Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 0011430 ( Pmc/Corpus ); précédent : 0011429; suivant : 0011431 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Rapid multiplex microfiber-based immunoassay for anti-MERS-CoV antibody detection</title>
<author>
<name sortKey="Hoy, Carlton F O" sort="Hoy, Carlton F O" uniqKey="Hoy C" first="Carlton F. O." last="Hoy">Carlton F. O. Hoy</name>
<affiliation>
<nlm:aff id="aff1">Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kushiro, Keiichiro" sort="Kushiro, Keiichiro" uniqKey="Kushiro K" first="Keiichiro" last="Kushiro">Keiichiro Kushiro</name>
<affiliation>
<nlm:aff id="aff1">Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yamaoka, Yutaro" sort="Yamaoka, Yutaro" uniqKey="Yamaoka Y" first="Yutaro" last="Yamaoka">Yutaro Yamaoka</name>
<affiliation>
<nlm:aff id="aff2">Department of Microbiology, School of Medicine, Yokohama City University, Yokohama, Japan</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">Isehara Research Laboratory, Technology and Development Division, Kanto Chemical Co., Inc., Isehara, Japan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ryo, Akihide" sort="Ryo, Akihide" uniqKey="Ryo A" first="Akihide" last="Ryo">Akihide Ryo</name>
<affiliation>
<nlm:aff id="aff2">Department of Microbiology, School of Medicine, Yokohama City University, Yokohama, Japan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Takai, Madoka" sort="Takai, Madoka" uniqKey="Takai M" first="Madoka" last="Takai">Madoka Takai</name>
<affiliation>
<nlm:aff id="aff1">Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">32289017</idno>
<idno type="pmc">7104066</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7104066</idno>
<idno type="RBID">PMC:7104066</idno>
<idno type="doi">10.1016/j.sbsr.2019.100304</idno>
<date when="2019">2019</date>
<idno type="wicri:Area/Pmc/Corpus">001143</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">001143</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Rapid multiplex microfiber-based immunoassay for anti-MERS-CoV antibody detection</title>
<author>
<name sortKey="Hoy, Carlton F O" sort="Hoy, Carlton F O" uniqKey="Hoy C" first="Carlton F. O." last="Hoy">Carlton F. O. Hoy</name>
<affiliation>
<nlm:aff id="aff1">Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kushiro, Keiichiro" sort="Kushiro, Keiichiro" uniqKey="Kushiro K" first="Keiichiro" last="Kushiro">Keiichiro Kushiro</name>
<affiliation>
<nlm:aff id="aff1">Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yamaoka, Yutaro" sort="Yamaoka, Yutaro" uniqKey="Yamaoka Y" first="Yutaro" last="Yamaoka">Yutaro Yamaoka</name>
<affiliation>
<nlm:aff id="aff2">Department of Microbiology, School of Medicine, Yokohama City University, Yokohama, Japan</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">Isehara Research Laboratory, Technology and Development Division, Kanto Chemical Co., Inc., Isehara, Japan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ryo, Akihide" sort="Ryo, Akihide" uniqKey="Ryo A" first="Akihide" last="Ryo">Akihide Ryo</name>
<affiliation>
<nlm:aff id="aff2">Department of Microbiology, School of Medicine, Yokohama City University, Yokohama, Japan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Takai, Madoka" sort="Takai, Madoka" uniqKey="Takai M" first="Madoka" last="Takai">Madoka Takai</name>
<affiliation>
<nlm:aff id="aff1">Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Sensing and Bio-Sensing Research</title>
<idno type="eISSN">2214-1804</idno>
<imprint>
<date when="2019">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>On-site multiplex biosensors for innate immunity antibodies are ideal tools for monitoring health status of individuals against various diseases. This study introduces a novel antibody immunoassay testing platform incorporating microfiber-based arrays of antigens to capture specific antibodies. The fabrication and setup of the device revolved around electrospun polystyrene (ESPS) microfibers that act as three-dimensional membrane filters, capable of rapid and multifold analyte capture. In particular, the ESPS microfibers were patterned through localized oxygen plasma to create hydrophilic zones that facilitate fluid flows and immobilizations of antigens. The bulk of this robust antibody immunoassay platform could be installed into a compact syringe-driven cassette device, which could perform multiplex antibody immunoassay for antibodies specifically against Middle East respiratory syndrome coronavirus (MERS-CoV) with rapid preparation amounting to a total of 5 min, as well as high sensitivity and specificity for the MERS-CoV down to 200 μg/mL.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Wilkins, J" uniqKey="Wilkins J">J. Wilkins</name>
</author>
<author>
<name sortKey="Gallimore, J R" uniqKey="Gallimore J">J.R. Gallimore</name>
</author>
<author>
<name sortKey="Moore, E G" uniqKey="Moore E">E.G. Moore</name>
</author>
<author>
<name sortKey="Pepys, M B" uniqKey="Pepys M">M.B. Pepys</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chon, H" uniqKey="Chon H">H. Chon</name>
</author>
<author>
<name sortKey="Lee, S" uniqKey="Lee S">S. Lee</name>
</author>
<author>
<name sortKey="Son, S W" uniqKey="Son S">S.W. Son</name>
</author>
<author>
<name sortKey="Oh, C H" uniqKey="Oh C">C.H. Oh</name>
</author>
<author>
<name sortKey="Choo, J" uniqKey="Choo J">J. Choo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tajima, N" uniqKey="Tajima N">N. Tajima</name>
</author>
<author>
<name sortKey="Takai, M" uniqKey="Takai M">M. Takai</name>
</author>
<author>
<name sortKey="Ishihara, K" uniqKey="Ishihara K">K. Ishihara</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lim, C T" uniqKey="Lim C">C.T. Lim</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y. Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Takai, M" uniqKey="Takai M">M. Takai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, Z H" uniqKey="Li Z">Z.H. Li</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
</author>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J. Wang</name>
</author>
<author>
<name sortKey="Tang, Z W" uniqKey="Tang Z">Z.W. Tang</name>
</author>
<author>
<name sortKey="Pounds, J G" uniqKey="Pounds J">J.G. Pounds</name>
</author>
<author>
<name sortKey="Lin, Y H" uniqKey="Lin Y">Y.H. Lin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Qu, H H" uniqKey="Qu H">H.H. Qu</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y. Zhang</name>
</author>
<author>
<name sortKey="Qu, B P" uniqKey="Qu B">B.P. Qu</name>
</author>
<author>
<name sortKey="Kong, H" uniqKey="Kong H">H. Kong</name>
</author>
<author>
<name sortKey="Qin, G F" uniqKey="Qin G">G.F. Qin</name>
</author>
<author>
<name sortKey="Liu, S C" uniqKey="Liu S">S.C. Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lin, C C" uniqKey="Lin C">C.C. Lin</name>
</author>
<author>
<name sortKey="Wang, J H" uniqKey="Wang J">J.H. Wang</name>
</author>
<author>
<name sortKey="Wu, H W" uniqKey="Wu H">H.W. Wu</name>
</author>
<author>
<name sortKey="Lee, G B" uniqKey="Lee G">G.B. Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Auroux, P A" uniqKey="Auroux P">P.A. Auroux</name>
</author>
<author>
<name sortKey="Iossifidis, D" uniqKey="Iossifidis D">D. Iossifidis</name>
</author>
<author>
<name sortKey="Reyes, D R" uniqKey="Reyes D">D.R. Reyes</name>
</author>
<author>
<name sortKey="Manz, A" uniqKey="Manz A">A. Manz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reyes, D R" uniqKey="Reyes D">D.R. Reyes</name>
</author>
<author>
<name sortKey="Iossifidis, D" uniqKey="Iossifidis D">D. Iossifidis</name>
</author>
<author>
<name sortKey="Auroux, P A" uniqKey="Auroux P">P.A. Auroux</name>
</author>
<author>
<name sortKey="Manz, A" uniqKey="Manz A">A. Manz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Martinez, A W" uniqKey="Martinez A">A.W. Martinez</name>
</author>
<author>
<name sortKey="Phillips, S T" uniqKey="Phillips S">S.T. Phillips</name>
</author>
<author>
<name sortKey="Whitesides, G M" uniqKey="Whitesides G">G.M. Whitesides</name>
</author>
<author>
<name sortKey="Carrilho, E" uniqKey="Carrilho E">E. Carrilho</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yamada, K" uniqKey="Yamada K">K. Yamada</name>
</author>
<author>
<name sortKey="Henares, T G" uniqKey="Henares T">T.G. Henares</name>
</author>
<author>
<name sortKey="Suzuki, K" uniqKey="Suzuki K">K. Suzuki</name>
</author>
<author>
<name sortKey="Citterio, D" uniqKey="Citterio D">D. Citterio</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Abe, K" uniqKey="Abe K">K. Abe</name>
</author>
<author>
<name sortKey="Suzuki, K" uniqKey="Suzuki K">K. Suzuki</name>
</author>
<author>
<name sortKey="Citterio, D" uniqKey="Citterio D">D. Citterio</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, X" uniqKey="Li X">X. Li</name>
</author>
<author>
<name sortKey="Ballerini, D R" uniqKey="Ballerini D">D.R. Ballerini</name>
</author>
<author>
<name sortKey="Shen, W" uniqKey="Shen W">W. Shen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sato, K" uniqKey="Sato K">K. Sato</name>
</author>
<author>
<name sortKey="Tokeshi, M" uniqKey="Tokeshi M">M. Tokeshi</name>
</author>
<author>
<name sortKey="Kimura, H" uniqKey="Kimura H">H. Kimura</name>
</author>
<author>
<name sortKey="Kitamori, T" uniqKey="Kitamori T">T. Kitamori</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Swartzman, E E" uniqKey="Swartzman E">E.E. Swartzman</name>
</author>
<author>
<name sortKey="Miraglia, S J" uniqKey="Miraglia S">S.J. Miraglia</name>
</author>
<author>
<name sortKey="Mellentin Michelotti, J" uniqKey="Mellentin Michelotti J">J. Mellentin-Michelotti</name>
</author>
<author>
<name sortKey="Evangelista, L" uniqKey="Evangelista L">L. Evangelista</name>
</author>
<author>
<name sortKey="Yuan, P M" uniqKey="Yuan P">P.M. Yuan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, B S" uniqKey="Lee B">B.S. Lee</name>
</author>
<author>
<name sortKey="Lee, J N" uniqKey="Lee J">J.N. Lee</name>
</author>
<author>
<name sortKey="Park, J M" uniqKey="Park J">J.M. Park</name>
</author>
<author>
<name sortKey="Lee, J G" uniqKey="Lee J">J.G. Lee</name>
</author>
<author>
<name sortKey="Kim, S" uniqKey="Kim S">S. Kim</name>
</author>
<author>
<name sortKey="Cho, Y K" uniqKey="Cho Y">Y.K. Cho</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kellar, K L" uniqKey="Kellar K">K.L. Kellar</name>
</author>
<author>
<name sortKey="Kalwar, R R" uniqKey="Kalwar R">R.R. Kalwar</name>
</author>
<author>
<name sortKey="Dubois, K A" uniqKey="Dubois K">K.A. Dubois</name>
</author>
<author>
<name sortKey="Crouse, D" uniqKey="Crouse D">D. Crouse</name>
</author>
<author>
<name sortKey="Chafin, W D" uniqKey="Chafin W">W.D. Chafin</name>
</author>
<author>
<name sortKey="Kane, B E" uniqKey="Kane B">B.E. Kane</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bruls, D M" uniqKey="Bruls D">D.M. Bruls</name>
</author>
<author>
<name sortKey="Evers, T H" uniqKey="Evers T">T.H. Evers</name>
</author>
<author>
<name sortKey="Kahlman, J A H" uniqKey="Kahlman J">J.A.H. Kahlman</name>
</author>
<author>
<name sortKey="Van Lankvelt, P J W" uniqKey="Van Lankvelt P">P.J.W. van Lankvelt</name>
</author>
<author>
<name sortKey="Ovsyanko, M" uniqKey="Ovsyanko M">M. Ovsyanko</name>
</author>
<author>
<name sortKey="Pelssers, E G M" uniqKey="Pelssers E">E.G.M. Pelssers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fu, Q" uniqKey="Fu Q">Q. Fu</name>
</author>
<author>
<name sortKey="Zhu, J" uniqKey="Zhu J">J. Zhu</name>
</author>
<author>
<name sortKey="Van Eyk, J E" uniqKey="Van Eyk J">J.E. Van Eyk</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Smits, G P" uniqKey="Smits G">G.P. Smits</name>
</author>
<author>
<name sortKey="Van Gageldonk, P G" uniqKey="Van Gageldonk P">P.G. van Gageldonk</name>
</author>
<author>
<name sortKey="Schouls, L M" uniqKey="Schouls L">L.M. Schouls</name>
</author>
<author>
<name sortKey="Van Der Klis, F R M" uniqKey="Van Der Klis F">F.R.M. van der Klis</name>
</author>
<author>
<name sortKey="Berbers, G A M" uniqKey="Berbers G">G.A.M. Berbers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yu, X" uniqKey="Yu X">X. Yu</name>
</author>
<author>
<name sortKey="Xia, Y Q" uniqKey="Xia Y">Y.Q. Xia</name>
</author>
<author>
<name sortKey="Tang, Y" uniqKey="Tang Y">Y. Tang</name>
</author>
<author>
<name sortKey="Zhang, W L" uniqKey="Zhang W">W.L. Zhang</name>
</author>
<author>
<name sortKey="Yeh, Y T" uniqKey="Yeh Y">Y.T. Yeh</name>
</author>
<author>
<name sortKey="Lu, H G" uniqKey="Lu H">H.G. Lu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kaminska, A" uniqKey="Kaminska A">A. Kaminska</name>
</author>
<author>
<name sortKey="Witkowska, E" uniqKey="Witkowska E">E. Witkowska</name>
</author>
<author>
<name sortKey="Winkler, K" uniqKey="Winkler K">K. Winkler</name>
</author>
<author>
<name sortKey="Dziecielewski, I" uniqKey="Dziecielewski I">I. Dziecielewski</name>
</author>
<author>
<name sortKey="Weyher, J L" uniqKey="Weyher J">J.L. Weyher</name>
</author>
<author>
<name sortKey="Waluk, J" uniqKey="Waluk J">J. Waluk</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yamaoka, Y" uniqKey="Yamaoka Y">Y. Yamaoka</name>
</author>
<author>
<name sortKey="Matsuyama, S" uniqKey="Matsuyama S">S. Matsuyama</name>
</author>
<author>
<name sortKey="Fukushi, S" uniqKey="Fukushi S">S. Fukushi</name>
</author>
<author>
<name sortKey="Matsunaga, S" uniqKey="Matsunaga S">S. Matsunaga</name>
</author>
<author>
<name sortKey="Matsushima, Y" uniqKey="Matsushima Y">Y. Matsushima</name>
</author>
<author>
<name sortKey="Kuroyama, H" uniqKey="Kuroyama H">H. Kuroyama</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zaki, A M" uniqKey="Zaki A">A.M. Zaki</name>
</author>
<author>
<name sortKey="Van Boheemen, S" uniqKey="Van Boheemen S">S. van Boheemen</name>
</author>
<author>
<name sortKey="Bestebroer, T M" uniqKey="Bestebroer T">T.M. Bestebroer</name>
</author>
<author>
<name sortKey="Osterhaus, A D M E" uniqKey="Osterhaus A">A.D.M.E. Osterhaus</name>
</author>
<author>
<name sortKey="Fouchier, R A M" uniqKey="Fouchier R">R.A.M. Fouchier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, Y" uniqKey="Chen Y">Y. Chen</name>
</author>
<author>
<name sortKey="Chan, K H" uniqKey="Chan K">K.H. Chan</name>
</author>
<author>
<name sortKey="Kang, Y H" uniqKey="Kang Y">Y.H. Kang</name>
</author>
<author>
<name sortKey="Chen, H L" uniqKey="Chen H">H.L. Chen</name>
</author>
<author>
<name sortKey="Luk, H K H" uniqKey="Luk H">H.K.H. Luk</name>
</author>
<author>
<name sortKey="Poon, R W S" uniqKey="Poon R">R.W.S. Poon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Alsolamy, S" uniqKey="Alsolamy S">S. Alsolamy</name>
</author>
<author>
<name sortKey="Arabi, Y M" uniqKey="Arabi Y">Y.M. Arabi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hotez, P J" uniqKey="Hotez P">P.J. Hotez</name>
</author>
<author>
<name sortKey="Bottazzi, M E" uniqKey="Bottazzi M">M.E. Bottazzi</name>
</author>
<author>
<name sortKey="Tseng, C T K" uniqKey="Tseng C">C.T.K. Tseng</name>
</author>
<author>
<name sortKey="Zhan, B" uniqKey="Zhan B">B. Zhan</name>
</author>
<author>
<name sortKey="Lustigman, S" uniqKey="Lustigman S">S. Lustigman</name>
</author>
<author>
<name sortKey="Du, L Y" uniqKey="Du L">L.Y. Du</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Haas, R" uniqKey="De Haas R">R. de Haas</name>
</author>
<author>
<name sortKey="Van Den Hof, S" uniqKey="Van Den Hof S">S. van den Hof</name>
</author>
<author>
<name sortKey="Berbers, G A" uniqKey="Berbers G">G.A. Berbers</name>
</author>
<author>
<name sortKey="De Melker, H E" uniqKey="De Melker H">H.E. de Melker</name>
</author>
<author>
<name sortKey="Conyn Van Spaendonck, M A" uniqKey="Conyn Van Spaendonck M">M.A. Conyn-van Spaendonck</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Den Hof, S" uniqKey="Van Den Hof S">S. van den Hof</name>
</author>
<author>
<name sortKey="Beaumont, M T" uniqKey="Beaumont M">M.T. Beaumont</name>
</author>
<author>
<name sortKey="Berbers, G A" uniqKey="Berbers G">G.A. Berbers</name>
</author>
<author>
<name sortKey="De Melker, H E" uniqKey="De Melker H">H.E. de Melker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Harmsen, T" uniqKey="Harmsen T">T. Harmsen</name>
</author>
<author>
<name sortKey="Jongerius, M C" uniqKey="Jongerius M">M.C. Jongerius</name>
</author>
<author>
<name sortKey="Vanderzwan, C W" uniqKey="Vanderzwan C">C.W. Vanderzwan</name>
</author>
<author>
<name sortKey="Plantinga, A D" uniqKey="Plantinga A">A.D. Plantinga</name>
</author>
<author>
<name sortKey="Kraaijeveld, C A" uniqKey="Kraaijeveld C">C.A. Kraaijeveld</name>
</author>
<author>
<name sortKey="Berbers, G A M" uniqKey="Berbers G">G.A.M. Berbers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Celikbas, A" uniqKey="Celikbas A">A. Celikbas</name>
</author>
<author>
<name sortKey="Ergonul, O" uniqKey="Ergonul O">O. Ergonul</name>
</author>
<author>
<name sortKey="Aksaray, S" uniqKey="Aksaray S">S. Aksaray</name>
</author>
<author>
<name sortKey="Tuygun, N" uniqKey="Tuygun N">N. Tuygun</name>
</author>
<author>
<name sortKey="Esener, H" uniqKey="Esener H">H. Esener</name>
</author>
<author>
<name sortKey="Tanir, G" uniqKey="Tanir G">G. Tanir</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Craft, J E" uniqKey="Craft J">J.E. Craft</name>
</author>
<author>
<name sortKey="Grodzicki, R L" uniqKey="Grodzicki R">R.L. Grodzicki</name>
</author>
<author>
<name sortKey="Steere, A C" uniqKey="Steere A">A.C. Steere</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Harboe, N" uniqKey="Harboe N">N. Harboe</name>
</author>
<author>
<name sortKey="Ingild, A" uniqKey="Ingild A">A. Ingild</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fukushi, S" uniqKey="Fukushi S">S. Fukushi</name>
</author>
<author>
<name sortKey="Fukuma, A" uniqKey="Fukuma A">A. Fukuma</name>
</author>
<author>
<name sortKey="Kurosu, T" uniqKey="Kurosu T">T. Kurosu</name>
</author>
<author>
<name sortKey="Watanabe, S" uniqKey="Watanabe S">S. Watanabe</name>
</author>
<author>
<name sortKey="Shimojima, M" uniqKey="Shimojima M">M. Shimojima</name>
</author>
<author>
<name sortKey="Shirato, K" uniqKey="Shirato K">K. Shirato</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kelly Cirino, C" uniqKey="Kelly Cirino C">C. Kelly-Cirino</name>
</author>
<author>
<name sortKey="Mazzola, L T" uniqKey="Mazzola L">L.T. Mazzola</name>
</author>
<author>
<name sortKey="Chua, A" uniqKey="Chua A">A. Chua</name>
</author>
<author>
<name sortKey="Oxenford, C J" uniqKey="Oxenford C">C.J. Oxenford</name>
</author>
<author>
<name sortKey="Van Kerkhove, M D" uniqKey="Van Kerkhove M">M.D. Van Kerkhove</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hoy, C F O" uniqKey="Hoy C">C.F.O. Hoy</name>
</author>
<author>
<name sortKey="Kushiro, K" uniqKey="Kushiro K">K. Kushiro</name>
</author>
<author>
<name sortKey="Takai, M" uniqKey="Takai M">M. Takai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Choi, S" uniqKey="Choi S">S. Choi</name>
</author>
<author>
<name sortKey="Choi, E Y" uniqKey="Choi E">E.Y. Choi</name>
</author>
<author>
<name sortKey="Kim, D J" uniqKey="Kim D">D.J. Kim</name>
</author>
<author>
<name sortKey="Kim, J H" uniqKey="Kim J">J.H. Kim</name>
</author>
<author>
<name sortKey="Kim, T S" uniqKey="Kim T">T.S. Kim</name>
</author>
<author>
<name sortKey="Oh, S W" uniqKey="Oh S">S.W. Oh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wu, D P" uniqKey="Wu D">D.P. Wu</name>
</author>
<author>
<name sortKey="Han, D W" uniqKey="Han D">D.W. Han</name>
</author>
<author>
<name sortKey="Steckl, A J" uniqKey="Steckl A">A.J. Steckl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Attwood, S J" uniqKey="Attwood S">S.J. Attwood</name>
</author>
<author>
<name sortKey="Kershaw, R" uniqKey="Kershaw R">R. Kershaw</name>
</author>
<author>
<name sortKey="Uddin, S" uniqKey="Uddin S">S. Uddin</name>
</author>
<author>
<name sortKey="Bishop, S M" uniqKey="Bishop S">S.M. Bishop</name>
</author>
<author>
<name sortKey="Welland, M E" uniqKey="Welland M">M.E. Welland</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Whyman, G" uniqKey="Whyman G">G. Whyman</name>
</author>
<author>
<name sortKey="Bormashenko, E" uniqKey="Bormashenko E">E. Bormashenko</name>
</author>
<author>
<name sortKey="Stein, T" uniqKey="Stein T">T. Stein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Peterfi, Z" uniqKey="Peterfi Z">Z. Peterfi</name>
</author>
<author>
<name sortKey="Kocsis, B" uniqKey="Kocsis B">B. Kocsis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, W S" uniqKey="Kim W">W.S. Kim</name>
</author>
<author>
<name sortKey="Nishizawa, T" uniqKey="Nishizawa T">T. Nishizawa</name>
</author>
<author>
<name sortKey="Yoshimizu, M" uniqKey="Yoshimizu M">M. Yoshimizu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Contarini, G" uniqKey="Contarini G">G. Contarini</name>
</author>
<author>
<name sortKey="Povolo, M" uniqKey="Povolo M">M. Povolo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sato, K" uniqKey="Sato K">K. Sato</name>
</author>
<author>
<name sortKey="Tokeshi, M" uniqKey="Tokeshi M">M. Tokeshi</name>
</author>
<author>
<name sortKey="Odake, T" uniqKey="Odake T">T. Odake</name>
</author>
<author>
<name sortKey="Kimura, H" uniqKey="Kimura H">H. Kimura</name>
</author>
<author>
<name sortKey="Ooi, T" uniqKey="Ooi T">T. Ooi</name>
</author>
<author>
<name sortKey="Nakao, M" uniqKey="Nakao M">M. Nakao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Corman, V M" uniqKey="Corman V">V.M. Corman</name>
</author>
<author>
<name sortKey="Albarrak, A M" uniqKey="Albarrak A">A.M. Albarrak</name>
</author>
<author>
<name sortKey="Omrani, A S" uniqKey="Omrani A">A.S. Omrani</name>
</author>
<author>
<name sortKey="Albarrak, M M" uniqKey="Albarrak M">M.M. Albarrak</name>
</author>
<author>
<name sortKey="Farah, M E" uniqKey="Farah M">M.E. Farah</name>
</author>
<author>
<name sortKey="Almasri, M" uniqKey="Almasri M">M. Almasri</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Corman, V M" uniqKey="Corman V">V.M. Corman</name>
</author>
<author>
<name sortKey="Jores, J" uniqKey="Jores J">J. Jores</name>
</author>
<author>
<name sortKey="Meyer, B" uniqKey="Meyer B">B. Meyer</name>
</author>
<author>
<name sortKey="Younan, M" uniqKey="Younan M">M. Younan</name>
</author>
<author>
<name sortKey="Liljander, A" uniqKey="Liljander A">A. Liljander</name>
</author>
<author>
<name sortKey="Said, M Y" uniqKey="Said M">M.Y. Said</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mubarak, A" uniqKey="Mubarak A">A. Mubarak</name>
</author>
<author>
<name sortKey="Alturaiki, W" uniqKey="Alturaiki W">W. Alturaiki</name>
</author>
<author>
<name sortKey="Hemida, M G" uniqKey="Hemida M">M.G. Hemida</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Sens Biosensing Res</journal-id>
<journal-id journal-id-type="iso-abbrev">Sens Biosensing Res</journal-id>
<journal-title-group>
<journal-title>Sensing and Bio-Sensing Research</journal-title>
</journal-title-group>
<issn pub-type="epub">2214-1804</issn>
<publisher>
<publisher-name>Elsevier B.V</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">32289017</article-id>
<article-id pub-id-type="pmc">7104066</article-id>
<article-id pub-id-type="publisher-id">S2214-1804(19)30142-4</article-id>
<article-id pub-id-type="doi">10.1016/j.sbsr.2019.100304</article-id>
<article-id pub-id-type="publisher-id">100304</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Rapid multiplex microfiber-based immunoassay for anti-MERS-CoV antibody detection</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" id="au1">
<name>
<surname>Hoy</surname>
<given-names>Carlton F.O.</given-names>
</name>
<xref rid="aff1" ref-type="aff">a</xref>
</contrib>
<contrib contrib-type="author" id="au2">
<name>
<surname>Kushiro</surname>
<given-names>Keiichiro</given-names>
</name>
<xref rid="aff1" ref-type="aff">a</xref>
</contrib>
<contrib contrib-type="author" id="au3">
<name>
<surname>Yamaoka</surname>
<given-names>Yutaro</given-names>
</name>
<xref rid="aff2" ref-type="aff">b</xref>
<xref rid="aff3" ref-type="aff">c</xref>
</contrib>
<contrib contrib-type="author" id="au4">
<name>
<surname>Ryo</surname>
<given-names>Akihide</given-names>
</name>
<xref rid="aff2" ref-type="aff">b</xref>
</contrib>
<contrib contrib-type="author" id="au5">
<name>
<surname>Takai</surname>
<given-names>Madoka</given-names>
</name>
<email>takai@bis.t.u-tokyo.ac.jp</email>
<xref rid="aff1" ref-type="aff">a</xref>
<xref rid="cor1" ref-type="corresp"></xref>
</contrib>
</contrib-group>
<aff id="aff1">
<label>a</label>
Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan</aff>
<aff id="aff2">
<label>b</label>
Department of Microbiology, School of Medicine, Yokohama City University, Yokohama, Japan</aff>
<aff id="aff3">
<label>c</label>
Isehara Research Laboratory, Technology and Development Division, Kanto Chemical Co., Inc., Isehara, Japan</aff>
<author-notes>
<corresp id="cor1">
<label></label>
Corresponding author.
<email>takai@bis.t.u-tokyo.ac.jp</email>
</corresp>
</author-notes>
<pub-date pub-type="pmc-release">
<day>14</day>
<month>10</month>
<year>2019</year>
</pub-date>
<pmc-comment> PMC Release delay is 0 months and 0 days and was based on .</pmc-comment>
<pub-date pub-type="ppub">
<month>11</month>
<year>2019</year>
</pub-date>
<pub-date pub-type="epub">
<day>14</day>
<month>10</month>
<year>2019</year>
</pub-date>
<volume>26</volume>
<fpage>100304</fpage>
<lpage>100304</lpage>
<history>
<date date-type="received">
<day>20</day>
<month>8</month>
<year>2019</year>
</date>
<date date-type="rev-recd">
<day>2</day>
<month>10</month>
<year>2019</year>
</date>
<date date-type="accepted">
<day>3</day>
<month>10</month>
<year>2019</year>
</date>
</history>
<permissions>
<copyright-statement>© 2019 The Authors</copyright-statement>
<copyright-year>2019</copyright-year>
<license>
<license-p>Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.</license-p>
</license>
</permissions>
<abstract id="abs0010">
<p>On-site multiplex biosensors for innate immunity antibodies are ideal tools for monitoring health status of individuals against various diseases. This study introduces a novel antibody immunoassay testing platform incorporating microfiber-based arrays of antigens to capture specific antibodies. The fabrication and setup of the device revolved around electrospun polystyrene (ESPS) microfibers that act as three-dimensional membrane filters, capable of rapid and multifold analyte capture. In particular, the ESPS microfibers were patterned through localized oxygen plasma to create hydrophilic zones that facilitate fluid flows and immobilizations of antigens. The bulk of this robust antibody immunoassay platform could be installed into a compact syringe-driven cassette device, which could perform multiplex antibody immunoassay for antibodies specifically against Middle East respiratory syndrome coronavirus (MERS-CoV) with rapid preparation amounting to a total of 5 min, as well as high sensitivity and specificity for the MERS-CoV down to 200 μg/mL.</p>
</abstract>
<abstract abstract-type="author-highlights" id="abs0015">
<title>Highlights</title>
<p>
<list list-type="simple" id="ulist0010">
<list-item id="u0010">
<label></label>
<p id="p0010">3D electrospun polystyrene microfibers were successfully patterned with O
<sub>2</sub>
plasma.</p>
</list-item>
<list-item id="u0015">
<label></label>
<p id="p0015">Antigen adsorption were controlled via plasma-treatment time and blocking reagents.</p>
</list-item>
<list-item id="u0020">
<label></label>
<p id="p0020">Above multiplex microfiber mats could capture multiple antibodies simultaneously.</p>
</list-item>
</list>
</p>
</abstract>
<kwd-group id="kwrds0010">
<title>Keywords</title>
<kwd>MERS</kwd>
<kwd>Multiplex immunoassay</kwd>
<kwd>Microfiber</kwd>
<kwd>POC</kwd>
<kwd>Rapid</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec id="sec1">
<label>1</label>
<title>Introduction</title>
<p id="p0025">For the clinical use of immunoassays, these platforms are expected to be high-throughput, rapid and highly sensitive, as these are basic requirements for the necessary performance. Thus, assays combining these characteristics are proposed and often realized by the use of microfluidics and nanotechnology [
<xref rid="bib1" ref-type="bibr">[1]</xref>
,
<xref rid="bib2" ref-type="bibr">[2]</xref>
,
<xref rid="bib3" ref-type="bibr">[3]</xref>
,
<xref rid="bib4" ref-type="bibr">[4]</xref>
,
<xref rid="bib5" ref-type="bibr">[5]</xref>
,
<xref rid="bib6" ref-type="bibr">[6]</xref>
,
<xref rid="bib7" ref-type="bibr">[7]</xref>
,
<xref rid="bib8" ref-type="bibr">[8]</xref>
]. Furthermore, many types of multiplex immunoassay platforms have been reported, including microelectromechanical systems (MEMS) [
<xref rid="bib9" ref-type="bibr">9</xref>
,
<xref rid="bib10" ref-type="bibr">10</xref>
], paper-based [
<xref rid="bib11" ref-type="bibr">[11]</xref>
,
<xref rid="bib12" ref-type="bibr">[12]</xref>
,
<xref rid="bib13" ref-type="bibr">[13]</xref>
,
<xref rid="bib14" ref-type="bibr">[14]</xref>
], bead-based [
<xref rid="bib15" ref-type="bibr">[15]</xref>
,
<xref rid="bib16" ref-type="bibr">[16]</xref>
,
<xref rid="bib17" ref-type="bibr">[17]</xref>
] and array-based platforms [
<xref rid="bib18" ref-type="bibr">[18]</xref>
,
<xref rid="bib19" ref-type="bibr">[19]</xref>
,
<xref rid="bib20" ref-type="bibr">[20]</xref>
,
<xref rid="bib21" ref-type="bibr">[21]</xref>
]. In recent years, one of the most prominent application of such immunoassay platforms from the perspective of healthcare has been virus detection [
<xref rid="bib22" ref-type="bibr">22</xref>
,
<xref rid="bib23" ref-type="bibr">23</xref>
].</p>
<p id="p0030">Since 2012, MERS-CoV has become a prevalent issue affecting multiple countries [
<xref rid="bib24" ref-type="bibr">[24]</xref>
,
<xref rid="bib25" ref-type="bibr">[25]</xref>
,
<xref rid="bib26" ref-type="bibr">[26]</xref>
]. This coronavirus has affected individuals with a high mortality rate of about 30% which was reported by the World Health Organization (WHO) [
<xref rid="bib27" ref-type="bibr">27</xref>
]. Furthermore, MERS-CoV being a relatively recent outbreak, there has been no effective vaccine which is clinically approved to treat an individual [
<xref rid="bib28" ref-type="bibr">28</xref>
]. Therefore, a means for antibody diagnostics in a simple, robust and rapid manner is necessary to test vaccine or drug efficacies upon patients while also preventing the spread of this infectious disease.</p>
<p id="p0035">In the world of vaccination, blood antibody titres often in the form of enzyme-linked immunosorbent assays (ELISA) are common methods to determine whether a patient currently has the necessary antibodies at adequate concentrations. ELISA is a highly sensitive method that can achieve limits of detection (LOD) below 1 μg/mL for MERS-CoV, but the test can take days to produce diagnostic results due to the requirements for specialists and large equipment [
<xref rid="bib29" ref-type="bibr">[29]</xref>
,
<xref rid="bib30" ref-type="bibr">[30]</xref>
,
<xref rid="bib31" ref-type="bibr">[31]</xref>
,
<xref rid="bib32" ref-type="bibr">[32]</xref>
,
<xref rid="bib33" ref-type="bibr">[33]</xref>
,
<xref rid="bib34" ref-type="bibr">[34]</xref>
,
<xref rid="bib35" ref-type="bibr">[35]</xref>
,
<xref rid="bib36" ref-type="bibr">[36]</xref>
]. Thus, a more rapid and effective testing methodology that does not require large testing apparatus is desirable to test for vaccine or drug efficacy. In particular, it is important to emphasize the need for low-cost, simple and robust point-of-care (POC) device manufacturing in order to improve global healthcare.</p>
<p id="p0040">Here, a rapid immunoassay methodology for antiviral antibody testing that can be conducted within minutes will be introduced. This work illustrates the construction of a novel multiplex antibody immunoassay test which leverages the ESPS microfiber mats as the capture membrane and pressure-driven convection for ultra-rapid testing. In addition to the previously established fluorescently-linked immunosorbent assay (FLISA) microfiber platform [
<xref rid="bib28" ref-type="bibr">28</xref>
,
<xref rid="bib37" ref-type="bibr">37</xref>
], the microfiber mats were pre-patterned with O
<sub>2</sub>
plasma to create multiple hydrophilic zones with different antigens, and thus creating a multiplex detection system.</p>
<p id="p0045">As a proof of concept, two different antigens designed to individually capture their corresponding antibodies were tested: human serum albumin (HSA) and MERS-CoV. HSA is a representative protein that exists in human plasma samples, while MERS is a viral agent currently lacking a means of vaccination [
<xref rid="bib28" ref-type="bibr">28</xref>
,
<xref rid="bib38" ref-type="bibr">38</xref>
]. The simplistic design, ease of fabrication and setup, the rapid speeds at which diagnostics can be performed for antibody detection with this system can be an integral step forward in creating a low cost commercial device for protecting the general public health in case of MERS outbreaks.</p>
</sec>
<sec id="sec2">
<label>2</label>
<title>Materials and methods</title>
<sec id="sec2.1">
<label>2.1</label>
<title>FLISA reagents and materials</title>
<p id="p0050">For the polymeric electrospinning processing, pelletized PS (PS Japan) dissolved in a solution containing THF (Sigma-Aldrich) and DMF (Sigma-Aldrich). HSA full rapid FLISA operations included Goat anti-Human Albumin (Bethyl Laboratories, A80-129A), Human Reference Serum (Bethyl Laboratories, RS10-110) and FITC-conjugated Goat anti-Human Albumin (Bethyl Laboratories, A80-129F), noted as ‘
<italic>anti</italic>
-HSA’, ‘HSA’ and ‘FITC
<italic>anti</italic>
-HSA’ in this study, respectively. For antibody testing both the HSA reagents mentioned and the following MERS reagents: His-MERS-NP antigen protein (Yokohama City University) and
<italic>anti</italic>
-MERS-NP (mAb #20, Yokohama City University) were utilized and noted in this study as the ‘MERS’ and ‘FITC
<italic>anti</italic>
-MERS’ reagents, respectively.
<italic>Anti</italic>
-MERS-NP was labeled by the Fluorescein Labeling Kit – NH
<sub>2</sub>
(Dojindo Inc.). Phosphate buffered saline (PBS, pH 7.4, Gibco) with Tween 20 (PBS-T, pH 7.4, 0.1 w/v% Tween 20) and skim milk (Yukijirushi Inc.) were utilized for different purposes like diluents, washes and blocking agents. Additionally, FITC-conjugated bovine serum albumin (BSA-FITC, Sigma-Aldrich, A9771-1G) and BSA (Sigma Aldrich, A3608-50G) were utilized in combination with ESPS fiber mats for fluorescence microscopy.</p>
</sec>
<sec id="sec2.2">
<label>2.2</label>
<title>Electrospinning technique</title>
<p id="p0055">Pre-pelletized PS at 10 vol%/vol% was dissolved into a solution of 1:1 THF/DMF. The solutions were left to stir mildly at room temperature for 24 h to allow for the PS to dissolve entirely. The PS solutions were then loaded through a syringe to the electrospinning device. The environmental and processing conditions were set as noted in
<xref rid="appsec1" ref-type="sec">Supplementary Material Table S1</xref>
. After electrospinning, a ‘wet-press’ technique reported by Wu et al. was applied to the microfibers [
<xref rid="bib39" ref-type="bibr">39</xref>
]. This technique layered ESPS fiber mats by stacking 8 layers of fibers atop one another, soaking them in ethanol (EtOH) then sandwiching the stack between glass sheets and pressed by a 2 kg weight for 24 h before use.</p>
</sec>
<sec id="sec2.3">
<label>2.3</label>
<title>O
<sub>2</sub>
plasma spot treatment</title>
<p id="p0060">An O
<sub>2</sub>
plasma cleaner (PDC-001, Expanded Plasma Cleaner, Harrick Plasma) paired with a gas flowmeter (PDF-FMG, PlasmaFlo Gas Flow Mixer, Harrick Plasma) were utilized to treat the ESPS fiber mats with O
<sub>2</sub>
plasma. A steel mask with 9 holes (spot size = 2.5 mm) was custom-made to create patterns of O
<sub>2</sub>
plasma treatment on the ESPS fiber mats. ESPS 10 wt% fiber mats that were wet-pressed at 8-layers were utilized for spot treatment experimentation. 8-Layered 10 wt% ESPS was used rather than 4-layer samples since the 4-layer samples showed a spreading of added reagents into non-hydrophilic spot regions over time. 8-Layer samples showed minimal spread or leak of reagents beyond the scope of the O
<sub>2</sub>
plasma treated hydrophilic spots.</p>
<p id="p0065">8-layer ESPS fiber mats after spot treatment were tested for both protein adsorption and blocking preference by fluorescence microscopy. For protein adsorption ESPS fiber mats were submerged in a FITC-BSA solution (10 wt% FITC-BSA to BSA in 20 mL PBS) for 1 h. Samples were then dip-washed in PBS-T 20 times. Blocking effectiveness was tested by comparing BSA, BlockingONE and skim milk as blocking agents, where three separate ESPS fiber mats were soaked in the respective blocking solutions: BSA (2 w/v), BlockingONE (20 v/v), and skim milk (2 w/v) for 1 h before being dip washed in PBS-T 20 times. Then the samples were soaked in the same FITC-BSA solution as the previous experiment for 1 h and dip-washed again in PBS-T 20 times. All fluorescence images were measured under an inverted microscope (CKX53, Olympus) paired with a fluorescence light source and filter (U-HGLGPS, Olympus). Images were taken by the cellSens (Olympus) image processing software and measured by ImageJ (National Institutes of Health) under the ROI manager tool.</p>
</sec>
<sec id="sec2.4">
<label>2.4</label>
<title>Cassette-device-based immunoassay system</title>
<p id="p0070">A 37-mm monitor (Advantec) was adapted as the cassette device by replacing the internal membranes with the 8-layered 10 wt% ESPS samples together with an appropriately cut and shaped filter paper (40 mm, No.5B, Kiriyama Rohto) layered inside the 37-mm monitor housing environment. The setup had the lower layer as the filter paper with the upper layer as the O
<sub>2</sub>
plasm-treated ESPS fiber mat. Through the inlet, bulk reagents (PBS wash, antigen, and secondary antibody) were inserted and flushed out the opposite end outlet through syringe pressure.</p>
</sec>
<sec id="sec2.5">
<label>2.5</label>
<title>Rapid MERS immunoassay testing protocol</title>
<p id="p0075">In all immunoassays, the 8-layered 10 wt% ESPS membranes, which were treated with O
<sub>2</sub>
plasma treatment for 3 min at 100W, were utilized. Rapid immunoassay testing using the cassette platform were performed in following steps: (1) antigen immobilization, (2) blocking, and (3) antibody capture. First, HSA and MERS concentrations were optimized independently on the treated ESPS membranes. HSA concentration in PBS was varied in the range from 0 to 1000μg/mL, using 6 μL per spot. Blocking by 2 mL of skim milk at 2% w/v was then applied through the syringe directly into the cassette, where the solution was held for 1 min then pulled through the outlet. Finally, 1 mL of FITC-conjugated
<italic>anti</italic>
-HSA antibody solution at 10 μg/mL was held in the cassette for 1 min and also flushed through. Similarly, MERS was tested first by immobilizing His-MERS-NP at concentrations ranging from 0 to 500 μg/mL. After the skim milk blocking procedure, 1 mL of FITC-conjugated
<italic>anti</italic>
-MERS NP #20 solution at 11 μg/mL was held in the cassette for 1 min and flushed through. For both HSA and MERS testing, washing was conducted with PBS-T with 1 mL volumes flushed through three times through the cassette both after the blocking step and FITC-conjugated antibody step.</p>
<p id="p0080">For the multiplex immunoassay, it was conducted identically to the above immunoassay protocol, but with different antigens patterned separately on a single ESPS membrane: 3 spots were treated with MERS (200 μg/mL; 6 μL), 3 spots treated with HSA (200 μg/mL; 6 μL) and 3 spots with no antigen immobilized. Again, the blocking was performed with 2 mL of skim milk at 2% w/v was held for 1 min in the cassette and then flushed through. Finally, three different test solutions of antibodies were prepared and tested through the multiplex ESPS membrane: 1 mL of FITC-conjugated
<italic>anti</italic>
-HSA solution at 1:100 dilution, 1 mL of FITC-conjugated
<italic>anti</italic>
-MERS NP #20 solution at 1:50 dilution, and a 1 mL mixture of FITC-conjugated
<italic>anti</italic>
-HSA (1:100 dilution) and FITC conjugated-
<italic>anti</italic>
-MERS NP #20 (1:50 dilution), where the concentrations for each antibody were identical in all cases.
<xref rid="fig1" ref-type="fig">Fig. 1</xref>
and
<xref rid="appsec1" ref-type="sec">Supplementary Material Table S2</xref>
illustrate the overall procedure as well as the final concentrations used for the test protocols.
<fig id="fig1">
<label>Fig. 1</label>
<caption>
<p>(a) Schematic representation of the O
<sub>2</sub>
plasma spot treatment setup. (b) Schematic representation of the housing environment and membrane setup. (c) Overview of steps taken in the rapid MERS immunoassay protocol.</p>
</caption>
<alt-text id="alttext0015">Fig. 1</alt-text>
<graphic xlink:href="gr1_lrg"></graphic>
</fig>
</p>
</sec>
</sec>
<sec id="sec3">
<label>3</label>
<title>Results</title>
<sec id="sec3.1">
<label>3.1</label>
<title>O
<sub>2</sub>
plasma spot treatment</title>
<p id="p0085">It is critical that as much antigens are immobilized to the surface to enhance the signal of the immunoassay system for the antiviral antibodies. Therefore, the amount of protein immobilization was optimized through the microfiber surface hydrophobicity. The 8-layered 10 wt% ESPS fiber mat samples were treated by O
<sub>2</sub>
plasma spot treatment for different time lengths, then tested for protein adsorption to the surface. To determine the optimum condition for the largest antibody immobilization to the surface, BSA was used as the model protein. First, the contact angles were measured to confirm the effect of O
<sub>2</sub>
plasma treatments (
<xref rid="fig2" ref-type="fig">Fig. 2</xref>
). Overall, it was confirmed that the hydrophilic areas treated by O
<sub>2</sub>
plasma showed a decreasing trend in contact angle with increasing treatment time. On the other hand, the contact angles of hydrophobic zones were not significantly altered among the samples.
<fig id="fig2">
<label>Fig. 2</label>
<caption>
<p>Contact angle measurements for (a) 1 min, (b) 3 min, and (c) 5 min of O
<sub>2</sub>
spot plasma treatments.</p>
</caption>
<alt-text id="alttext0020">Fig. 2</alt-text>
<graphic xlink:href="gr2_lrg"></graphic>
</fig>
</p>
<p id="p0090">Next, the actual amount of BSA adsorption on plasma-treated samples were analyzed to estimate the antigen immobilization capacity. The results for varied O
<sub>2</sub>
plasma treatment conditions are shown in
<xref rid="fig3" ref-type="fig">Fig. 3</xref>
, where the samples were treated for 1, 3 and 5 min at 100W. It can be seen that the most amount of BSA was adsorbed to the 3-min-treated samples. The lack of sufficient O
<sub>2</sub>
plasma time at 1 min likely did not allow the oxygen to fully penetrate the fiber thus not yielding adequately-hydrophilic fiber surfaces for the BSA solution to penetrate the fiber and come in contact with the fiber surfaces. On the other hand, the excessive 5-min-treated samples over treated the samples to become super hydrophilic, preventing any hydrophobic bonding between the surface and protein samples. Thus, for subsequent experiments, 3 min was chosen as the optimal time for O
<sub>2</sub>
plasma treatment for protein immobilization to the fiber surfaces.
<fig id="fig3">
<label>Fig. 3</label>
<caption>
<p>Fluorescence images labeled BSA adsorbed onto the 8-layered 10 wt% ESPS treated with spot O
<sub>2</sub>
plasma for (a) 1 min, (b) 3 min and (c) 5 min. (d) For quantitation of the BSA adsorption, fluorescence (Fluo) as well as background (BG) intensities were quantified. (n = 4; error bars are standard error).</p>
</caption>
<alt-text id="alttext0025">Fig. 3</alt-text>
<graphic xlink:href="gr3_lrg"></graphic>
</fig>
</p>
<p id="p0095">In addition, blocking agents were optimized for the ESPS samples and thus a similar protein adsorption test was conducted with three types of blocking agents: BSA, BlockingONE and skim milk (
<xref rid="fig4" ref-type="fig">Fig. 4</xref>
). Although all of them displayed efficient blocking of fluorescently-labeled BSA adsorption, it was demonstrated that skim milk performed the best. Therefore, in subsequent experiments, skim milk was used as the blocking agent.
<fig id="fig4">
<label>Fig. 4</label>
<caption>
<p>Fluorescence quantification of the ability of blocking agents to prevent the adsorption of fluorescently-labeled BSA, comparing BSA, BlockingONE (BlkONE) and Skim milk (Milk).</p>
</caption>
<alt-text id="alttext0030">Fig. 4</alt-text>
<graphic xlink:href="gr4_lrg"></graphic>
</fig>
</p>
</sec>
<sec id="sec3.2">
<label>3.2</label>
<title>Multiplex rapid MERS immunoassay</title>
<p id="p0100">To provide a proof of concept study for clinical application as to whether the fabricated ESPS platform together with the design rapid immunoassay protocol within a device-based environment could be applied to a rapid MERS immunoassay, antibodies against HSA (control) and MERS-CoV (target) were tested using this platform. As mentioned in the introduction, by attaining a rapid detection of desired analytes, in this case antibodies to examine the immune system, a progressive step forward can be made towards preventative diagnostics.</p>
<p id="p0105">First, the optimization of the protocol for antigen immobilization to the ESPS platform was performed. Here, both HSA and MERS antigens were tested separately. Optimization of HSA adsorption indicated a rapidly increasing trend up until about 200 μg/mL to where increasing amounts of HSA immobilized to the surface has a plateaued effect of detection intensity (
<xref rid="fig5" ref-type="fig">Fig. 5</xref>
). Meanwhile, the MERS adsorption test demonstrated that detection was limited at concentrations less than 100 μg/mL, thus concentrations above this value were used for subsequent studies.
<fig id="fig5">
<label>Fig. 5</label>
<caption>
<p>Varied immobilized antigen concentrations to the surface for (a) HSA and (b) MERS utilizing the rapid immunoassay protocol. (n = 3; error bars are standard errors).</p>
</caption>
<alt-text id="alttext0035">Fig. 5</alt-text>
<graphic xlink:href="gr5_lrg"></graphic>
</fig>
</p>
<p id="p0110">Lastly, multiplex rapid immunoassay using 200 μg/mL of HSA and MERS antigens was performed (
<xref rid="fig6" ref-type="fig">Fig. 6</xref>
). Three separate ESPS platforms, each with 9 O
<sub>2</sub>
-plasma treated spots, were all processed under the same conditions with the only difference being the antibody solution having: (1) only FITC-conjugated
<italic>anti</italic>
-HSA antibodies, (2) only FITC-conjugated
<italic>anti</italic>
-MERS antibodies, or (3) a mix of both FITC conjugate
<italic>anti</italic>
-HSA and FITC-conjugated
<italic>anti</italic>
-MERS antibodies. It was successfully observed that, upon the ESPS platforms tested with FITC-conjugated
<italic>anti</italic>
-MERS antibody and
<italic>anti</italic>
-HSA antibody solutions, each of MERS and HSA antibodies could be selectively detected. Additionally, when a mixed solution of FITC-conjugated
<italic>anti</italic>
-MERS and
<italic>anti</italic>
-HSA antibodies was added, both antibodies could be simultaneously detected with the multiplex setup. It was also noted that the signals for both antibodies slightly decreased in the mixture test, in comparison to the individual tests, possibly due to the crowding.
<fig id="fig6">
<label>Fig. 6</label>
<caption>
<p>(a) Quantification of the multiplex MERS immunoassay, (b) schematic of the antigen immobilization setup, (c) FITC-conjugated
<italic>anti</italic>
-MERS only solution, (d) FITC-conjugated
<italic>anti</italic>
-HSA only solution, and (e) both
<italic>anti</italic>
-HSA and
<italic>anti</italic>
-MERS. (n = 3; error bars are standard errors).</p>
</caption>
<alt-text id="alttext0040">Fig. 6</alt-text>
<graphic xlink:href="gr6_lrg"></graphic>
</fig>
</p>
</sec>
</sec>
<sec id="sec4">
<label>4</label>
<title>Discussion</title>
<p id="p0115">This multiplex microfiber-based immunoassay platform hinges on several key factors including the patterned O
<sub>2</sub>
plasma treatment and efficient blocking that warrant some discussions. First, the rationale behind how proteins such as the immobilized antibodies/antigens preferentially adsorb to just the hydrophilic spots is of great importance. Generally, the protein adsorption on flat surface is affected by the hydrophobicity and surface potential [
<xref rid="bib40" ref-type="bibr">40</xref>
]. In the case of EPSP fiber mats, the nature of hydrophobicity arises from Cassie-Baxter regime consisting of two kinds of hydrophobic materials, which are the untreated PS and air [
<xref rid="bib41" ref-type="bibr">41</xref>
]. The O
<sub>2</sub>
plasma treatment modifies the surface properties of PS rendering it hydrophilic. For flat PS plates, the surface wettability of water changed from 77.7° ± 3.0°–25.2° ± 3.9° after treatment with O
<sub>2</sub>
plasma for 5 min. Interestingly, in stark contrast to the flat plates, the O
<sub>2</sub>
-plasma-treated PS microfibers resulted in greater levels of hydrophilicity (4.5° ± 4.1°) after the same plasma treatment, as illustrated in
<xref rid="fig2" ref-type="fig">Fig. 2</xref>
. This hydrophilic nature of the ESPS microfiber mat after O
<sub>2</sub>
plasma treatment can be explained by the Wenzel regime, describing the reduced apparent water contact angles for rough surfaces [
<xref rid="bib41" ref-type="bibr">41</xref>
]. Indeed, the patterned O
<sub>2</sub>
plasma treatment on the ESPS microfiber mats resulted in separate regions with these two different regimes, where only the hydrophilic surfaces promoted solution flow through the plasma-treated spots. In other words, O
<sub>2</sub>
plasma treatment of PS was suitable for preventing air pockets within microfibers, and thus the protein solution could contact the fiber surface through wetting. On the contrary, the unexposed, hydrophobic surfaces of ESPS did not allow wetting, so the protein solution could not contact the fiber surfaces in these regions. Thus, although the total amount of protein adsorption is regulated by the true contact angle of materials, the apparent contact angle arising of the porous structure of ESPS microfiber is also a crucial parameter in dictating protein adsorption.</p>
<p id="p0120">Next, a brief discussion of skim milk as the blocking agent is of importance. Often times, immunoassays are conducted with blocking agents commonly those of proteins which can adhere well to the surface without preventing any other adsorption of proteins to the surface. Among the common choices, skim milk, BSA or BSA-based products, such as BlockingONE exist. As noted in
<xref rid="fig5" ref-type="fig">Fig. 5</xref>
, skim milk had the best results for blocking in the case of the O
<sub>2</sub>
-plasma-treated samples. The mix of variety of proteins that exist within skim milk could beneficially be penetrating the fiber and thus blocking the surface most effectively [
<xref rid="bib42" ref-type="bibr">[42]</xref>
,
<xref rid="bib43" ref-type="bibr">[43]</xref>
,
<xref rid="bib44" ref-type="bibr">[44]</xref>
]. It has been found that casein, within milk, can be an effective blocking agent due to its small protein size. Together with other proteins within skim milk a closely packed surface of proteins can effectively prevent non-specific adsorption to the surface. In contrast, BSA has relatively large molecular weight components which can make random close packing of blocking to the surface difficult in comparison to that of skim milk. Another interesting point is that skim milk is considered amphipathic having both hydrophilic and hydrophobic parts. As O
<sub>2</sub>
treatment is introduced to the surface, the hydrophilic nature may have allowed milk to be effectively bound to the surface.</p>
<p id="p0125">Lastly, the comparison of the multiplex microfiber platform used in this study to other conventional assays and devices is important. A comparable work to this study was conducted by Sato et al. [
<xref rid="bib45" ref-type="bibr">45</xref>
], where a combinatorial assay was conducted utilizing a microfluidic chip together with integrated polystyrene beads to measure IgA antibody concentration. Similar to how microfibers were utilized in this study to increase the surface to volume ratios, microbeads were packed into a microfluidic device with a filling factor of 60% (bead diameter of 46 μm). Although they were able to achieve a high level of sensitivity below 10 μg/mL, their straightforward step-by-step immunoassay procedure of antigen immobilization and then capture of colloid gold labeled-IgA antibodies took roughly 1 h, compared to several minutes in this study. Thus, sensitivity and speed is often a fine balance for these immunoassays, and priorities should be chosen based on the applications of these assays. The multiplex microfiber platform in this study is intended for antibody detection for POC monitoring of antibody levels. It has recently been reported that the antibody titers of patients infected by MERS-CoV range from 1: 80 to 1: 800, depending on the time post infection, with the neutralizing antibody titer being more than 1: 800 [
<xref rid="bib46" ref-type="bibr">[46]</xref>
,
<xref rid="bib47" ref-type="bibr">[47]</xref>
,
<xref rid="bib48" ref-type="bibr">[48]</xref>
]. Considering that ELISA is often used for determining antibody titers and its LOD is around 1 μg/mL [
<xref rid="bib36" ref-type="bibr">36</xref>
], it is suggested that the required antibody concentration for neutralizing MERS-CoV would be above 800 μg/mL. Thus, the LOD of 200 μg/mL for the
<italic>anti</italic>
-MERS-CoV antibody by the multiplex microfiber platform, although not yet as low as other established platforms, would be sufficient to detect the necessary antibody production in MERS-infected patients.</p>
</sec>
<sec id="sec5">
<label>5</label>
<title>Conclusion</title>
<p id="p0130">The multiplex ESPS fiber system with a housing suited for POC was introduced as a means for rapid MERS antibody detection. The capability of a rapid FLISA was exhibited by utilizing 8-layered ESPS fiber mats treated with O
<sub>2</sub>
plasma. The patterned O
<sub>2</sub>
plasma treatment method with developed mask showed optimal protein adsorptive results at 3 min at 100W. This in turn created a hydrophilic surface capable of antibody immobilization and, further, rapid FLISA testing. In terms of the detection surface, effective detection could be achieved upon this platform within 1 min of operation time. Furthermore, the actual setup and preparation of the device could be completed in 5 min, which includes capture molecule immobilization, blocking and washing steps. The results demonstrated the capability of the device for multiplex analysis by detecting antibodies for both HSA and MERS-CoV concurrently. This microfiber-based multiplex immunoassay platform serves as a stepping stone for the next-generation POC device that would enable preventative diagnostics by accurately and rapidly determining the existence of adequate antibodies and aid general healthcare through appropriate vaccination schemes.</p>
</sec>
<sec id="sec6">
<title>Author contributions</title>
<p id="p0135">C.F.O.H. and Y.Y. performed experiments; C.F.O.H. and K.K. analyzed data; K.K., A.R. and M.T. designed research; C.F.O.H., K.K., Y.Y., A.R., and M.T. wrote manuscript.</p>
</sec>
</body>
<back>
<ref-list id="cebib0010">
<title>References</title>
<ref id="bib1">
<label>1</label>
<element-citation publication-type="journal" id="sref1">
<person-group person-group-type="author">
<name>
<surname>Wilkins</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Gallimore</surname>
<given-names>J.R.</given-names>
</name>
<name>
<surname>Moore</surname>
<given-names>E.G.</given-names>
</name>
<name>
<surname>Pepys</surname>
<given-names>M.B.</given-names>
</name>
</person-group>
<article-title>Rapid automated high sensitivity enzyme immunoassay of C-reactive protein</article-title>
<source>Clin. Chem.</source>
<volume>44</volume>
<year>1998</year>
<fpage>1358</fpage>
<lpage>1361</lpage>
<pub-id pub-id-type="pmid">9625071</pub-id>
</element-citation>
</ref>
<ref id="bib2">
<label>2</label>
<element-citation publication-type="journal" id="sref2">
<person-group person-group-type="author">
<name>
<surname>Chon</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Son</surname>
<given-names>S.W.</given-names>
</name>
<name>
<surname>Oh</surname>
<given-names>C.H.</given-names>
</name>
<name>
<surname>Choo</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Highly sensitive immunoassay of lung cancer marker carcinoembryonic antigen using surface-enhanced Raman scattering of hallow gold nanospheres</article-title>
<source>Anal. Chem.</source>
<volume>81</volume>
<year>2009</year>
<fpage>3029</fpage>
<lpage>3034</lpage>
<pub-id pub-id-type="pmid">19301845</pub-id>
</element-citation>
</ref>
<ref id="bib3">
<label>3</label>
<element-citation publication-type="journal" id="sref3">
<person-group person-group-type="author">
<name>
<surname>Tajima</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Takai</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Ishihara</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Significance of antibody orientation unraveled: well-oriented antibodies recorded high binding affinity</article-title>
<source>Anal. Chem.</source>
<volume>83</volume>
<year>2011</year>
<fpage>1969</fpage>
<lpage>1976</lpage>
<pub-id pub-id-type="pmid">21338074</pub-id>
</element-citation>
</ref>
<ref id="bib4">
<label>4</label>
<element-citation publication-type="journal" id="sref4">
<person-group person-group-type="author">
<name>
<surname>Lim</surname>
<given-names>C.T.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>Bead-based microfluidic immunoassays: the next generation</article-title>
<source>Biosens. Bioelectron.</source>
<volume>22</volume>
<year>2007</year>
<fpage>1197</fpage>
<lpage>1204</lpage>
<pub-id pub-id-type="pmid">16857357</pub-id>
</element-citation>
</ref>
<ref id="bib5">
<label>5</label>
<element-citation publication-type="journal" id="sref5">
<person-group person-group-type="author">
<name>
<surname>Takai</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Highly sensitive and rapid biosensing on a three-dimensional polymer platform</article-title>
<source>Polym. J.</source>
<volume>50</volume>
<year>2018</year>
<fpage>847</fpage>
<lpage>855</lpage>
</element-citation>
</ref>
<ref id="bib6">
<label>6</label>
<element-citation publication-type="journal" id="sref6">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>Z.H.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>Z.W.</given-names>
</name>
<name>
<surname>Pounds</surname>
<given-names>J.G.</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>Y.H.</given-names>
</name>
</person-group>
<article-title>Rapid and sensitive detection of protein biomarker using a portable fluorescence biosensor based on quantum dots and a lateral flow test strip</article-title>
<source>Anal. Chem.</source>
<volume>82</volume>
<year>2010</year>
<fpage>7008</fpage>
<lpage>7014</lpage>
<pub-id pub-id-type="pmid">20704391</pub-id>
</element-citation>
</ref>
<ref id="bib7">
<label>7</label>
<element-citation publication-type="journal" id="sref7">
<person-group person-group-type="author">
<name>
<surname>Qu</surname>
<given-names>H.H.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Qu</surname>
<given-names>B.P.</given-names>
</name>
<name>
<surname>Kong</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Qin</surname>
<given-names>G.F.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>S.C.</given-names>
</name>
</person-group>
<article-title>Rapid lateral-flow immunoassay for the quantum dot-based detection of puerarin</article-title>
<source>Biosens. Bioelectron.</source>
<volume>81</volume>
<year>2016</year>
<fpage>358</fpage>
<lpage>362</lpage>
<pub-id pub-id-type="pmid">26991602</pub-id>
</element-citation>
</ref>
<ref id="bib8">
<label>8</label>
<element-citation publication-type="journal" id="sref8">
<person-group person-group-type="author">
<name>
<surname>Lin</surname>
<given-names>C.C.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>J.H.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>H.W.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>G.B.</given-names>
</name>
</person-group>
<article-title>Microfluidic immunoassays</article-title>
<source>Jala-J Lab. Autom.</source>
<volume>15</volume>
<year>2010</year>
<fpage>253</fpage>
<lpage>274</lpage>
</element-citation>
</ref>
<ref id="bib9">
<label>9</label>
<element-citation publication-type="journal" id="sref9">
<person-group person-group-type="author">
<name>
<surname>Auroux</surname>
<given-names>P.A.</given-names>
</name>
<name>
<surname>Iossifidis</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Reyes</surname>
<given-names>D.R.</given-names>
</name>
<name>
<surname>Manz</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Micro total analysis systems. 2. Analytical standard operations and applications</article-title>
<source>Anal. Chem.</source>
<volume>74</volume>
<year>2002</year>
<fpage>2637</fpage>
<lpage>2652</lpage>
<pub-id pub-id-type="pmid">12090654</pub-id>
</element-citation>
</ref>
<ref id="bib10">
<label>10</label>
<element-citation publication-type="journal" id="sref10">
<person-group person-group-type="author">
<name>
<surname>Reyes</surname>
<given-names>D.R.</given-names>
</name>
<name>
<surname>Iossifidis</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Auroux</surname>
<given-names>P.A.</given-names>
</name>
<name>
<surname>Manz</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Micro total analysis systems. 1. Introduction, theory, and technology</article-title>
<source>Anal. Chem.</source>
<volume>74</volume>
<year>2002</year>
<fpage>2623</fpage>
<lpage>2636</lpage>
<pub-id pub-id-type="pmid">12090653</pub-id>
</element-citation>
</ref>
<ref id="bib11">
<label>11</label>
<element-citation publication-type="journal" id="sref11">
<person-group person-group-type="author">
<name>
<surname>Martinez</surname>
<given-names>A.W.</given-names>
</name>
<name>
<surname>Phillips</surname>
<given-names>S.T.</given-names>
</name>
<name>
<surname>Whitesides</surname>
<given-names>G.M.</given-names>
</name>
<name>
<surname>Carrilho</surname>
<given-names>E.</given-names>
</name>
</person-group>
<article-title>Diagnostics for the developing world: microfluidic paper-based analytical devices</article-title>
<source>Anal. Chem.</source>
<volume>82</volume>
<year>2010</year>
<fpage>3</fpage>
<lpage>10</lpage>
<pub-id pub-id-type="pmid">20000334</pub-id>
</element-citation>
</ref>
<ref id="bib12">
<label>12</label>
<element-citation publication-type="journal" id="sref12">
<person-group person-group-type="author">
<name>
<surname>Yamada</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Henares</surname>
<given-names>T.G.</given-names>
</name>
<name>
<surname>Suzuki</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Citterio</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>Paper-based inkjet-printed microfluidic analytical devices</article-title>
<source>Angew. Chem. Int. Ed.</source>
<volume>54</volume>
<year>2015</year>
<fpage>5294</fpage>
<lpage>5310</lpage>
</element-citation>
</ref>
<ref id="bib13">
<label>13</label>
<element-citation publication-type="journal" id="sref13">
<person-group person-group-type="author">
<name>
<surname>Abe</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Suzuki</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Citterio</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>Inkjet-printed microfluidic multianalyte chemical sensing paper</article-title>
<source>Anal. Chem.</source>
<volume>80</volume>
<year>2008</year>
<fpage>6928</fpage>
<lpage>6934</lpage>
<pub-id pub-id-type="pmid">18698798</pub-id>
</element-citation>
</ref>
<ref id="bib14">
<label>14</label>
<element-citation publication-type="journal" id="sref14">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Ballerini</surname>
<given-names>D.R.</given-names>
</name>
<name>
<surname>Shen</surname>
<given-names>W.</given-names>
</name>
</person-group>
<article-title>A perspective on paper-based microfluidics: current status and future trends</article-title>
<source>Biomicrofluidics</source>
<volume>6</volume>
<year>2012</year>
</element-citation>
</ref>
<ref id="bib15">
<label>15</label>
<element-citation publication-type="journal" id="sref15">
<person-group person-group-type="author">
<name>
<surname>Sato</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Tokeshi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kimura</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Kitamori</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Determination of carcinoembryonic antigen in human sera by integrated bead-bed immunoassay in a microchip for cancer diagnosis</article-title>
<source>Anal. Chem.</source>
<volume>73</volume>
<year>2001</year>
<fpage>1213</fpage>
<lpage>1218</lpage>
<pub-id pub-id-type="pmid">11305654</pub-id>
</element-citation>
</ref>
<ref id="bib16">
<label>16</label>
<element-citation publication-type="journal" id="sref16">
<person-group person-group-type="author">
<name>
<surname>Swartzman</surname>
<given-names>E.E.</given-names>
</name>
<name>
<surname>Miraglia</surname>
<given-names>S.J.</given-names>
</name>
<name>
<surname>Mellentin-Michelotti</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Evangelista</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Yuan</surname>
<given-names>P.M.</given-names>
</name>
</person-group>
<article-title>A homogeneous and multiplexed immunoassay for high-throughput screening using fluorometric microvolume assay technology</article-title>
<source>Anal. Biochem.</source>
<volume>271</volume>
<year>1999</year>
<fpage>143</fpage>
<lpage>151</lpage>
<pub-id pub-id-type="pmid">10419629</pub-id>
</element-citation>
</ref>
<ref id="bib17">
<label>17</label>
<element-citation publication-type="journal" id="sref17">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>B.S.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>J.N.</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>J.G.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Cho</surname>
<given-names>Y.K.</given-names>
</name>
</person-group>
<article-title>A fully automated immunoassay from whole blood on a disc</article-title>
<source>Lab Chip</source>
<volume>9</volume>
<year>2009</year>
<fpage>1548</fpage>
<lpage>1555</lpage>
<pub-id pub-id-type="pmid">19458861</pub-id>
</element-citation>
</ref>
<ref id="bib18">
<label>18</label>
<element-citation publication-type="journal" id="sref18">
<person-group person-group-type="author">
<name>
<surname>Kellar</surname>
<given-names>K.L.</given-names>
</name>
<name>
<surname>Kalwar</surname>
<given-names>R.R.</given-names>
</name>
<name>
<surname>Dubois</surname>
<given-names>K.A.</given-names>
</name>
<name>
<surname>Crouse</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Chafin</surname>
<given-names>W.D.</given-names>
</name>
<name>
<surname>Kane</surname>
<given-names>B.E.</given-names>
</name>
</person-group>
<article-title>Multiplexed fluorescent bead-based immunoassays for quantitation of human cytokines in serum and culture supernatants</article-title>
<source>Cytometry</source>
<volume>45</volume>
<year>2001</year>
<fpage>27</fpage>
<lpage>36</lpage>
<pub-id pub-id-type="pmid">11598944</pub-id>
</element-citation>
</ref>
<ref id="bib19">
<label>19</label>
<element-citation publication-type="journal" id="sref19">
<person-group person-group-type="author">
<name>
<surname>Bruls</surname>
<given-names>D.M.</given-names>
</name>
<name>
<surname>Evers</surname>
<given-names>T.H.</given-names>
</name>
<name>
<surname>Kahlman</surname>
<given-names>J.A.H.</given-names>
</name>
<name>
<surname>van Lankvelt</surname>
<given-names>P.J.W.</given-names>
</name>
<name>
<surname>Ovsyanko</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Pelssers</surname>
<given-names>E.G.M.</given-names>
</name>
</person-group>
<article-title>Rapid integrated biosensor for multiplexed immunoassays based on actuated magnetic nanoparticles</article-title>
<source>Lab Chip</source>
<volume>9</volume>
<year>2009</year>
<fpage>3504</fpage>
<lpage>3510</lpage>
<pub-id pub-id-type="pmid">20024029</pub-id>
</element-citation>
</ref>
<ref id="bib20">
<label>20</label>
<element-citation publication-type="journal" id="sref20">
<person-group person-group-type="author">
<name>
<surname>Fu</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Van Eyk</surname>
<given-names>J.E.</given-names>
</name>
</person-group>
<article-title>Comparison of multiplex immunoassay platforms</article-title>
<source>Clin. Chem.</source>
<volume>56</volume>
<year>2010</year>
<fpage>314</fpage>
<lpage>318</lpage>
<pub-id pub-id-type="pmid">20022982</pub-id>
</element-citation>
</ref>
<ref id="bib21">
<label>21</label>
<element-citation publication-type="journal" id="sref21">
<person-group person-group-type="author">
<name>
<surname>Smits</surname>
<given-names>G.P.</given-names>
</name>
<name>
<surname>van Gageldonk</surname>
<given-names>P.G.</given-names>
</name>
<name>
<surname>Schouls</surname>
<given-names>L.M.</given-names>
</name>
<name>
<surname>van der Klis</surname>
<given-names>F.R.M.</given-names>
</name>
<name>
<surname>Berbers</surname>
<given-names>G.A.M.</given-names>
</name>
</person-group>
<article-title>Development of a bead-based multiplex immunoassay for simultaneous quantitative detection of IgG serum antibodies against measles, mumps, rubella, and varicella-zoster virus</article-title>
<source>Clin. Vaccine Immunol.</source>
<volume>19</volume>
<year>2012</year>
<fpage>396</fpage>
<lpage>400</lpage>
<pub-id pub-id-type="pmid">22237896</pub-id>
</element-citation>
</ref>
<ref id="bib22">
<label>22</label>
<element-citation publication-type="journal" id="sref22">
<person-group person-group-type="author">
<name>
<surname>Yu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Xia</surname>
<given-names>Y.Q.</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>W.L.</given-names>
</name>
<name>
<surname>Yeh</surname>
<given-names>Y.T.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>H.G.</given-names>
</name>
</person-group>
<article-title>A nanostructured microfluidic immunoassay platform for highly sensitive infectious pathogen detection</article-title>
<source>Small</source>
<volume>13</volume>
<year>2017</year>
</element-citation>
</ref>
<ref id="bib23">
<label>23</label>
<element-citation publication-type="journal" id="sref23">
<person-group person-group-type="author">
<name>
<surname>Kaminska</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Witkowska</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Winkler</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Dziecielewski</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Weyher</surname>
<given-names>J.L.</given-names>
</name>
<name>
<surname>Waluk</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Detection of Hepatitis B virus antigen from human blood: SERS immunoassay in a microfluidic system</article-title>
<source>Biosens. Bioelectron.</source>
<volume>66</volume>
<year>2015</year>
<fpage>461</fpage>
<lpage>467</lpage>
<pub-id pub-id-type="pmid">25497986</pub-id>
</element-citation>
</ref>
<ref id="bib24">
<label>24</label>
<element-citation publication-type="journal" id="sref24">
<person-group person-group-type="author">
<name>
<surname>Yamaoka</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Matsuyama</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Fukushi</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Matsunaga</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Matsushima</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Kuroyama</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Development of monoclonal antibody and diagnostic test for Middle East respiratory syndrome coronavirus using cell-free synthesized nucleocapsid antigen</article-title>
<source>Front. Microbiol.</source>
<volume>7</volume>
<year>2016</year>
</element-citation>
</ref>
<ref id="bib25">
<label>25</label>
<element-citation publication-type="journal" id="sref25">
<person-group person-group-type="author">
<name>
<surname>Zaki</surname>
<given-names>A.M.</given-names>
</name>
<name>
<surname>van Boheemen</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Bestebroer</surname>
<given-names>T.M.</given-names>
</name>
<name>
<surname>Osterhaus</surname>
<given-names>A.D.M.E.</given-names>
</name>
<name>
<surname>Fouchier</surname>
<given-names>R.A.M.</given-names>
</name>
</person-group>
<article-title>Isolation of a novel coronavirus from a man with pneumonia in Saudi arabia</article-title>
<source>N. Engl. J. Med.</source>
<volume>367</volume>
<year>2012</year>
<fpage>1814</fpage>
<lpage>1820</lpage>
<pub-id pub-id-type="pmid">23075143</pub-id>
</element-citation>
</ref>
<ref id="bib26">
<label>26</label>
<element-citation publication-type="journal" id="sref26">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Chan</surname>
<given-names>K.H.</given-names>
</name>
<name>
<surname>Kang</surname>
<given-names>Y.H.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>H.L.</given-names>
</name>
<name>
<surname>Luk</surname>
<given-names>H.K.H.</given-names>
</name>
<name>
<surname>Poon</surname>
<given-names>R.W.S.</given-names>
</name>
</person-group>
<article-title>A sensitive and specific antigen detection assay for Middle East respiratory syndrome coronavirus</article-title>
<source>Emerg. Microb. Infect.</source>
<volume>4</volume>
<year>2015</year>
</element-citation>
</ref>
<ref id="bib27">
<label>27</label>
<element-citation publication-type="journal" id="sref27">
<person-group person-group-type="author">
<name>
<surname>Alsolamy</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Arabi</surname>
<given-names>Y.M.</given-names>
</name>
</person-group>
<article-title>Infection with Middle East respiratory syndrome coronavirus</article-title>
<source>Can. J. Respir. Ther.</source>
<volume>51</volume>
<year>2015</year>
<fpage>102</fpage>
<pub-id pub-id-type="pmid">26566382</pub-id>
</element-citation>
</ref>
<ref id="bib28">
<label>28</label>
<element-citation publication-type="journal" id="sref28">
<person-group person-group-type="author">
<name>
<surname>Hotez</surname>
<given-names>P.J.</given-names>
</name>
<name>
<surname>Bottazzi</surname>
<given-names>M.E.</given-names>
</name>
<name>
<surname>Tseng</surname>
<given-names>C.T.K.</given-names>
</name>
<name>
<surname>Zhan</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Lustigman</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Du</surname>
<given-names>L.Y.</given-names>
</name>
</person-group>
<article-title>Calling for rapid development of a safe and effective MERS vaccine</article-title>
<source>Microb. Infect.</source>
<volume>16</volume>
<year>2014</year>
<fpage>529</fpage>
<lpage>531</lpage>
</element-citation>
</ref>
<ref id="bib29">
<label>29</label>
<element-citation publication-type="journal" id="sref29">
<person-group person-group-type="author">
<name>
<surname>de Haas</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>van den Hof</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Berbers</surname>
<given-names>G.A.</given-names>
</name>
<name>
<surname>de Melker</surname>
<given-names>H.E.</given-names>
</name>
<name>
<surname>Conyn-van Spaendonck</surname>
<given-names>M.A.</given-names>
</name>
</person-group>
<article-title>Prevalence of antibodies against rubella virus in The Netherlands 9 years after changing from selective to mass vaccination</article-title>
<source>Epidemiol. Infect.</source>
<volume>123</volume>
<year>1999</year>
<fpage>263</fpage>
<lpage>270</lpage>
<pub-id pub-id-type="pmid">10579446</pub-id>
</element-citation>
</ref>
<ref id="bib30">
<label>30</label>
<element-citation publication-type="journal" id="sref30">
<person-group person-group-type="author">
<name>
<surname>van den Hof</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Beaumont</surname>
<given-names>M.T.</given-names>
</name>
<name>
<surname>Berbers</surname>
<given-names>G.A.</given-names>
</name>
<name>
<surname>de Melker</surname>
<given-names>H.E.</given-names>
</name>
</person-group>
<article-title>Antibodies against mumps in The Netherlands as assessed by indirect ELISA and virus neutralization assay</article-title>
<source>Epidemiol. Infect.</source>
<volume>131</volume>
<year>2003</year>
<fpage>703</fpage>
<lpage>709</lpage>
<pub-id pub-id-type="pmid">12948370</pub-id>
</element-citation>
</ref>
<ref id="bib31">
<label>31</label>
<element-citation publication-type="journal" id="sref31">
<person-group person-group-type="author">
<name>
<surname>Harmsen</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Jongerius</surname>
<given-names>M.C.</given-names>
</name>
<name>
<surname>Vanderzwan</surname>
<given-names>C.W.</given-names>
</name>
<name>
<surname>Plantinga</surname>
<given-names>A.D.</given-names>
</name>
<name>
<surname>Kraaijeveld</surname>
<given-names>C.A.</given-names>
</name>
<name>
<surname>Berbers</surname>
<given-names>G.A.M.</given-names>
</name>
</person-group>
<article-title>Comparison of a neutralization enzyme-immunoassay and an enzyme-linked-immunosorbent-assay for evaluation of immune status of children vaccinated for mumps</article-title>
<source>J. Clin. Microbiol.</source>
<volume>30</volume>
<year>1992</year>
<fpage>2139</fpage>
<lpage>2144</lpage>
<pub-id pub-id-type="pmid">1500523</pub-id>
</element-citation>
</ref>
<ref id="bib32">
<label>32</label>
<element-citation publication-type="journal" id="sref32">
<person-group person-group-type="author">
<name>
<surname>Celikbas</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Ergonul</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Aksaray</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Tuygun</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Esener</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Tanir</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Measles, rubella, mumps, and varicella seroprevalence among health care workers in Turkey: is prevaccination screening cost-effective?</article-title>
<source>Am. J. Infect. Contr.</source>
<volume>34</volume>
<year>2006</year>
<fpage>583</fpage>
<lpage>587</lpage>
</element-citation>
</ref>
<ref id="bib33">
<label>33</label>
<element-citation publication-type="journal" id="sref33">
<person-group person-group-type="author">
<name>
<surname>Craft</surname>
<given-names>J.E.</given-names>
</name>
<name>
<surname>Grodzicki</surname>
<given-names>R.L.</given-names>
</name>
<name>
<surname>Steere</surname>
<given-names>A.C.</given-names>
</name>
</person-group>
<article-title>Antibody-response in lyme-disease - evaluation of diagnostic-tests</article-title>
<source>JID (J. Infect. Dis.)</source>
<volume>149</volume>
<year>1984</year>
<fpage>789</fpage>
<lpage>795</lpage>
<pub-id pub-id-type="pmid">6373966</pub-id>
</element-citation>
</ref>
<ref id="bib34">
<label>34</label>
<element-citation publication-type="journal" id="sref34">
<person-group person-group-type="author">
<name>
<surname>Harboe</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Ingild</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Immunization, isolation of immunoglobulins, estimation of antibody titer</article-title>
<source>Scand. J. Immunol.</source>
<volume>2</volume>
<year>1973</year>
<fpage>161</fpage>
<lpage>164</lpage>
</element-citation>
</ref>
<ref id="bib35">
<label>35</label>
<element-citation publication-type="journal" id="sref35">
<person-group person-group-type="author">
<name>
<surname>Fukushi</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Fukuma</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Kurosu</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Watanabe</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Shimojima</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Shirato</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Characterization of novel monoclonal antibodies against the MERS-coronavirus spike protein and their application in species-independent antibody detection by competitive ELISA</article-title>
<source>J. Virol. Methods</source>
<volume>251</volume>
<year>2018</year>
<fpage>22</fpage>
<lpage>29</lpage>
<pub-id pub-id-type="pmid">28993122</pub-id>
</element-citation>
</ref>
<ref id="bib36">
<label>36</label>
<element-citation publication-type="journal" id="sref36">
<person-group person-group-type="author">
<name>
<surname>Kelly-Cirino</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Mazzola</surname>
<given-names>L.T.</given-names>
</name>
<name>
<surname>Chua</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Oxenford</surname>
<given-names>C.J.</given-names>
</name>
<name>
<surname>Van Kerkhove</surname>
<given-names>M.D.</given-names>
</name>
</person-group>
<article-title>An updated roadmap for MERS-CoV research and product development: focus on diagnostics</article-title>
<source>BMJ Glob. Health</source>
<volume>4</volume>
<year>2019</year>
<object-id pub-id-type="publisher-id">e001105</object-id>
</element-citation>
</ref>
<ref id="bib37">
<label>37</label>
<element-citation publication-type="journal" id="sref37">
<person-group person-group-type="author">
<name>
<surname>Hoy</surname>
<given-names>C.F.O.</given-names>
</name>
<name>
<surname>Kushiro</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Takai</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Fabrication and assessment of an electrospun polymeric microfiber-based platform under bulk flow conditions with rapid and efficient antigen capture (vol 143, pg 865</article-title>
<source>Analyst</source>
<volume>143</volume>
<issue>2018</issue>
<year>2018</year>
<fpage>1713</fpage>
<pub-id pub-id-type="pmid">29528058</pub-id>
</element-citation>
</ref>
<ref id="bib38">
<label>38</label>
<element-citation publication-type="journal" id="sref38">
<person-group person-group-type="author">
<name>
<surname>Choi</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Choi</surname>
<given-names>E.Y.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>D.J.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>J.H.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>T.S.</given-names>
</name>
<name>
<surname>Oh</surname>
<given-names>S.W.</given-names>
</name>
</person-group>
<article-title>A rapid, simple measurement of human albumin in whole blood using a fluorescence immunoassay (I)</article-title>
<source>Clin. Chim. Acta</source>
<volume>339</volume>
<year>2004</year>
<fpage>147</fpage>
<lpage>156</lpage>
<pub-id pub-id-type="pmid">14687905</pub-id>
</element-citation>
</ref>
<ref id="bib39">
<label>39</label>
<element-citation publication-type="journal" id="sref39">
<person-group person-group-type="author">
<name>
<surname>Wu</surname>
<given-names>D.P.</given-names>
</name>
<name>
<surname>Han</surname>
<given-names>D.W.</given-names>
</name>
<name>
<surname>Steckl</surname>
<given-names>A.J.</given-names>
</name>
</person-group>
<article-title>Immunoassay on free-standing electrospun membranes</article-title>
<source>Acs Appl. Mater. Inter.</source>
<volume>2</volume>
<year>2010</year>
<fpage>252</fpage>
<lpage>258</lpage>
</element-citation>
</ref>
<ref id="bib40">
<label>40</label>
<element-citation publication-type="journal" id="sref40">
<person-group person-group-type="author">
<name>
<surname>Attwood</surname>
<given-names>S.J.</given-names>
</name>
<name>
<surname>Kershaw</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Uddin</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Bishop</surname>
<given-names>S.M.</given-names>
</name>
<name>
<surname>Welland</surname>
<given-names>M.E.</given-names>
</name>
</person-group>
<article-title>Understanding how charge and hydrophobicity influence globular protein adsorption to alkanethiol and material surfaces</article-title>
<source>J. Mater. Chem. B</source>
<volume>7</volume>
<year>2019</year>
<fpage>2349</fpage>
<lpage>2361</lpage>
</element-citation>
</ref>
<ref id="bib41">
<label>41</label>
<element-citation publication-type="journal" id="sref41">
<person-group person-group-type="author">
<name>
<surname>Whyman</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Bormashenko</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Stein</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>The rigorous derivation of Young, Cassie-Baxter and Wenzel equations and the analysis of the contact angle hysteresis phenomenon</article-title>
<source>Chem. Phys. Lett.</source>
<volume>450</volume>
<year>2008</year>
<fpage>355</fpage>
<lpage>359</lpage>
</element-citation>
</ref>
<ref id="bib42">
<label>42</label>
<element-citation publication-type="journal" id="sref42">
<person-group person-group-type="author">
<name>
<surname>Peterfi</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Kocsis</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>Comparison of blocking agents for an ELISA for LPS</article-title>
<source>J. Immunoass.</source>
<volume>21</volume>
<year>2000</year>
<fpage>341</fpage>
<lpage>354</lpage>
</element-citation>
</ref>
<ref id="bib43">
<label>43</label>
<element-citation publication-type="journal" id="sref43">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>W.S.</given-names>
</name>
<name>
<surname>Nishizawa</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Yoshimizu</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Non-specific adsorption of fish immunoglobulin M (IgM) to blocking reagents on ELISA plate wells</article-title>
<source>Dis. Aquat. Org.</source>
<volume>78</volume>
<year>2007</year>
<fpage>55</fpage>
<lpage>59</lpage>
<pub-id pub-id-type="pmid">18159673</pub-id>
</element-citation>
</ref>
<ref id="bib44">
<label>44</label>
<element-citation publication-type="journal" id="sref44">
<person-group person-group-type="author">
<name>
<surname>Contarini</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Povolo</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Phospholipids in milk fat: composition, biological and technological significance, and analytical strategies</article-title>
<source>Int. J. Mol. Sci.</source>
<volume>14</volume>
<year>2013</year>
<fpage>2808</fpage>
<lpage>2831</lpage>
<pub-id pub-id-type="pmid">23434649</pub-id>
</element-citation>
</ref>
<ref id="bib45">
<label>45</label>
<element-citation publication-type="journal" id="sref45">
<person-group person-group-type="author">
<name>
<surname>Sato</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Tokeshi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Odake</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Kimura</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Ooi</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Nakao</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Integration of an immunosorbent assay system: analysis of secretory human immunoglobulin A on polystyrene beads in a microchip</article-title>
<source>Anal. Chem.</source>
<volume>72</volume>
<year>2000</year>
<fpage>1144</fpage>
<lpage>1147</lpage>
<pub-id pub-id-type="pmid">10740851</pub-id>
</element-citation>
</ref>
<ref id="bib46">
<label>46</label>
<element-citation publication-type="journal" id="sref46">
<person-group person-group-type="author">
<name>
<surname>Corman</surname>
<given-names>V.M.</given-names>
</name>
<name>
<surname>Albarrak</surname>
<given-names>A.M.</given-names>
</name>
<name>
<surname>Omrani</surname>
<given-names>A.S.</given-names>
</name>
<name>
<surname>Albarrak</surname>
<given-names>M.M.</given-names>
</name>
<name>
<surname>Farah</surname>
<given-names>M.E.</given-names>
</name>
<name>
<surname>Almasri</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Viral shedding and antibody response in 37 patients with Middle East respiratory syndrome coronavirus infection</article-title>
<source>Clin. Infect. Dis.</source>
<volume>62</volume>
<year>2016</year>
<fpage>477</fpage>
<lpage>483</lpage>
<pub-id pub-id-type="pmid">26565003</pub-id>
</element-citation>
</ref>
<ref id="bib47">
<label>47</label>
<element-citation publication-type="journal" id="sref47">
<person-group person-group-type="author">
<name>
<surname>Corman</surname>
<given-names>V.M.</given-names>
</name>
<name>
<surname>Jores</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Meyer</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Younan</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Liljander</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Said</surname>
<given-names>M.Y.</given-names>
</name>
</person-group>
<article-title>Antibodies against MERS coronavirus in dromedary camels, Kenya, 1992-2013</article-title>
<source>Emerg. Infect. Dis.</source>
<volume>20</volume>
<year>2014</year>
<fpage>1319</fpage>
<lpage>1322</lpage>
<pub-id pub-id-type="pmid">25075637</pub-id>
</element-citation>
</ref>
<ref id="bib48">
<label>48</label>
<element-citation publication-type="journal" id="sref48">
<person-group person-group-type="author">
<name>
<surname>Mubarak</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Alturaiki</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Hemida</surname>
<given-names>M.G.</given-names>
</name>
</person-group>
<article-title>Middle East respiratory syndrome coronavirus (MERS-CoV): infection, immunological response, and vaccine development</article-title>
<source>J. Immunol. Res.</source>
<volume>2019</volume>
<year>2019</year>
<fpage>11</fpage>
<comment>6491738</comment>
</element-citation>
</ref>
</ref-list>
<sec id="appsec1" sec-type="supplementary-material">
<label>Appendix A</label>
<title>Supplementary data</title>
<p id="p0145">The following is the Supplementary data to this article:
<supplementary-material content-type="local-data" id="mmc1">
<caption>
<title>Multimedia component 1</title>
</caption>
<media xlink:href="mmc1.pdf">
<alt-text>Multimedia component 1</alt-text>
</media>
</supplementary-material>
</p>
</sec>
<ack id="ack0010">
<title>Acknowledgements</title>
<p>We would like to thank Dr. Satoko Matsunaga at the Yokohama City University for her kind donations of MERS reagents. This work was supported by the Grant-in-Aid for
<funding-source id="gs3">Exploratory Research</funding-source>
[16K13623] from the
<funding-source id="gs1">Ministry of Education, Culture, Sports, Science and Technology</funding-source>
of Japan.</p>
</ack>
<fn-group>
<fn id="appsec2" fn-type="supplementary-material">
<label>Appendix A</label>
<p id="p0150">Supplementary data to this article can be found online at
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1016/j.sbsr.2019.100304" id="intref0010">https://doi.org/10.1016/j.sbsr.2019.100304</ext-link>
.</p>
</fn>
</fn-group>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 0011430 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 0011430 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021