shams Eldin, H" uniqKey="Shams Eldin H">H. Shams-Eldin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, E" uniqKey="Kim E">E. Kim</name>
</author>
<author>
<name sortKey="Okada, K" uniqKey="Okada K">K. Okada</name>
</author>
<author>
<name sortKey="Kenniston, T" uniqKey="Kenniston T">T. Kenniston</name>
</author>
<author>
<name sortKey="Raj, V S" uniqKey="Raj V">V.S. Raj</name>
</author>
<author>
<name sortKey="Alhajri, M M" uniqKey="Alhajri M">M.M. AlHajri</name>
</author>
<author>
<name sortKey="Farag, E A" uniqKey="Farag E">E.A. Farag</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guo, X" uniqKey="Guo X">X. Guo</name>
</author>
<author>
<name sortKey="Deng, Y" uniqKey="Deng Y">Y. Deng</name>
</author>
<author>
<name sortKey="Chen, H" uniqKey="Chen H">H. Chen</name>
</author>
<author>
<name sortKey="Lan, J" uniqKey="Lan J">J. Lan</name>
</author>
<author>
<name sortKey="Wang, W" uniqKey="Wang W">W. Wang</name>
</author>
<author>
<name sortKey="Zou, X" uniqKey="Zou X">X. Zou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Malczyk, A H" uniqKey="Malczyk A">A.H. Malczyk</name>
</author>
<author>
<name sortKey="Kupke, A" uniqKey="Kupke A">A. Kupke</name>
</author>
<author>
<name sortKey="Prufer, S" uniqKey="Prufer S">S. Prüfer</name>
</author>
<author>
<name sortKey="Scheuplein, V A" uniqKey="Scheuplein V">V.A. Scheuplein</name>
</author>
<author>
<name sortKey="Hutzler, S" uniqKey="Hutzler S">S. Hutzler</name>
</author>
<author>
<name sortKey="Kreuz, D" uniqKey="Kreuz D">D. Kreuz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Haagmans, B L" uniqKey="Haagmans B">B.L. Haagmans</name>
</author>
<author>
<name sortKey="Van Den Brand, J M" uniqKey="Van Den Brand J">J.M. van den Brand</name>
</author>
<author>
<name sortKey="Raj, V S" uniqKey="Raj V">V.S. Raj</name>
</author>
<author>
<name sortKey="Volz, A" uniqKey="Volz A">A. Volz</name>
</author>
<author>
<name sortKey="Wohlsein, P" uniqKey="Wohlsein P">P. Wohlsein</name>
</author>
<author>
<name sortKey="Smits, S L" uniqKey="Smits S">S.L. Smits</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ma, C" uniqKey="Ma C">C. Ma</name>
</author>
<author>
<name sortKey="Wang, L" uniqKey="Wang L">L. Wang</name>
</author>
<author>
<name sortKey="Tao, X" uniqKey="Tao X">X. Tao</name>
</author>
<author>
<name sortKey="Zhang, N" uniqKey="Zhang N">N. Zhang</name>
</author>
<author>
<name sortKey="Yang, Y" uniqKey="Yang Y">Y. Yang</name>
</author>
<author>
<name sortKey="Tseng, C T" uniqKey="Tseng C">C.T. Tseng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ma, C" uniqKey="Ma C">C. Ma</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y. Li</name>
</author>
<author>
<name sortKey="Wang, L" uniqKey="Wang L">L. Wang</name>
</author>
<author>
<name sortKey="Zhao, G" uniqKey="Zhao G">G. Zhao</name>
</author>
<author>
<name sortKey="Tao, X" uniqKey="Tao X">X. Tao</name>
</author>
<author>
<name sortKey="Tseng, C T" uniqKey="Tseng C">C.T. Tseng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lan, J" uniqKey="Lan J">J. Lan</name>
</author>
<author>
<name sortKey="Deng, Y" uniqKey="Deng Y">Y. Deng</name>
</author>
<author>
<name sortKey="Chen, H" uniqKey="Chen H">H. Chen</name>
</author>
<author>
<name sortKey="Lu, G" uniqKey="Lu G">G. Lu</name>
</author>
<author>
<name sortKey="Wang, W" uniqKey="Wang W">W. Wang</name>
</author>
<author>
<name sortKey="Guo, X" uniqKey="Guo X">X. Guo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, N" uniqKey="Zhang N">N. Zhang</name>
</author>
<author>
<name sortKey="Channappanavar, R" uniqKey="Channappanavar R">R. Channappanavar</name>
</author>
<author>
<name sortKey="Ma, C" uniqKey="Ma C">C. Ma</name>
</author>
<author>
<name sortKey="Wang, L" uniqKey="Wang L">L. Wang</name>
</author>
<author>
<name sortKey="Tang, J" uniqKey="Tang J">J. Tang</name>
</author>
<author>
<name sortKey="Garron, T" uniqKey="Garron T">T. Garron</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lan, J" uniqKey="Lan J">J. Lan</name>
</author>
<author>
<name sortKey="Yao, Y" uniqKey="Yao Y">Y. Yao</name>
</author>
<author>
<name sortKey="Deng, Y" uniqKey="Deng Y">Y. Deng</name>
</author>
<author>
<name sortKey="Chen, H" uniqKey="Chen H">H. Chen</name>
</author>
<author>
<name sortKey="Lu, G" uniqKey="Lu G">G. Lu</name>
</author>
<author>
<name sortKey="Wang, W" uniqKey="Wang W">W. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tang, J" uniqKey="Tang J">J. Tang</name>
</author>
<author>
<name sortKey="Zhang, N" uniqKey="Zhang N">N. Zhang</name>
</author>
<author>
<name sortKey="Tao, X" uniqKey="Tao X">X. Tao</name>
</author>
<author>
<name sortKey="Zhao, G" uniqKey="Zhao G">G. Zhao</name>
</author>
<author>
<name sortKey="Guo, Y" uniqKey="Guo Y">Y. Guo</name>
</author>
<author>
<name sortKey="Tseng, C T" uniqKey="Tseng C">C.T. Tseng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Coleman, C M" uniqKey="Coleman C">C.M. Coleman</name>
</author>
<author>
<name sortKey="Liu, Y V" uniqKey="Liu Y">Y.V. Liu</name>
</author>
<author>
<name sortKey="Mu, H" uniqKey="Mu H">H. Mu</name>
</author>
<author>
<name sortKey="Taylor, J K" uniqKey="Taylor J">J.K. Taylor</name>
</author>
<author>
<name sortKey="Massare, M" uniqKey="Massare M">M. Massare</name>
</author>
<author>
<name sortKey="Flyer, D C" uniqKey="Flyer D">D.C. Flyer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, C" uniqKey="Wang C">C. Wang</name>
</author>
<author>
<name sortKey="Zheng, X" uniqKey="Zheng X">X. Zheng</name>
</author>
<author>
<name sortKey="Gai, W" uniqKey="Gai W">W. Gai</name>
</author>
<author>
<name sortKey="Zhao, Y" uniqKey="Zhao Y">Y. Zhao</name>
</author>
<author>
<name sortKey="Wang, H" uniqKey="Wang H">H. Wang</name>
</author>
<author>
<name sortKey="Wang, H" uniqKey="Wang H">H. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Muthumani, K" uniqKey="Muthumani K">K. Muthumani</name>
</author>
<author>
<name sortKey="Falzarano, D" uniqKey="Falzarano D">D. Falzarano</name>
</author>
<author>
<name sortKey="Reuschel, E L" uniqKey="Reuschel E">E.L. Reuschel</name>
</author>
<author>
<name sortKey="Tingey, C" uniqKey="Tingey C">C. Tingey</name>
</author>
<author>
<name sortKey="Flingai, S" uniqKey="Flingai S">S. Flingai</name>
</author>
<author>
<name sortKey="Villarreal, D O" uniqKey="Villarreal D">D.O. Villarreal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, L" uniqKey="Wang L">L. Wang</name>
</author>
<author>
<name sortKey="Shi, W" uniqKey="Shi W">W. Shi</name>
</author>
<author>
<name sortKey="Joyce, M G" uniqKey="Joyce M">M.G. Joyce</name>
</author>
<author>
<name sortKey="Modjarrad, K" uniqKey="Modjarrad K">K. Modjarrad</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y. Zhang</name>
</author>
<author>
<name sortKey="Leung, K" uniqKey="Leung K">K. Leung</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Almazan, F" uniqKey="Almazan F">F. Almazán</name>
</author>
<author>
<name sortKey="Dediego, M L" uniqKey="Dediego M">M.L. DeDiego</name>
</author>
<author>
<name sortKey="Sola, I" uniqKey="Sola I">I. Sola</name>
</author>
<author>
<name sortKey="Zu Iga, S" uniqKey="Zu Iga S">S. Zuñiga</name>
</author>
<author>
<name sortKey="Nieto Torres, J L" uniqKey="Nieto Torres J">J.L. Nieto-Torres</name>
</author>
<author>
<name sortKey="Marquez Jurado, S" uniqKey="Marquez Jurado S">S. Marquez-Jurado</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, M A" uniqKey="Liu M">M.A. Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Martin, J E" uniqKey="Martin J">J.E. Martin</name>
</author>
<author>
<name sortKey="Louder, M K" uniqKey="Louder M">M.K. Louder</name>
</author>
<author>
<name sortKey="Holman, L A" uniqKey="Holman L">L.A. Holman</name>
</author>
<author>
<name sortKey="Gordon, I J" uniqKey="Gordon I">I.J. Gordon</name>
</author>
<author>
<name sortKey="Enama, M E" uniqKey="Enama M">M.E. Enama</name>
</author>
<author>
<name sortKey="Larkin, B D" uniqKey="Larkin B">B.D. Larkin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lu, B" uniqKey="Lu B">B. Lu</name>
</author>
<author>
<name sortKey="Tao, L" uniqKey="Tao L">L. Tao</name>
</author>
<author>
<name sortKey="Wang, T" uniqKey="Wang T">T. Wang</name>
</author>
<author>
<name sortKey="Zheng, Z" uniqKey="Zheng Z">Z. Zheng</name>
</author>
<author>
<name sortKey="Li, B" uniqKey="Li B">B. Li</name>
</author>
<author>
<name sortKey="Chen, Z" uniqKey="Chen Z">Z. Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Banik, G R" uniqKey="Banik G">G.R. Banik</name>
</author>
<author>
<name sortKey="Khandaker, G" uniqKey="Khandaker G">G. Khandaker</name>
</author>
<author>
<name sortKey="Rashid, H" uniqKey="Rashid H">H. Rashid</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Du, L" uniqKey="Du L">L. Du</name>
</author>
<author>
<name sortKey="Tai, W" uniqKey="Tai W">W. Tai</name>
</author>
<author>
<name sortKey="Zhou, Y" uniqKey="Zhou Y">Y. Zhou</name>
</author>
<author>
<name sortKey="Jiang, S" uniqKey="Jiang S">S. Jiang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, N" uniqKey="Zhang N">N. Zhang</name>
</author>
<author>
<name sortKey="Jiang, S" uniqKey="Jiang S">S. Jiang</name>
</author>
<author>
<name sortKey="Du, L" uniqKey="Du L">L. Du</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Raj, V S" uniqKey="Raj V">V.S. Raj</name>
</author>
<author>
<name sortKey="Mou, H" uniqKey="Mou H">H. Mou</name>
</author>
<author>
<name sortKey="Smits, S L" uniqKey="Smits S">S.L. Smits</name>
</author>
<author>
<name sortKey="Dekkers, D H" uniqKey="Dekkers D">D.H. Dekkers</name>
</author>
<author>
<name sortKey="Muller, M A" uniqKey="Muller M">M.A. Müller</name>
</author>
<author>
<name sortKey="Dijkman, R" uniqKey="Dijkman R">R. Dijkman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gao, J" uniqKey="Gao J">J. Gao</name>
</author>
<author>
<name sortKey="Lu, G" uniqKey="Lu G">G. Lu</name>
</author>
<author>
<name sortKey="Qi, J" uniqKey="Qi J">J. Qi</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y. Li</name>
</author>
<author>
<name sortKey="Wu, Y" uniqKey="Wu Y">Y. Wu</name>
</author>
<author>
<name sortKey="Deng, Y" uniqKey="Deng Y">Y. Deng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Du, L" uniqKey="Du L">L. Du</name>
</author>
<author>
<name sortKey="He, Y" uniqKey="He Y">Y. He</name>
</author>
<author>
<name sortKey="Zhou, Y" uniqKey="Zhou Y">Y. Zhou</name>
</author>
<author>
<name sortKey="Liu, S" uniqKey="Liu S">S. Liu</name>
</author>
<author>
<name sortKey="Zheng, B J" uniqKey="Zheng B">B.J. Zheng</name>
</author>
<author>
<name sortKey="Jiang, S" uniqKey="Jiang S">S. Jiang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Du, L" uniqKey="Du L">L. Du</name>
</author>
<author>
<name sortKey="Jiang, S" uniqKey="Jiang S">S. Jiang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhao, J" uniqKey="Zhao J">J. Zhao</name>
</author>
<author>
<name sortKey="Li, K" uniqKey="Li K">K. Li</name>
</author>
<author>
<name sortKey="Wohlford Lenane, C" uniqKey="Wohlford Lenane C">C. Wohlford-Lenane</name>
</author>
<author>
<name sortKey="Agnihothram, S S" uniqKey="Agnihothram S">S.S. Agnihothram</name>
</author>
<author>
<name sortKey="Fett, C" uniqKey="Fett C">C. Fett</name>
</author>
<author>
<name sortKey="Zhao, J" uniqKey="Zhao J">J. Zhao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pape, K A" uniqKey="Pape K">K.A. Pape</name>
</author>
<author>
<name sortKey="Catron, D M" uniqKey="Catron D">D.M. Catron</name>
</author>
<author>
<name sortKey="Itano, A A" uniqKey="Itano A">A.A. Itano</name>
</author>
<author>
<name sortKey="Jenkins, M K" uniqKey="Jenkins M">M.K. Jenkins</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bajenoff, M" uniqKey="Bajenoff M">M. Bajénoff</name>
</author>
<author>
<name sortKey="Germain, R N" uniqKey="Germain R">R.N. Germain</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Becker, G" uniqKey="De Becker G">G. De Becker</name>
</author>
<author>
<name sortKey="Moulin, V" uniqKey="Moulin V">V. Moulin</name>
</author>
<author>
<name sortKey="Tielemans, F" uniqKey="Tielemans F">F. Tielemans</name>
</author>
<author>
<name sortKey="De Mattia, F" uniqKey="De Mattia F">F. De Mattia</name>
</author>
<author>
<name sortKey="Urbain, J" uniqKey="Urbain J">J. Urbain</name>
</author>
<author>
<name sortKey="Leo, O" uniqKey="Leo O">O. Leo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Enriquez Rincon, F" uniqKey="Enriquez Rincon F">F. Enriquez-Rincon</name>
</author>
<author>
<name sortKey="Klaus, G G" uniqKey="Klaus G">G.G. Klaus</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, Z Y" uniqKey="Yang Z">Z.Y. Yang</name>
</author>
<author>
<name sortKey="Kong, W P" uniqKey="Kong W">W.P. Kong</name>
</author>
<author>
<name sortKey="Huang, Y" uniqKey="Huang Y">Y. Huang</name>
</author>
<author>
<name sortKey="Roberts, A" uniqKey="Roberts A">A. Roberts</name>
</author>
<author>
<name sortKey="Murphy, B R" uniqKey="Murphy B">B.R. Murphy</name>
</author>
<author>
<name sortKey="Subbarao, K" uniqKey="Subbarao K">K. Subbarao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Forni, D" uniqKey="Forni D">D. Forni</name>
</author>
<author>
<name sortKey="Cagliani, R" uniqKey="Cagliani R">R. Cagliani</name>
</author>
<author>
<name sortKey="Mozzi, A" uniqKey="Mozzi A">A. Mozzi</name>
</author>
<author>
<name sortKey="Pozzoli, U" uniqKey="Pozzoli U">U. Pozzoli</name>
</author>
<author>
<name sortKey="Al Daghri, N" uniqKey="Al Daghri N">N. Al-Daghri</name>
</author>
<author>
<name sortKey="Clerici, M" uniqKey="Clerici M">M. Clerici</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, D W" uniqKey="Kim D">D.W. Kim</name>
</author>
<author>
<name sortKey="Kim, Y J" uniqKey="Kim Y">Y.J. Kim</name>
</author>
<author>
<name sortKey="Park, S H" uniqKey="Park S">S.H. Park</name>
</author>
<author>
<name sortKey="Yun, M R" uniqKey="Yun M">M.R. Yun</name>
</author>
<author>
<name sortKey="Yang, J S" uniqKey="Yang J">J.S. Yang</name>
</author>
<author>
<name sortKey="Kang, H J" uniqKey="Kang H">H.J. Kang</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Vaccine</journal-id>
<journal-id journal-id-type="iso-abbrev">Vaccine</journal-id>
<journal-title-group>
<journal-title>Vaccine</journal-title>
</journal-title-group>
<issn pub-type="ppub">0264-410X</issn>
<issn pub-type="epub">1873-2518</issn>
<publisher>
<publisher-name>Elsevier Ltd.</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">28314561</article-id>
<article-id pub-id-type="pmc">5411280</article-id>
<article-id pub-id-type="publisher-id">S0264-410X(17)30288-8</article-id>
<article-id pub-id-type="doi">10.1016/j.vaccine.2017.02.063</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>DNA vaccine encoding Middle East respiratory syndrome coronavirus S1 protein induces protective immune responses in mice</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" id="au005">
<name>
<surname>Chi</surname>
<given-names>Hang</given-names>
</name>
<xref rid="af005" ref-type="aff">a</xref>
</contrib>
<contrib contrib-type="author" id="au010">
<name>
<surname>Zheng</surname>
<given-names>Xuexing</given-names>
</name>
<xref rid="af005" ref-type="aff">a</xref>
<xref rid="af010" ref-type="aff">b</xref>
</contrib>
<contrib contrib-type="author" id="au015">
<name>
<surname>Wang</surname>
<given-names>Xiwen</given-names>
</name>
<xref rid="af005" ref-type="aff">a</xref>
</contrib>
<contrib contrib-type="author" id="au020">
<name>
<surname>Wang</surname>
<given-names>Chong</given-names>
</name>
<xref rid="af005" ref-type="aff">a</xref>
</contrib>
<contrib contrib-type="author" id="au025">
<name>
<surname>Wang</surname>
<given-names>Hualei</given-names>
</name>
<xref rid="af005" ref-type="aff">a</xref>
<xref rid="af015" ref-type="aff">c</xref>
</contrib>
<contrib contrib-type="author" id="au030">
<name>
<surname>Gai</surname>
<given-names>Weiwei</given-names>
</name>
<xref rid="af005" ref-type="aff">a</xref>
</contrib>
<contrib contrib-type="author" id="au035">
<name>
<surname>Perlman</surname>
<given-names>Stanley</given-names>
</name>
<xref rid="af020" ref-type="aff">d</xref>
</contrib>
<contrib contrib-type="author" id="au040">
<name>
<surname>Yang</surname>
<given-names>Songtao</given-names>
</name>
<email>yst62041@163.com</email>
<xref rid="af005" ref-type="aff">a</xref>
<xref rid="af015" ref-type="aff">c</xref>
<xref rid="cor1" ref-type="corresp"></xref>
</contrib>
<contrib contrib-type="author" id="au045">
<name>
<surname>Zhao</surname>
<given-names>Jincun</given-names>
</name>
<email>zhaojincun@gird.cn</email>
<xref rid="af025" ref-type="aff">e</xref>
<xref rid="cor1" ref-type="corresp"></xref>
</contrib>
<contrib contrib-type="author" id="au050">
<name>
<surname>Xia</surname>
<given-names>Xianzhu</given-names>
</name>
<email>xiaxzh@cae.cn</email>
<xref rid="af005" ref-type="aff">a</xref>
<xref rid="af015" ref-type="aff">c</xref>
<xref rid="cor1" ref-type="corresp"></xref>
</contrib>
</contrib-group>
<aff id="af005">
<label>a</label>
Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Science, Changchun, China</aff>
<aff id="af010">
<label>b</label>
School of Public Health, Shandong University, Jinan, China</aff>
<aff id="af015">
<label>c</label>
Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China</aff>
<aff id="af020">
<label>d</label>
Department of Microbiology, University of Iowa, Iowa City, IA, USA</aff>
<aff id="af025">
<label>e</label>
State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China</aff>
<author-notes>
<corresp id="cor1">
<label></label>
Corresponding authors at: Department of Virology, Institute of Military Veterinary, Academy of Military Medical Sciences, 666 Liuying West Road, Changchun, Jilin 130012, China (S. Yang and X. Xia). State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China (J. Zhao).
<email>yst62041@163.com</email>
<email>zhaojincun@gird.cn</email>
<email>xiaxzh@cae.cn</email>
</corresp>
</author-notes>
<pub-date pub-type="pmc-release">
<day>14</day>
<month>3</month>
<year>2017</year>
</pub-date>
<pmc-comment> PMC Release delay is 0 months and 0 days and was based on .</pmc-comment>
<pub-date pub-type="ppub">
<day>11</day>
<month>4</month>
<year>2017</year>
</pub-date>
<pub-date pub-type="epub">
<day>14</day>
<month>3</month>
<year>2017</year>
</pub-date>
<volume>35</volume>
<issue>16</issue>
<fpage>2069</fpage>
<lpage>2075</lpage>
<history>
<date date-type="received">
<day>10</day>
<month>6</month>
<year>2016</year>
</date>
<date date-type="rev-recd">
<day>13</day>
<month>2</month>
<year>2017</year>
</date>
<date date-type="accepted">
<day>28</day>
<month>2</month>
<year>2017</year>
</date>
</history>
<permissions>
<copyright-statement>© 2017 Elsevier Ltd. All rights reserved.</copyright-statement>
<copyright-year>2017</copyright-year>
<copyright-holder>Elsevier Ltd</copyright-holder>
<license>
<license-p>Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.</license-p>
</license>
</permissions>
<abstract abstract-type="author-highlights" id="ab005">
<title>Highlights</title>
<p>
<list list-type="simple" id="l0005">
<list-item id="o0005">
<label></label>
<p id="p0005">DNA vaccine encoding MERS-CoV S1 gene induced humoral and cellular immune responses.</p>
</list-item>
<list-item id="o0010">
<label></label>
<p id="p0010">High titers of neutralizing antibodies were generated without adjuvant.</p>
</list-item>
<list-item id="o0015">
<label></label>
<p id="p0015">Virus loads in lungs significantly decreased in vaccinated and serum received mice.</p>
</list-item>
</list>
</p>
</abstract>
<abstract id="ab010">
<p>The Middle East respiratory syndrome coronavirus (MERS-CoV), is an emerging pathogen that continues to cause outbreaks in the Arabian peninsula and in travelers from this region, raising the concern that a global pandemic could occur. Here, we show that a DNA vaccine encoding the first 725 amino acids (S1) of MERS-CoV spike (S) protein induces antigen-specific humoral and cellular immune responses in mice. With three immunizations, high titers of neutralizing antibodies (up to 1: 10
<sup>4</sup>
) were generated without adjuvant. DNA vaccination with the MERS-CoV S1 gene markedly increased the frequencies of antigen-specific CD4
<sup>+</sup>
and CD8
<sup>+</sup>
T cells secreting IFN-γ and other cytokines. Both pcDNA3.1-S1 DNA vaccine immunization and passive transfer of immune serum from pcDNA3.1-S1 vaccinated mice protected Ad5-hDPP4-transduced mice from MERS-CoV challenge. These results demonstrate that a DNA vaccine encoding MERS-CoV S1 protein induces strong protective immune responses against MERS-CoV infection.</p>
</abstract>
<kwd-group id="kg005">
<title>Keywords</title>
<kwd>MERS-CoV</kwd>
<kwd>DNA vaccine</kwd>
<kwd>Spike protein</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec id="s0005">
<label>1</label>
<title>Introduction</title>
<p id="p0020">Middle East respiratory syndrome (MERS)-coronavirus (MERS-CoV), an emerging zoonotic virus, is the causative agent of MERS. MERS-CoV was first identified in Saudi Arabia in 2012 and MERS cases have been reported in 27 countries since then
<xref rid="b0005" ref-type="bibr">[1]</xref>
,
<xref rid="b0010" ref-type="bibr">[2]</xref>
. As of February 10, 2017, 1905 laboratory-confirmed cases, including 677 deaths related to MERS-CoV, had been reported to WHO (∼36% mortality). Several family clusters and nosocomial clusters cases have been reported, revealing the human-to-human transmissibility of MERS-CoV, and raising the concern of a MERS-CoV global pandemic
<xref rid="b0015" ref-type="bibr">[3]</xref>
,
<xref rid="b0020" ref-type="bibr">[4]</xref>
,
<xref rid="b0025" ref-type="bibr">[5]</xref>
. Currently, no licensed therapeutic or vaccine is available, which highlights the need for efficient vaccines against MERS-CoV.</p>
<p id="p0025">To date, several vaccine candidates have been developed, such as viral vector-based recombinants
<xref rid="b0030" ref-type="bibr">[6]</xref>
,
<xref rid="b0035" ref-type="bibr">[7]</xref>
,
<xref rid="b0040" ref-type="bibr">[8]</xref>
,
<xref rid="b0045" ref-type="bibr">[9]</xref>
,
<xref rid="b0050" ref-type="bibr">[10]</xref>
,
<xref rid="b0055" ref-type="bibr">[11]</xref>
, subunit vaccines
<xref rid="b0060" ref-type="bibr">[12]</xref>
,
<xref rid="b0065" ref-type="bibr">[13]</xref>
,
<xref rid="b0070" ref-type="bibr">[14]</xref>
,
<xref rid="b0075" ref-type="bibr">[15]</xref>
,
<xref rid="b0080" ref-type="bibr">[16]</xref>
,
<xref rid="b0085" ref-type="bibr">[17]</xref>
,
<xref rid="b0090" ref-type="bibr">[18]</xref>
,
<xref rid="b0095" ref-type="bibr">[19]</xref>
, DNA vaccines
<xref rid="b0100" ref-type="bibr">[20]</xref>
, DNA prime/protein-boost vaccines
<xref rid="b0105" ref-type="bibr">[21]</xref>
and a reverse genetics-constructed recombinant coronavirus vaccine
<xref rid="b0110" ref-type="bibr">[22]</xref>
. Among them, DNA vaccines present a range of unique advantages such as proper antigen protein folding, rapid design and production, cost-effectiveness, and stability at non-refrigerated temperatures for convenient storage and shipping
<xref rid="b0115" ref-type="bibr">[23]</xref>
. Furthermore, it has been reported that DNA vaccines can induce both humoral and cellular immune responses against MERS-CoV and SARS-CoV infection
<xref rid="b0100" ref-type="bibr">[20]</xref>
,
<xref rid="b0120" ref-type="bibr">[24]</xref>
,
<xref rid="b0125" ref-type="bibr">[25]</xref>
.</p>
<p id="p0030">MERS-CoV is the first lineage of
<italic>Betacoronavirus</italic>
known to infect humans
<xref rid="b0130" ref-type="bibr">[26]</xref>
. The genome of MERS-CoV encodes four structural proteins – spike (S), envelope (E), membrane (M) and nucleocapsid (N)
<xref rid="b0135" ref-type="bibr">[27]</xref>
. The S protein, a class I fusion protein forming protruding spikes on the virus surface, is composed of an N-terminal S1 subunit and a C-terminal S2 subunit
<xref rid="b0140" ref-type="bibr">[28]</xref>
. It has been reported that MERS-CoV binds to host cell receptor dipeptidyl peptidase 4 (DPP4) through an independently folded receptor binding domain (RBD) localized within the S1 subunit
<xref rid="b0145" ref-type="bibr">[29]</xref>
,
<xref rid="b0150" ref-type="bibr">[30]</xref>
. Moreover, S protein has been identified as the most immunogenic antigen of MERS-CoV. It plays an important role in the induction of neutralizing antibody and anti-viral T-cell responses
<xref rid="b0140" ref-type="bibr">[28]</xref>
. Thus, S protein is the major target for current vaccines development to protect against MERS
<xref rid="b0040" ref-type="bibr">[8]</xref>
,
<xref rid="b0050" ref-type="bibr">[10]</xref>
,
<xref rid="b0140" ref-type="bibr">[28]</xref>
. However, previous studies have demonstrated that vaccines based on full-length S potentially induce harmful side effects caused by non-neutralizing epitopes
<xref rid="b0135" ref-type="bibr">[27]</xref>
,
<xref rid="b0155" ref-type="bibr">[31]</xref>
. In contrast, RBD protein-based subunit vaccines are able to induce both neutralizing antibody and anti-viral T-cell responses against MERS-CoV infection, with the additional superiority of safety
<xref rid="b0140" ref-type="bibr">[28]</xref>
. Nevertheless, to improve the immunogenicity of these subunit vaccines, it has been found necessary to use an appropriate adjuvant or even adjuvant combinations, or immune enhancers (e.g., human IgG Fc), and optimized delivery routes and doses
<xref rid="b0060" ref-type="bibr">[12]</xref>
,
<xref rid="b0065" ref-type="bibr">[13]</xref>
,
<xref rid="b0070" ref-type="bibr">[14]</xref>
,
<xref rid="b0075" ref-type="bibr">[15]</xref>
,
<xref rid="b0080" ref-type="bibr">[16]</xref>
,
<xref rid="b0085" ref-type="bibr">[17]</xref>
. An ideal MERS vaccine should induce potent neutralizing antibody response without inducing harmful immune effects such as virus-enhancing antibody or immunopathology
<xref rid="b0140" ref-type="bibr">[28]</xref>
,
<xref rid="b0160" ref-type="bibr">[32]</xref>
. Based on the established background and our previous research results, we selected S1 protein as the target for our DNA vaccine development.</p>
<p id="p0035">In the present study, we designed and constructed a DNA vaccine encoding the S1 subunit of MERS-CoV (pcDNA3.1-S1), and evaluated antigen-specific humoral and cellular immune responses induced by this DNA vaccine in mice. Further, we investigated the protective efficacy of pcDNA3.1-S1 DNA vaccine in an Ad5-hDPP4-transduced mouse model following MERS-CoV challenge. Vaccinated mice and mice receiving immune serum before infection were found to have significantly decreased virus loads in their lungs.</p>
</sec>
<sec id="s0010">
<label>2</label>
<title>Material and methods</title>
<sec id="s0015">
<label>2.1</label>
<title>Mice, virus and cells</title>
<p id="p0040">Six-to eight-week-old specific pathogen-free female BALB/c mice were purchased from the Changchun Institute of Biological Products Co., Ltd (Changchun, China) or the National Cancer Institute and Jackson Laboratories (Maine, USA). The EMC/2012 strain of MERS-CoV (passage 8, designated MERS-CoV) was kindly provided by Bart Haagmans and Ron Fouchier (Erasmus Medical Center, Rotterdam, The Netherlands). Vero 81 cells (derived from African Green monkey kidney) [ATCC No. CCL81] were grown in DMEM (Gibco, San Diego, CA, USA) supplemented with 10% fetal bovine serum (FBS) (Gibco, San Diego, CA, USA). MERS-CoV EMC/2012 was passaged once in Vero 81 cells and titrated by plaque assay in the same cell line.</p>
</sec>
<sec id="s0020">
<label>2.2</label>
<title>Construction of the recombinant plasmids expressing MERS-CoV spike protein</title>
<p id="p0045">The gene sequence encoding amino acid 1-1353 (S) of the spike protein of the Al-Hasa_15_2013 strain of MERS-CoV (GenBank accession No.
<ext-link ext-link-type="uri" xlink:href="ncbi-n:KF600645.1" id="ir005">KF600645.1</ext-link>
) was synthesized by Sangon Biotech Company (Shanghai, China). The synthetic full-length S, SΔCD (S without the entire cytoplasmic domain), and S1 fragment were respectively subcloned into the mammalian expression vector pcDNA3.1 (+) (Invitrogen, San Diego, CA, USA) to generate recombinant plasmid pcDNA3.1-S, pcDNA3.1-SΔCD, and pcDNA3.1-S1 (
<xref rid="f0005" ref-type="fig">Fig.1</xref>
A). The recombinant plasmid was then amplified in
<italic>Escherichia coli</italic>
HST08 (TaKaRa, Dalian, China) and purified using the EndoFree Plasmid Maxi Kit (QIAGEN GmbH, Shanghai, China). The recombinant plasmid was dissolved in PBS at a final concentration of 1 μg/μL for
<italic>in vitro</italic>
transfection and
<italic>in vivo</italic>
animal immunization.
<fig id="f0005">
<label>Fig. 1</label>
<caption>
<p>Construction and verification of DNA vaccine. Schematic diagrams of the construction of DNA vaccines encoding different fragments of MERS-CoV spike protein (A). Western blot analyses of MERS-CoV spike protein expression
<italic>in vitro</italic>
. Lysates from pcDNA3.1-S, pcDNA3.1-SΔCD, pcDNA3.1-S1 transfected 293T cells (lane 1–3) and lysates from pcDNA3.1-Empty transfected 293T cells (lane 4) were incubated with mouse anti-MERS-S1 monoclonal antibodies and mouse anti-β-tubulin monoclonal antibodies (B). The schematic of the experiment (C).</p>
</caption>
<graphic xlink:href="gr1_lrg"></graphic>
</fig>
</p>
</sec>
<sec id="s0025">
<label>2.3</label>
<title>Western blot analysis of spike protein expression
<italic>in vitro</italic>
</title>
<p id="p0050">A 6-well plate was seeded with 293T cells which were grown to 80–90% confluence. Cells were respectively transfected with the recombinant plasmids and pcDNA3.1 empty vector using Lipofectamine 3000 Transfection Reagent (Invitrogen, San Diego, CA, USA) according to the manufacturer’s instructions. Cells were harvested at 48 h post-transfection. Cell lysates were prepared using RIPA Lysis buffer (Solarbio LIFE SCIENCES, Beijing, China) according to the manufacturer’s instructions, then separated on an 12% polyacrylamide gel and transferred onto a 0.45 μm nitrocellulose blotting membrane (GE Healthcare Life Sciences, Freiburg, Germany) for Western blotting analysis using mouse anti-MERS-S1 monoclonal antibodies (Sino biologicals, Beijing, China) and mouse anti-β-tubulin monoclonal antibodies (Ray antibody biotech, Beijing, China).</p>
</sec>
<sec id="s0030">
<label>2.4</label>
<title>Animal immunizations</title>
<p id="p0055">Mice were randomly divided into two groups. Mice in the experimental group were injected intramuscularly (i.m.) in the quadriceps muscle with 100 μg recombinant plasmid in 100 μL PBS on week 0, 3, 6 (
<xref rid="f0005" ref-type="fig">Fig.1</xref>
C). Mice in the control group received either the same volume of PBS or pcDNA3.1 empty vector at the same time points.</p>
</sec>
<sec id="s0035">
<label>2.5</label>
<title>ELISA measurement of MERS-CoV S-specific IgG</title>
<p id="p0060">At weeks 1, 2, 4, 5, 7 and 8 following the primary immunization, 6 mice from each group were randomly selected for collection of serum. Blood samples were collected by retro-orbital plexus puncture. Anti-MERS-S antibody levels in serum were measured by indirect ELISA using purified RBD protein (10 μg/mL) as the coating antigen as previously described
<xref rid="b0095" ref-type="bibr">[19]</xref>
. Absorbance was read at 450 nm. Values 2-fold higher than the control group were considered positive.</p>
</sec>
<sec id="s0040">
<label>2.6</label>
<title>Plaque reduction neutralizing test</title>
<p id="p0065">One week following the third immunization, serum samples were harvested and were 4-fold serially diluted in DMEM (Gibco, San Diego, CA, USA) and mixed 1:1 with 80 PFU MERS-CoV EMC/2012. After a 1 h incubation at 37 °C, the mixture was added to Vero 81 cells for an additional 1 h to permit absorption. Cells were then overlaid with 1.2% agarose (containing 2% FBS, DMEM). After a further incubation of 3 days, agarose plugs were removed for collection of virus. The remaining plaques were visualized by 0.1% crystal violet staining.</p>
</sec>
<sec id="s0045">
<label>2.7</label>
<title>IFN-γ and IL-4 ELISpot assays</title>
<p id="p0070">Two weeks following the second immunization, 3 mice from each group were randomly selected and euthanized. Spleens were harvested into a tissue culture dish and teased apart into single-cell suspensions by pressing through a 3 ml syringe. Cells were cultured in RPMI 1640 medium (Gibco, San Diego, CA, USA) containing 10% FBS (Gibco, San Diego, CA, USA), then stimulated with or without recombinant MERS-CoV RBD (10 μg/mL). The protein was prokaryotically expressed and purified by Ni-NTA affinity chromatography (Thermo, USA). After passing through a endotoxin removal spinning column, the endotoxin level was measured to be less than 0.04 EU/ml using a gel-clot limulus amebocyte lysate assay. Following incubation at 37 °C in 5% CO
<sub>2</sub>
for 24 h, splenocytes producing IFN-γ and IL-4 were measured using mouse enzyme-linked immunospot (ELISpot) kits (Mabtech AB, Stockholm, Sweden) according to the manufacturer’s instructions. Spot-forming cells (SFCs) were enumerated by an automated ELISpot reader (AID ELISPOT reader-iSpot, AID GmbH, GER).</p>
</sec>
<sec id="s0050">
<label>2.8</label>
<title>Intracellular cytokine staining</title>
<p id="p0075">Two weeks following the second immunization, splenocytes from 3 mice of each group were isolated, cultured (1 × 10
<sup>6</sup>
 cells/mL) and stimulated at 37 °C in 5% CO
<sub>2</sub>
for 6 h, as described above, in the presence of protein transport inhibitor containing monensin (BD Biosciences, Franklin, VA, USA). Cells were then labelled with equal volumes of 1:250 dilutions of anti-CD4-FITC (Clone #RM4-5) and
<italic>anti</italic>
-CD8-PE (Clone #53-6.7) monoclonal antibodies (BD Biosciences, Franklin, VA, USA), then fixed and permeabilized by Fixation/Permeabilization solution (BD Biosciences, Franklin, VA, USA) and labelled for 30 min at 4 °C with equal volumes of 1:250 dilutions of anti-IFN-γ PE-Cy7 (Clone #XMG1.2) and anti-IL-4-APC (Clone # 11B11) monoclonal antibodies (BD Biosciences, Franklin, VA, USA). Labelled cells were analyzed in a FACSAria ™ Cell Sorter (BD Biosciences, Franklin, VA, USA).</p>
</sec>
<sec id="s0055">
<label>2.9</label>
<title>ELISA measurement of cytokines</title>
<p id="p0080">Two weeks following the second immunization, splenocytes from 3 mice of each group were isolated, cultured (1 × 10
<sup>6</sup>
 cells/mL) and stimulated as described above, then incubated at 37 °C in 5% CO
<sub>2</sub>
. After 48 h, cell-free culture supernatants were harvested. Levels of IL-2, IL-4, IL-10 and IFN-γ were measured using mouse enzyme-linked immunosorbent assays (ELISA) development kits (Mabtech AB, Stockholm, Sweden) according to the manufacturer’s instructions.</p>
</sec>
<sec id="s0060">
<label>2.10</label>
<title>MERS-CoV infection of mice</title>
<p id="p0085">Mice were sensitized to MERS-CoV infection after prior transduction with adenovirus 5 expressing human DPP4 (Ad5-hDPP4) as previously described
<xref rid="b0165" ref-type="bibr">[33]</xref>
. One week following the third immunization, DNA vaccine immunized mice or mice given 200 μL immune serum (harvested 1 week following the third immunization) were transduced with Ad5-hDPP4 5 days before intranasal challenge with 1 × 10
<sup>5</sup>
 PFU MERS-CoV. Lungs from 3 mice of each group were removed into PBS at days 3 and 5 post-infection and manually homogenized. Virus titers of clarified supernatants were assayed in Vero 81 cells and expressed as PFU/g tissue.</p>
</sec>
<sec id="s0065">
<label>2.11</label>
<title>Laboratory facilities and ethics statement</title>
<p id="p0090">All BALB/c mice were handled in compliance with the guidelines for the Welfare and Ethics of Laboratory Animals of China, and protocols were approved by the Animal Welfare and Ethics Committee of the Veterinary Institute at the Academy of Military Medical Sciences. BALB/c mice used for the MERS-CoV challenge experiments were maintained in the animal care facility at the University of Iowa and all protocols in the related experiments were approved by the University of Iowa Institutional Animal Care and Use Committee. Experiments with the MERS-CoV EMC/2012 strain were conducted in a biosafety level 3 (BSL3) laboratory and were approved by the University of Iowa.</p>
</sec>
</sec>
<sec id="s0070">
<label>3</label>
<title>Results</title>
<sec id="s0075">
<label>3.1</label>
<title>Construction and verification of DNA vaccine</title>
<p id="p0095">Recombinant plasmids expressing the different fragments (full-length S, SΔCD and S1) of MERS-CoV were obtained and verified by restriction enzyme digestion and sequencing. Expression of MERS-CoV spike protein in 293T cells respectively transfected with the above recombinant plasmids was confirmed by Western blot (
<xref rid="f0005" ref-type="fig">Fig.1</xref>
B). The expression level of S1 protein was significantly higher than S and SΔCD. We considered that the differences in expression level had an influence on the immune response to the various constructs.</p>
</sec>
<sec id="s0080">
<label>3.2</label>
<title>DNA vaccine-induced neutralizing antibody against MERS-CoV</title>
<p id="p0100">Antibody responses to MERS-CoV were evaluated by indirect ELISA, and shown as end-point dilution titers. Of the three DNA vaccines constructed, pcDNA3.1-S1 DNA vaccine elicited the highest antibody titer in immunized mice (
<xref rid="f0010" ref-type="fig">Fig.2</xref>
A) and thus was selected for further experiments. The sera from pcDNA3.1-S1 immunized mice strongly reacted with MERS-CoV RBD protein after receiving the second and third immunizations, reaching endpoint titers up to 1:1280 (
<xref rid="f0010" ref-type="fig">Fig.2</xref>
B). As shown in
<xref rid="f0010" ref-type="fig">Fig.2</xref>
B, no significant differences were observed between samples harvested 1 week and 2 weeks post the third immunization, indicating that the antibody response reached the plateau. To determine if the antibodies in the immune serum could neutralize MERS-CoV infection
<italic>in vitro</italic>
, a plaque reduction neutralizing assay was performed using serially diluted serum samples. The serum samples efficiently neutralized MERS-CoV infection
<italic>in vitro</italic>
even after 1: 10
<sup>4</sup>
dilution (
<xref rid="f0010" ref-type="fig">Fig.2</xref>
C). These results demonstrate that DNA vaccine encoding MERS-CoV S1 gene induced a potent neutralizing antibody response.
<fig id="f0010">
<label>Fig. 2</label>
<caption>
<p>DNA vaccine-induced neutralizing antibody against MERS-CoV. Serum samples were collected by retro-orbital plexus puncture at weeks 1, 2, 4, 5, 7 and 8. Anti-MERS-S antibody levels in serum were assessed by indirect ELISA with the purified RBD protein as the detection antigen, and shown as end-point dilution titers. The horizontal dotted line indicates limit of determination (LOD). n = 6 mice/group/time point. The ELISA titers of serum samples from pcDNA3.1-S, pcDNA3.1-SΔCD, pcDNA3.1-S1 at weeks 2, 5 and 8. Data are shown as the means ± SDs and were analyzed by one-way ANOVA. (
<sup>****</sup>
<italic>P</italic>
 < 0.0001) (A). The ELISA titers of serum samples from pcDNA3.1-S1 treated mice at the indicated time (B). Serum samples were harvested 1-week post the third immunization, and serially diluted in DMEM and mixed 1:1 with 80 PFU MERS-CoV EMC/2012. Neutralizing antibodies were measured by plaque reduction neutralizing assay. n = 3 mice/group/time point (C). Data are shown as the means ± SDs.</p>
</caption>
<graphic xlink:href="gr2_lrg"></graphic>
</fig>
</p>
</sec>
<sec id="s0085">
<label>3.3</label>
<title>DNA vaccine-induced antigen-specific cellular immune responses</title>
<p id="p0105">After confirming that pcDNA3.1-S1 successfully induced antibody responses in mice, antigen-specific cellular immune responses were evaluated by ELISpot assays and intracellular cytokine staining (ICS) assays. Splenocytes were harvested at two weeks post the second immunization. We chose this time because the RBD-specific antibody response was first detected 1–2 weeks after the second immunization (
<xref rid="f0010" ref-type="fig">Fig.2</xref>
B). We speculated that T cell responses were also generated at the same time. As expected, significantly more SFCs of both IFN-γ and IL-4 were detected in splenocytes from pcDNA3.1-S1 treated mice (
<xref rid="f0015" ref-type="fig">Fig.3</xref>
A and B) than controls. The frequencies of IFN-γ-expressing CD4
<sup>+</sup>
and CD8
<sup>+</sup>
T cells in the mice injected with pcDNA3.1-S1 was significantly higher after MERS RBD stimulation (
<xref rid="f0015" ref-type="fig">Fig.3</xref>
C and D), and similar results were observed for IL-4-expressing CD4
<sup>+</sup>
and CD8
<sup>+</sup>
T cells (
<xref rid="f0015" ref-type="fig">Fig.3</xref>
E and F). These results demonstrate that the pcDNA3.1-S1 DNA vaccine markedly increased the frequencies of antigen-specific CD4
<sup>+</sup>
and CD8
<sup>+</sup>
T cells.
<fig id="f0015">
<label>Fig. 3</label>
<caption>
<p>DNA vaccine-induced antigen-specific cellular immune responses. Splenocytes were isolated two weeks following the second immunization and stimulated with or without the purified RBD protein. The S1-specific IFN-γ and IL-4 activities in splenocytes were evaluated using commercial ELISpot kits. SFCs secreting IL-4 (A) and IFN-γ (B) were enumerated in an automated ELISpot reader. The ability of the pcDNA3.1-S1 DNA vaccine to induce IFN-γ- and IL-4-expression in antigen-specific CD4
<sup>+</sup>
and CD8
<sup>+</sup>
T cells was analyzed by intracellular cytokine staining. Cells were stained with combined mouse anti-CD4-FITC and anti-CD8-PE, anti-IFN-γ-PE-Cy7 and anti-IL-4-PE-Cy3 monoclonal antibodies. CD4
<sup>+</sup>
T cells expressing IFN-γ (C) and IL-4 (D) and CD8
<sup>+</sup>
T cells expressing IFN-γ (E) and IL-4 (F) were analyzed in a FACSAria™ Cell Sorter. n = 3 mice/group/time point. Data are shown as the means ± SDs and were analyzed by unpaired Student’s
<italic>t</italic>
test. (
<sup>*</sup>
<italic>P</italic>
 < 0.05,
<sup>**</sup>
<italic>P</italic>
 < 0.01,
<sup>***</sup>
<italic>P</italic>
 < 0.001).</p>
</caption>
<graphic xlink:href="gr3_lrg"></graphic>
</fig>
</p>
</sec>
<sec id="s0090">
<label>3.4</label>
<title>DNA vaccine-enhanced splenocyte cytokine secretion</title>
<p id="p0110">To further investigate the antigen-specific cellular immune responses induced by pcDNA3.1-S1 DNA vaccine, cytokines secreted by splenocytes were assayed by ELISA. Levels of IL-2, IL-4, IL-10 and IFN-γ of splenocytes in pcDNA3.1-S1 immunized group were all significantly higher than those in the controls (
<xref rid="f0020" ref-type="fig">Fig.4</xref>
A–D). These data demonstrate that pcDNA3.1-S1 DNA vaccine enhanced the secretion of both type 1 cytokines such as IL-2 and IFN-γ, and type 2 cytokines such as IL-4 and IL-10 in splenocytes.
<fig id="f0020">
<label>Fig. 4</label>
<caption>
<p>DNA vaccine-enhanced splenocyte cytokine secretion. Splenocytes were isolated two weeks following the second immunization and stimulated with the purified RBD protein for 48 h. Levels of IL-2 (A), IL-4 (B), IL-10 (C) and IFN-γ (D) secreted by splenocytes were measured using commercial ELISA kits. n = 3 mice/group/time point. Data are shown as the means ± SDs and were analyzed by unpaired Student’s
<italic>t</italic>
test. (
<sup>**</sup>
<italic>P</italic>
 < 0.01,
<sup>***</sup>
<italic>P</italic>
 < 0.001,
<sup>****</sup>
<italic>P</italic>
 < 0.0001).</p>
</caption>
<graphic xlink:href="gr4_lrg"></graphic>
</fig>
</p>
</sec>
<sec id="s0095">
<label>3.5</label>
<title>Protection of MERS-CoV infected Ad5-hDPP4-transduced mice by DNA vaccine or immune serum transfer</title>
<p id="p0115">The Ad5-hDPP4-transduced mouse model was used to evaluate the protective immunity of the DNA vaccine and the efficacy of immune serum containing neutralizing antibodies against MERS-CoV as determined by virus load in the infected lungs. Both the pcDNA3.1-S1 DNA vaccine and immune serum from pcDNA3.1-S1 vaccinated mice accelerated virus clearance. By day 3, virus titers had decreased 1–2 logs and by day 5, virus had been cleared in both groups (
<xref rid="f0025" ref-type="fig">Fig.5</xref>
A and B).
<fig id="f0025">
<label>Fig. 5</label>
<caption>
<p>Protection of MERS-CoV infected Ad5-hDPP4-transduced mice by DNA vaccine or immune serum transfer. Mice were injected intramuscularly with 100 μg pcDNA3.1-Empty or pcDNA3.1-S1 in 100 μL PBS on week 0, 3, 6. Serum samples were harvested 1-week post the third immunization. DNA vaccine immunized mice (A) or mice receiving 200 μL of immune serum one day before infection (B) were transduced with Ad5-hDPP4 and infected intranasally with 1 × 10
<sup>5</sup>
 PFU MERS-CoV. Virus titers in the lungs were measured at the indicated time points. Titers are expressed as PFU/g tissue. n = 3 mice/group/time point. Data are shown as the means ± SEM and were analyzed by unpaired Student’s
<italic>t</italic>
test. (
<sup>*</sup>
<italic>P</italic>
 < 0.05).</p>
</caption>
<graphic xlink:href="gr5_lrg"></graphic>
</fig>
</p>
</sec>
</sec>
<sec id="s0100">
<label>4</label>
<title>Discussion</title>
<p id="p0120">Here, we aimed to develop a new vaccine able to elicit potent immune responses against MERS-CoV infection. Considering that currently no studies have compared the immunogenicity of different S gene fragments in MERS DNA vaccines, we choose three mutants of MERS-CoV S protein as antigens: full-length S, SΔCD, and extracellular domain S1. Of the three DNA vaccines (pcDNA3.1-S, pcDNA3.1-SΔCD, and pcDNA3.1-S1) constructed, pcDNA3.1-S1 DNA vaccine was selected for further study since it elicited the highest antibody titer in immunized mice and contained major neutralizing epitopes
<xref rid="b0135" ref-type="bibr">[27]</xref>
, which made it an effective and safe target for MERS vaccine development. Similar to our DNA-based vaccine, an adenovirus 5 (Ad5) vector-based vaccine, Ad5.MERS-S1 expressing the MERS-CoV S1 extracellular domain, induced stronger neutralizing antibody responses when compared to the vector expressing full-length S
<xref rid="b0040" ref-type="bibr">[8]</xref>
. This may be because the S1 fragment that can induce humoral immune responses more efficiently than full length S since it is soluble and can easily be taken up by B cells in lymph node follicles
<xref rid="b0170" ref-type="bibr">[34]</xref>
,
<xref rid="b0175" ref-type="bibr">[35]</xref>
,
<xref rid="b0180" ref-type="bibr">[36]</xref>
,
<xref rid="b0185" ref-type="bibr">[37]</xref>
,
<xref rid="b0190" ref-type="bibr">[38]</xref>
. Of note, pcDNA3.1-SΔCD immunization induced a slightly higher antibody response in mice than did pcDNA3.1-S, possibly because the SΔCD mutant still contains the transmembrane region anchoring the S protein to the membrane. Previous studies have shown that partial or complete removal of the SARS-CoV S cytoplasmic domain, or removal of the transmembrane domain along with the cytoplasmic domain from a DNA vaccine candidate increased the neutralizing antibody response in mice, indicating that removal of the cytoplasmic domain may result in a more native and more functionally relevant structure
<italic>in vivo</italic>
<xref rid="b0190" ref-type="bibr">[38]</xref>
. We considered that besides the influence of expression level differences, such modifications of the MERS-CoV S protein may also be responsible for the increased generation of a neutralizing antibody response.</p>
<p id="p0125">Our data show that the pcDNA3.1-S1 DNA vaccine induced antigen-specific immune responses (IgG production, neutralizing antibodies generation, and cytokines secretion) in mice. High levels of neutralizing antibodies were generated following three immunizations without adjuvant. Furthermore, both pcDNA3.1-S1 DNA vaccination and administration of immune serum from pcDNA3.1-S1 vaccinated mice accelerated virus clearance in the lungs, suggesting that neutralizing antibodies against MERS-CoV S1 protein were protective and the immune serum transfer did not mediate an antibody-dependent enhancement of infection in this Ad5-hDPP4-transduced mouse model (
<xref rid="f0025" ref-type="fig">Fig.5</xref>
B). We chose 12 days post the third immunization to challenge our mice because we just had limited access to BSL-3 labs, and we speculated that since the antibody response reached the plateau and T cell response is probably at the peak at this time point as well, they would not diminish so quickly after the third immunization. However, this could be a potential limitation. Long-term protection experiments are still required to evaluate the efficacy of this vaccine.</p>
<p id="p0130">Since the emergence of MERS in 2012, some adaptive evolution of MERS-CoV strains has been reported
<xref rid="b0195" ref-type="bibr">[39]</xref>
,
<xref rid="b0200" ref-type="bibr">[40]</xref>
. In the current study, the MERS-CoV S gene sequence from the Al-Hasa_15_2013 strain was selected for its high homology with other published strains. It is worth noting that in challenge experiments, DNA vaccine immunization protected mice infected with the MERS-CoV EMC strain, indicating that the pcDNA3.1-S1 DNA vaccine did indeed induce protective immunity against different MERS-CoV strains.</p>
<p id="p0135">Overall, we constructed and examined a DNA vaccine encoding MERS-CoV S1 protein in this study. Our data clearly demonstrate that the pcDNA3.1-S1 DNA vaccine induced a potent and protective immune response in mice, with the vaccinated animals showing no visible signs of adverse effects. While the protective efficacy evaluation of pcDNA3.1-S1 DNA vaccine in non-human primates as well as camels must be considered in a future study, our results strongly support the use of the S1 protein of MERS-CoV for gene-based vaccine development, as an effective target able to elicit antigen-specific humoral and cellular immune responses.</p>
</sec>
<sec id="s0105">
<title>Author contributions</title>
<p id="p0140">SY, JZ and XX designed the experiments. HC, XW, JZ, CW, WG and SP performed the experiment. HC, JZ, HW and SP analyzed the data. HC and XW wrote the manuscript. HC, XZ, JZ, CW and HW reviewed the manuscript.</p>
</sec>
<sec id="s0110">
<title>Conflict of interest statement</title>
<p id="p0145">The authors declared no conflict of interest.</p>
</sec>
</body>
<back>
<ref-list id="bi005">
<title>References</title>
<ref id="b0005">
<label>1</label>
<element-citation publication-type="journal" id="h0005">
<person-group person-group-type="author">
<name>
<surname>Zaki</surname>
<given-names>A.M.</given-names>
</name>
<name>
<surname>van Boheemen</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Bestebroer</surname>
<given-names>T.M.</given-names>
</name>
<name>
<surname>Osterhaus</surname>
<given-names>A.D.</given-names>
</name>
<name>
<surname>Fouchier</surname>
<given-names>R.A.</given-names>
</name>
</person-group>
<article-title>Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia</article-title>
<source>N Engl J Med</source>
<volume>367</volume>
<issue>19</issue>
<year>2012</year>
<fpage>1814</fpage>
<lpage>1820</lpage>
<pub-id pub-id-type="pmid">23075143</pub-id>
</element-citation>
</ref>
<ref id="b0010">
<label>2</label>
<element-citation publication-type="journal" id="h0010">
<person-group person-group-type="author">
<name>
<surname>de Groot</surname>
<given-names>R.J.</given-names>
</name>
<name>
<surname>Baker</surname>
<given-names>S.C.</given-names>
</name>
<name>
<surname>Baric</surname>
<given-names>R.S.</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>C.S.</given-names>
</name>
<name>
<surname>Drosten</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Enjuanes</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the coronavirus study group</article-title>
<source>J Virol</source>
<volume>87</volume>
<issue>14</issue>
<year>2013</year>
<fpage>7790</fpage>
<lpage>7792</lpage>
<pub-id pub-id-type="pmid">23678167</pub-id>
</element-citation>
</ref>
<ref id="b0015">
<label>3</label>
<element-citation publication-type="journal" id="h0015">
<person-group person-group-type="author">
<name>
<surname>Assiri</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>McGeer</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Perl</surname>
<given-names>T.M.</given-names>
</name>
<name>
<surname>Price</surname>
<given-names>C.S.</given-names>
</name>
<name>
<surname>Al Rabeeah</surname>
<given-names>A.A.</given-names>
</name>
<name>
<surname>Cummings</surname>
<given-names>D.A.</given-names>
</name>
</person-group>
<article-title>Hospital outbreak of Middle East respiratory syndrome coronavirus</article-title>
<source>N Engl J Med</source>
<volume>369</volume>
<issue>5</issue>
<year>2013</year>
<fpage>407</fpage>
<lpage>416</lpage>
<pub-id pub-id-type="pmid">23782161</pub-id>
</element-citation>
</ref>
<ref id="b0020">
<label>4</label>
<element-citation publication-type="journal" id="h0020">
<person-group person-group-type="author">
<name>
<surname>Ki</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>2015 MERS outbreak in Korea: hospital-to-hospital transmission</article-title>
<source>Epidemiol Health</source>
<volume>37</volume>
<year>2015</year>
<fpage>e2015033</fpage>
<pub-id pub-id-type="pmid">26212508</pub-id>
</element-citation>
</ref>
<ref id="b0025">
<label>5</label>
<element-citation publication-type="journal" id="h0025">
<person-group person-group-type="author">
<name>
<surname>Vijay</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Perlman</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Middle East respiratory syndrome and severe acute respiratory syndrome</article-title>
<source>Curr Opin Virol</source>
<volume>16</volume>
<year>2016</year>
<fpage>70</fpage>
<lpage>76</lpage>
<pub-id pub-id-type="pmid">26855039</pub-id>
</element-citation>
</ref>
<ref id="b0030">
<label>6</label>
<element-citation publication-type="journal" id="h0030">
<person-group person-group-type="author">
<name>
<surname>Song</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Fux</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Provacia</surname>
<given-names>L.B.</given-names>
</name>
<name>
<surname>Volz</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Eickmann</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Becker</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Middle East respiratory syndrome coronavirus spike protein delivered by modified vaccinia virus Ankara efficiently induces virus-neutralizing antibodies</article-title>
<source>J Virol</source>
<volume>87</volume>
<issue>21</issue>
<year>2013</year>
<fpage>11950</fpage>
<lpage>11954</lpage>
<pub-id pub-id-type="pmid">23986586</pub-id>
</element-citation>
</ref>
<ref id="b0035">
<label>7</label>
<element-citation publication-type="journal" id="h0035">
<person-group person-group-type="author">
<name>
<surname>Volz</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Kupke</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Song</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Jany</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Fux</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Shams-Eldin</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Protective efficacy of recombinant modified vaccinia virus Ankara delivering Middle East respiratory syndrome coronavirus spike glycoprotein</article-title>
<source>J Virol</source>
<volume>89</volume>
<issue>16</issue>
<year>2015</year>
<fpage>8651</fpage>
<lpage>8656</lpage>
<pub-id pub-id-type="pmid">26018172</pub-id>
</element-citation>
</ref>
<ref id="b0040">
<label>8</label>
<element-citation publication-type="journal" id="h0040">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Okada</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Kenniston</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Raj</surname>
<given-names>V.S.</given-names>
</name>
<name>
<surname>AlHajri</surname>
<given-names>M.M.</given-names>
</name>
<name>
<surname>Farag</surname>
<given-names>E.A.</given-names>
</name>
</person-group>
<article-title>Immunogenicity of an adenoviral-based Middle East respiratory syndrome coronavirus vaccine in BALB/c mice</article-title>
<source>Vaccine</source>
<volume>32</volume>
<issue>45</issue>
<year>2014</year>
<fpage>5975</fpage>
<lpage>5982</lpage>
<pub-id pub-id-type="pmid">25192975</pub-id>
</element-citation>
</ref>
<ref id="b0045">
<label>9</label>
<element-citation publication-type="journal" id="h0045">
<person-group person-group-type="author">
<name>
<surname>Guo</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Deng</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Lan</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Zou</surname>
<given-names>X.</given-names>
</name>
</person-group>
<article-title>Systemic and mucosal immunity in mice elicited by a single immunization with human adenovirus type 5 or 41 vector-based vaccines carrying the spike protein of Middle East respiratory syndrome coronavirus</article-title>
<source>Immunology</source>
<volume>145</volume>
<issue>4</issue>
<year>2015</year>
<fpage>476</fpage>
<lpage>484</lpage>
<pub-id pub-id-type="pmid">25762305</pub-id>
</element-citation>
</ref>
<ref id="b0050">
<label>10</label>
<element-citation publication-type="journal" id="h0050">
<person-group person-group-type="author">
<name>
<surname>Malczyk</surname>
<given-names>A.H.</given-names>
</name>
<name>
<surname>Kupke</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Prüfer</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Scheuplein</surname>
<given-names>V.A.</given-names>
</name>
<name>
<surname>Hutzler</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Kreuz</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>A highly immunogenic and protective Middle East respiratory syndrome coronavirus vaccine based on a recombinant measles virus vaccine platform</article-title>
<source>J Virol</source>
<volume>89</volume>
<issue>22</issue>
<year>2015</year>
<fpage>11654</fpage>
<lpage>11667</lpage>
<pub-id pub-id-type="pmid">26355094</pub-id>
</element-citation>
</ref>
<ref id="b0055">
<label>11</label>
<element-citation publication-type="journal" id="h0055">
<person-group person-group-type="author">
<name>
<surname>Haagmans</surname>
<given-names>B.L.</given-names>
</name>
<name>
<surname>van den Brand</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Raj</surname>
<given-names>V.S.</given-names>
</name>
<name>
<surname>Volz</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Wohlsein</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Smits</surname>
<given-names>S.L.</given-names>
</name>
</person-group>
<article-title>An orthopoxvirus-based vaccine reduces virus excretion after MERS-CoV infection in dromedary camels</article-title>
<source>Science</source>
<volume>351</volume>
<issue>6268</issue>
<year>2016</year>
<fpage>77</fpage>
<lpage>81</lpage>
<pub-id pub-id-type="pmid">26678878</pub-id>
</element-citation>
</ref>
<ref id="b0060">
<label>12</label>
<element-citation publication-type="journal" id="h0060">
<person-group person-group-type="author">
<name>
<surname>Ma</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Tao</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Tseng</surname>
<given-names>C.T.</given-names>
</name>
</person-group>
<article-title>Searching for an ideal vaccine candidate among different MERS coronavirus receptor-binding fragments–the importance of immunofocusing in subunit vaccine design</article-title>
<source>Vaccine</source>
<volume>32</volume>
<issue>46</issue>
<year>2014</year>
<fpage>6170</fpage>
<lpage>6176</lpage>
<pub-id pub-id-type="pmid">25240756</pub-id>
</element-citation>
</ref>
<ref id="b0065">
<label>13</label>
<element-citation publication-type="journal" id="h0065">
<person-group person-group-type="author">
<name>
<surname>Ma</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Tao</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Tseng</surname>
<given-names>C.T.</given-names>
</name>
</person-group>
<article-title>Intranasal vaccination with recombinant receptor-binding domain of MERS-CoV spike protein induces much stronger local mucosal immune responses than subcutaneous immunization: implication for designing novel mucosal MERS vaccines</article-title>
<source>Vaccine</source>
<volume>32</volume>
<issue>18</issue>
<year>2014</year>
<fpage>2100</fpage>
<lpage>2108</lpage>
<pub-id pub-id-type="pmid">24560617</pub-id>
</element-citation>
</ref>
<ref id="b0070">
<label>14</label>
<element-citation publication-type="journal" id="h0070">
<person-group person-group-type="author">
<name>
<surname>Lan</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Deng</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>X.</given-names>
</name>
</person-group>
<article-title>Tailoring subunit vaccine immunity with adjuvant combinations and delivery routes using the Middle East respiratory coronavirus (MERS-CoV) receptor-binding domain as an antigen</article-title>
<source>PLoS ONE</source>
<volume>9</volume>
<issue>11</issue>
<year>2014</year>
<fpage>e112602</fpage>
<pub-id pub-id-type="pmid">25405618</pub-id>
</element-citation>
</ref>
<ref id="b0075">
<label>15</label>
<element-citation publication-type="journal" id="h0075">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Channappanavar</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Garron</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Identification of an ideal adjuvant for receptor-binding domain-based subunit vaccines against Middle East respiratory syndrome coronavirus</article-title>
<source>Cell Mol Immunol</source>
<volume>13</volume>
<issue>2</issue>
<year>2016</year>
<fpage>180</fpage>
<lpage>190</lpage>
<pub-id pub-id-type="pmid">25640653</pub-id>
</element-citation>
</ref>
<ref id="b0080">
<label>16</label>
<element-citation publication-type="journal" id="h0080">
<person-group person-group-type="author">
<name>
<surname>Lan</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Yao</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Deng</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>W.</given-names>
</name>
</person-group>
<article-title>Recombinant receptor binding domain protein induces partial protective immunity in rhesus macaques against Middle East respiratory syndrome coronavirus challenge</article-title>
<source>EBioMedicine</source>
<volume>2</volume>
<issue>10</issue>
<year>2015</year>
<fpage>1438</fpage>
<lpage>1446</lpage>
<pub-id pub-id-type="pmid">26629538</pub-id>
</element-citation>
</ref>
<ref id="b0085">
<label>17</label>
<element-citation publication-type="journal" id="h0085">
<person-group person-group-type="author">
<name>
<surname>Tang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Tao</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Tseng</surname>
<given-names>C.T.</given-names>
</name>
</person-group>
<article-title>Optimization of antigen dose for a receptor-binding domain-based subunit vaccine against MERS coronavirus</article-title>
<source>Hum Vaccin Immunother</source>
<volume>11</volume>
<issue>5</issue>
<year>2015</year>
<fpage>1244</fpage>
<lpage>1250</lpage>
<pub-id pub-id-type="pmid">25874632</pub-id>
</element-citation>
</ref>
<ref id="b0090">
<label>18</label>
<element-citation publication-type="journal" id="h0090">
<person-group person-group-type="author">
<name>
<surname>Coleman</surname>
<given-names>C.M.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Y.V.</given-names>
</name>
<name>
<surname>Mu</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Taylor</surname>
<given-names>J.K.</given-names>
</name>
<name>
<surname>Massare</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Flyer</surname>
<given-names>D.C.</given-names>
</name>
</person-group>
<article-title>Purified coronavirus spike protein nanoparticles induce coronavirus neutralizing antibodies in mice</article-title>
<source>Vaccine</source>
<volume>32</volume>
<year>2014</year>
<fpage>3169</fpage>
<lpage>3174</lpage>
<pub-id pub-id-type="pmid">24736006</pub-id>
</element-citation>
</ref>
<ref id="b0095">
<label>19</label>
<element-citation publication-type="journal" id="h0095">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Zheng</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Gai</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>MERS-CoV virus-like particles produced in insect cells induce specific humoural and cellular immunity in rhesus macaques</article-title>
<source>Oncotarget</source>
<year>2016</year>
</element-citation>
</ref>
<ref id="b0100">
<label>20</label>
<element-citation publication-type="journal" id="h0100">
<person-group person-group-type="author">
<name>
<surname>Muthumani</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Falzarano</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Reuschel</surname>
<given-names>E.L.</given-names>
</name>
<name>
<surname>Tingey</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Flingai</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Villarreal</surname>
<given-names>D.O.</given-names>
</name>
</person-group>
<article-title>A synthetic consensus anti-spike protein DNA vaccine induces protective immunity against Middle East respiratory syndrome coronavirus in nonhuman primates</article-title>
<source>Sci Transl Med</source>
<volume>7</volume>
<issue>301</issue>
<year>2015</year>
<comment>301ra132</comment>
</element-citation>
</ref>
<ref id="b0105">
<label>21</label>
<element-citation publication-type="journal" id="h0105">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Joyce</surname>
<given-names>M.G.</given-names>
</name>
<name>
<surname>Modjarrad</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Leung</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Evaluation of candidate vaccine approaches for MERS-CoV</article-title>
<source>Nat Commun</source>
<volume>6</volume>
<year>2015</year>
<fpage>7712</fpage>
<pub-id pub-id-type="pmid">26218507</pub-id>
</element-citation>
</ref>
<ref id="b0110">
<label>22</label>
<element-citation publication-type="journal" id="h0110">
<person-group person-group-type="author">
<name>
<surname>Almazán</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>DeDiego</surname>
<given-names>M.L.</given-names>
</name>
<name>
<surname>Sola</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Zuñiga</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Nieto-Torres</surname>
<given-names>J.L.</given-names>
</name>
<name>
<surname>Marquez-Jurado</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Engineering a replication-competent, propagation-defective Middle East respiratory syndrome coronavirus as a vaccine candidate</article-title>
<source>Mbio</source>
<volume>4</volume>
<issue>5</issue>
<year>2013</year>
<comment>e00650-13</comment>
</element-citation>
</ref>
<ref id="b0115">
<label>23</label>
<element-citation publication-type="journal" id="h0115">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>M.A.</given-names>
</name>
</person-group>
<article-title>DNA vaccines: a review</article-title>
<source>J Intern Med</source>
<volume>253</volume>
<issue>4</issue>
<year>2003</year>
<fpage>402</fpage>
<lpage>410</lpage>
<pub-id pub-id-type="pmid">12653868</pub-id>
</element-citation>
</ref>
<ref id="b0120">
<label>24</label>
<element-citation publication-type="journal" id="h0120">
<person-group person-group-type="author">
<name>
<surname>Martin</surname>
<given-names>J.E.</given-names>
</name>
<name>
<surname>Louder</surname>
<given-names>M.K.</given-names>
</name>
<name>
<surname>Holman</surname>
<given-names>L.A.</given-names>
</name>
<name>
<surname>Gordon</surname>
<given-names>I.J.</given-names>
</name>
<name>
<surname>Enama</surname>
<given-names>M.E.</given-names>
</name>
<name>
<surname>Larkin</surname>
<given-names>B.D.</given-names>
</name>
</person-group>
<article-title>A SARS DNA vaccine induces neutralizing antibody and cellular immune responses in healthy adults in a Phase I clinical trial</article-title>
<source>Vaccine</source>
<volume>26</volume>
<issue>50</issue>
<year>2008</year>
<fpage>6338</fpage>
<lpage>6343</lpage>
<pub-id pub-id-type="pmid">18824060</pub-id>
</element-citation>
</ref>
<ref id="b0125">
<label>25</label>
<element-citation publication-type="journal" id="h0125">
<person-group person-group-type="author">
<name>
<surname>Lu</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Tao</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Zheng</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Z.</given-names>
</name>
</person-group>
<article-title>Humoral and cellular immune responses induced by 3a DNA vaccines against severe acute respiratory syndrome (SARS) or SARS-like coronavirus in mice</article-title>
<source>Clin Vaccine Immunol</source>
<volume>16</volume>
<issue>1</issue>
<year>2009</year>
<fpage>73</fpage>
<lpage>77</lpage>
<pub-id pub-id-type="pmid">18987164</pub-id>
</element-citation>
</ref>
<ref id="b0130">
<label>26</label>
<element-citation publication-type="journal" id="h0130">
<person-group person-group-type="author">
<name>
<surname>Banik</surname>
<given-names>G.R.</given-names>
</name>
<name>
<surname>Khandaker</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Rashid</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Middle East respiratory syndrome coronavirus “MERS-CoV”: current knowledge gaps</article-title>
<source>Paediatr Respir Rev</source>
<volume>16</volume>
<issue>3</issue>
<year>2015</year>
<fpage>197</fpage>
<lpage>202</lpage>
<pub-id pub-id-type="pmid">26002405</pub-id>
</element-citation>
</ref>
<ref id="b0135">
<label>27</label>
<element-citation publication-type="journal" id="h0135">
<person-group person-group-type="author">
<name>
<surname>Du</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Tai</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Vaccines for the prevention against the threat of MERS-CoV</article-title>
<source>Expert Rev Vaccines</source>
<volume>15</volume>
<issue>9</issue>
<year>2016</year>
<fpage>1123</fpage>
<lpage>1134</lpage>
<pub-id pub-id-type="pmid">26985862</pub-id>
</element-citation>
</ref>
<ref id="b0140">
<label>28</label>
<element-citation publication-type="journal" id="h0140">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Du</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>Current advancements and potential strategies in the development of MERS-CoV vaccines</article-title>
<source>Expert Rev Vaccines</source>
<volume>13</volume>
<issue>6</issue>
<year>2014</year>
<fpage>761</fpage>
<lpage>774</lpage>
<pub-id pub-id-type="pmid">24766432</pub-id>
</element-citation>
</ref>
<ref id="b0145">
<label>29</label>
<element-citation publication-type="journal" id="h0145">
<person-group person-group-type="author">
<name>
<surname>Raj</surname>
<given-names>V.S.</given-names>
</name>
<name>
<surname>Mou</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Smits</surname>
<given-names>S.L.</given-names>
</name>
<name>
<surname>Dekkers</surname>
<given-names>D.H.</given-names>
</name>
<name>
<surname>Müller</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Dijkman</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC</article-title>
<source>Nature</source>
<volume>495</volume>
<issue>7440</issue>
<year>2013</year>
<fpage>251</fpage>
<lpage>254</lpage>
<pub-id pub-id-type="pmid">23486063</pub-id>
</element-citation>
</ref>
<ref id="b0150">
<label>30</label>
<element-citation publication-type="journal" id="h0150">
<person-group person-group-type="author">
<name>
<surname>Gao</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Qi</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Deng</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>Structure of the fusion core and inhibition of fusion by a heptad-repeat peptide derived from the S protein of MERS-CoV</article-title>
<source>J Virol</source>
<volume>87</volume>
<issue>24</issue>
<year>2013</year>
<fpage>13134</fpage>
<lpage>13140</lpage>
<pub-id pub-id-type="pmid">24067982</pub-id>
</element-citation>
</ref>
<ref id="b0155">
<label>31</label>
<element-citation publication-type="journal" id="h0155">
<person-group person-group-type="author">
<name>
<surname>Du</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>He</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Zheng</surname>
<given-names>B.J.</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>The spike protein of SARS-CoV –a target for vaccine and therapeutic development</article-title>
<source>Nat Rev Microbiol</source>
<volume>7</volume>
<issue>3</issue>
<year>2009</year>
<fpage>226</fpage>
<lpage>236</lpage>
<pub-id pub-id-type="pmid">19198616</pub-id>
</element-citation>
</ref>
<ref id="b0160">
<label>32</label>
<element-citation publication-type="journal" id="h0160">
<person-group person-group-type="author">
<name>
<surname>Du</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Middle East respiratory syndrome: current status and future prospects for vaccine development</article-title>
<source>Expert Opin Biol Ther</source>
<volume>15</volume>
<issue>11</issue>
<year>2015</year>
<fpage>1647</fpage>
<lpage>1651</lpage>
<pub-id pub-id-type="pmid">26414077</pub-id>
</element-citation>
</ref>
<ref id="b0165">
<label>33</label>
<element-citation publication-type="journal" id="h0165">
<person-group person-group-type="author">
<name>
<surname>Zhao</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Wohlford-Lenane</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Agnihothram</surname>
<given-names>S.S.</given-names>
</name>
<name>
<surname>Fett</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Rapid generation of a mouse model for Middle East respiratory syndrome</article-title>
<source>Proc Natl Acad Sci U S A</source>
<volume>111</volume>
<issue>13</issue>
<year>2014</year>
<fpage>4970</fpage>
<lpage>4975</lpage>
<pub-id pub-id-type="pmid">24599590</pub-id>
</element-citation>
</ref>
<ref id="b0170">
<label>34</label>
<element-citation publication-type="journal" id="h0170">
<person-group person-group-type="author">
<name>
<surname>Pape</surname>
<given-names>K.A.</given-names>
</name>
<name>
<surname>Catron</surname>
<given-names>D.M.</given-names>
</name>
<name>
<surname>Itano</surname>
<given-names>A.A.</given-names>
</name>
<name>
<surname>Jenkins</surname>
<given-names>M.K.</given-names>
</name>
</person-group>
<article-title>The humoral immune response is initiated in lymph nodes by B Cells that acquire soluble antigen directly in the follicles</article-title>
<source>Immunity</source>
<volume>26</volume>
<issue>4</issue>
<year>2007</year>
<fpage>491</fpage>
<lpage>502</lpage>
<pub-id pub-id-type="pmid">17379546</pub-id>
</element-citation>
</ref>
<ref id="b0175">
<label>35</label>
<element-citation publication-type="journal" id="h0175">
<person-group person-group-type="author">
<name>
<surname>Bajénoff</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Germain</surname>
<given-names>R.N.</given-names>
</name>
</person-group>
<article-title>B-cell follicle development remodels the conduit system and allows soluble antigen delivery to follicular dendritic cells</article-title>
<source>Blood</source>
<volume>114</volume>
<issue>24</issue>
<year>2009</year>
<fpage>4989</fpage>
<lpage>4997</lpage>
<pub-id pub-id-type="pmid">19713459</pub-id>
</element-citation>
</ref>
<ref id="b0180">
<label>36</label>
<element-citation publication-type="journal" id="h0180">
<person-group person-group-type="author">
<name>
<surname>De Becker</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Moulin</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Tielemans</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>De Mattia</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Urbain</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Leo</surname>
<given-names>O.</given-names>
</name>
</person-group>
<article-title>Regulation of T helper cell differentiation
<italic>in vivo</italic>
by soluble and membrane proteins provided by antigen-presenting cells</article-title>
<source>Eur J Immunol</source>
<volume>28</volume>
<issue>10</issue>
<year>1998</year>
<fpage>3161</fpage>
<lpage>3171</lpage>
<pub-id pub-id-type="pmid">9808185</pub-id>
</element-citation>
</ref>
<ref id="b0185">
<label>37</label>
<element-citation publication-type="journal" id="h0185">
<person-group person-group-type="author">
<name>
<surname>Enriquez-Rincon</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Klaus</surname>
<given-names>G.G.</given-names>
</name>
</person-group>
<article-title>Differing effects of monoclonal anti-hapten antibodies on humoral responses to soluble or particulate antigens</article-title>
<source>Immunology</source>
<volume>52</volume>
<issue>1</issue>
<year>1984</year>
<fpage>129</fpage>
<lpage>136</lpage>
<pub-id pub-id-type="pmid">6715016</pub-id>
</element-citation>
</ref>
<ref id="b0190">
<label>38</label>
<element-citation publication-type="journal" id="h0190">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>Z.Y.</given-names>
</name>
<name>
<surname>Kong</surname>
<given-names>W.P.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Roberts</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Murphy</surname>
<given-names>B.R.</given-names>
</name>
<name>
<surname>Subbarao</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice</article-title>
<source>Nature</source>
<volume>428</volume>
<issue>6982</issue>
<year>2004</year>
<fpage>561</fpage>
<lpage>564</lpage>
<pub-id pub-id-type="pmid">15024391</pub-id>
</element-citation>
</ref>
<ref id="b0195">
<label>39</label>
<element-citation publication-type="journal" id="h0195">
<person-group person-group-type="author">
<name>
<surname>Forni</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Cagliani</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Mozzi</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Pozzoli</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Al-Daghri</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Clerici</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Extensive positive selection drives the evolution of nonstructural proteins in lineage C
<italic>Betacoronaviruses</italic>
</article-title>
<source>J Virol</source>
<volume>90</volume>
<issue>7</issue>
<year>2016</year>
<fpage>3627</fpage>
<lpage>3639</lpage>
<pub-id pub-id-type="pmid">26792741</pub-id>
</element-citation>
</ref>
<ref id="b0200">
<label>40</label>
<element-citation publication-type="journal" id="h0200">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>D.W.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>Y.J.</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>S.H.</given-names>
</name>
<name>
<surname>Yun</surname>
<given-names>M.R.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>J.S.</given-names>
</name>
<name>
<surname>Kang</surname>
<given-names>H.J.</given-names>
</name>
</person-group>
<article-title>Variations in spike glycoprotein gene of MERS-CoV, South Korea, 2015</article-title>
<source>Emerg Infect Dis</source>
<volume>22</volume>
<issue>1</issue>
<year>2016</year>
<fpage>100</fpage>
<lpage>104</lpage>
<pub-id pub-id-type="pmid">26691200</pub-id>
</element-citation>
</ref>
</ref-list>
<ack id="ak005">
<title>Acknowledgments</title>
<p>This work was supported by the open project of the
<funding-source id="gp005">State Key Laboratory of Respiratory Disease</funding-source>
, China (Grant No. 2014SKRD-001); the
<funding-source id="gp010">Municipal Healthcare Joint-Innovation Major Project of Guangzhou</funding-source>
, China (Grant No. 201604020011 to J.Z.) and the
<funding-source id="gp015">National Institutes of Health</funding-source>
, United States (Grant No. RO1 AI091322 and PO1 AI060699 to S.P.); and the
<funding-source id="gp020">National Science and Technology Pillar Program</funding-source>
during the Twelfth Five-year Plan Period, China (Grant No. 2013BAD12B04).</p>
</ack>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001169 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 001169 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:5411280
   |texte=   DNA vaccine encoding Middle East respiratory syndrome coronavirus S1 protein induces protective immune responses in mice
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:28314561" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021