Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 001106 ( Pmc/Corpus ); précédent : 0011059; suivant : 0011070 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Enhanced inflammation in New Zealand white rabbits when MERS-CoV reinfection occurs in the absence of neutralizing antibody</title>
<author>
<name sortKey="Houser, Katherine V" sort="Houser, Katherine V" uniqKey="Houser K" first="Katherine V." last="Houser">Katherine V. Houser</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Broadbent, Andrew J" sort="Broadbent, Andrew J" uniqKey="Broadbent A" first="Andrew J." last="Broadbent">Andrew J. Broadbent</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Gretebeck, Lisa" sort="Gretebeck, Lisa" uniqKey="Gretebeck L" first="Lisa" last="Gretebeck">Lisa Gretebeck</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Vogel, Leatrice" sort="Vogel, Leatrice" uniqKey="Vogel L" first="Leatrice" last="Vogel">Leatrice Vogel</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lamirande, Elaine W" sort="Lamirande, Elaine W" uniqKey="Lamirande E" first="Elaine W." last="Lamirande">Elaine W. Lamirande</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sutton, Troy" sort="Sutton, Troy" uniqKey="Sutton T" first="Troy" last="Sutton">Troy Sutton</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bock, Kevin W" sort="Bock, Kevin W" uniqKey="Bock K" first="Kevin W." last="Bock">Kevin W. Bock</name>
<affiliation>
<nlm:aff id="aff002">
<addr-line>Comparative Medicine Branch, Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Minai, Mahnaz" sort="Minai, Mahnaz" uniqKey="Minai M" first="Mahnaz" last="Minai">Mahnaz Minai</name>
<affiliation>
<nlm:aff id="aff002">
<addr-line>Comparative Medicine Branch, Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Orandle, Marlene" sort="Orandle, Marlene" uniqKey="Orandle M" first="Marlene" last="Orandle">Marlene Orandle</name>
<affiliation>
<nlm:aff id="aff002">
<addr-line>Comparative Medicine Branch, Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Moore, Ian N" sort="Moore, Ian N" uniqKey="Moore I" first="Ian N." last="Moore">Ian N. Moore</name>
<affiliation>
<nlm:aff id="aff002">
<addr-line>Comparative Medicine Branch, Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Subbarao, Kanta" sort="Subbarao, Kanta" uniqKey="Subbarao K" first="Kanta" last="Subbarao">Kanta Subbarao</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">28817732</idno>
<idno type="pmc">5574614</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5574614</idno>
<idno type="RBID">PMC:5574614</idno>
<idno type="doi">10.1371/journal.ppat.1006565</idno>
<date when="2017">2017</date>
<idno type="wicri:Area/Pmc/Corpus">001106</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">001106</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Enhanced inflammation in New Zealand white rabbits when MERS-CoV reinfection occurs in the absence of neutralizing antibody</title>
<author>
<name sortKey="Houser, Katherine V" sort="Houser, Katherine V" uniqKey="Houser K" first="Katherine V." last="Houser">Katherine V. Houser</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Broadbent, Andrew J" sort="Broadbent, Andrew J" uniqKey="Broadbent A" first="Andrew J." last="Broadbent">Andrew J. Broadbent</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Gretebeck, Lisa" sort="Gretebeck, Lisa" uniqKey="Gretebeck L" first="Lisa" last="Gretebeck">Lisa Gretebeck</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Vogel, Leatrice" sort="Vogel, Leatrice" uniqKey="Vogel L" first="Leatrice" last="Vogel">Leatrice Vogel</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lamirande, Elaine W" sort="Lamirande, Elaine W" uniqKey="Lamirande E" first="Elaine W." last="Lamirande">Elaine W. Lamirande</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sutton, Troy" sort="Sutton, Troy" uniqKey="Sutton T" first="Troy" last="Sutton">Troy Sutton</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bock, Kevin W" sort="Bock, Kevin W" uniqKey="Bock K" first="Kevin W." last="Bock">Kevin W. Bock</name>
<affiliation>
<nlm:aff id="aff002">
<addr-line>Comparative Medicine Branch, Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Minai, Mahnaz" sort="Minai, Mahnaz" uniqKey="Minai M" first="Mahnaz" last="Minai">Mahnaz Minai</name>
<affiliation>
<nlm:aff id="aff002">
<addr-line>Comparative Medicine Branch, Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Orandle, Marlene" sort="Orandle, Marlene" uniqKey="Orandle M" first="Marlene" last="Orandle">Marlene Orandle</name>
<affiliation>
<nlm:aff id="aff002">
<addr-line>Comparative Medicine Branch, Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Moore, Ian N" sort="Moore, Ian N" uniqKey="Moore I" first="Ian N." last="Moore">Ian N. Moore</name>
<affiliation>
<nlm:aff id="aff002">
<addr-line>Comparative Medicine Branch, Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Subbarao, Kanta" sort="Subbarao, Kanta" uniqKey="Subbarao K" first="Kanta" last="Subbarao">Kanta Subbarao</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS Pathogens</title>
<idno type="ISSN">1553-7366</idno>
<idno type="eISSN">1553-7374</idno>
<imprint>
<date when="2017">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>The Middle East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic betacoronavirus that was first detected in humans in 2012 as a cause of severe acute respiratory disease. As of July 28, 2017, there have been 2,040 confirmed cases with 712 reported deaths. While many infections have been fatal, there have also been a large number of mild or asymptomatic cases discovered through monitoring and contact tracing. New Zealand white rabbits are a possible model for asymptomatic infection with MERS-CoV. In order to discover more about non-lethal infections and to learn whether a single infection with MERS-CoV would protect against reinfection, we inoculated rabbits with MERS-CoV and monitored the antibody and inflammatory response. Following intranasal infection, rabbits developed a transient dose-dependent pulmonary infection with moderately high levels of viral RNA, viral antigen, and perivascular inflammation in multiple lung lobes that was not associated with clinical signs. The rabbits developed antibodies against viral proteins that lacked neutralizing activity and the animals were not protected from reinfection. In fact, reinfection resulted in enhanced pulmonary inflammation, without an associated increase in viral RNA titers. Interestingly, passive transfer of serum from previously infected rabbits to naïve rabbits was associated with enhanced inflammation upon infection. We further found this inflammation was accompanied by increased recruitment of complement proteins compared to primary infection. However, reinfection elicited neutralizing antibodies that protected rabbits from subsequent viral challenge. Our data from the rabbit model suggests that people exposed to MERS-CoV who fail to develop a neutralizing antibody response, or persons whose neutralizing antibody titers have waned, may be at risk for severe lung disease on re-exposure to MERS-CoV.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Zaki, Am" uniqKey="Zaki A">AM Zaki</name>
</author>
<author>
<name sortKey="Van Boheemen, S" uniqKey="Van Boheemen S">S van Boheemen</name>
</author>
<author>
<name sortKey="Bestebroer, Tm" uniqKey="Bestebroer T">TM Bestebroer</name>
</author>
<author>
<name sortKey="Osterhaus, Ad" uniqKey="Osterhaus A">AD Osterhaus</name>
</author>
<author>
<name sortKey="Fouchier, Ra" uniqKey="Fouchier R">RA Fouchier</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Aburizaiza, As" uniqKey="Aburizaiza A">AS Aburizaiza</name>
</author>
<author>
<name sortKey="Mattes, Fm" uniqKey="Mattes F">FM Mattes</name>
</author>
<author>
<name sortKey="Azhar, Ei" uniqKey="Azhar E">EI Azhar</name>
</author>
<author>
<name sortKey="Hassan, Am" uniqKey="Hassan A">AM Hassan</name>
</author>
<author>
<name sortKey="Memish, Za" uniqKey="Memish Z">ZA Memish</name>
</author>
<author>
<name sortKey="Muth, D" uniqKey="Muth D">D Muth</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gierer, S" uniqKey="Gierer S">S Gierer</name>
</author>
<author>
<name sortKey="Hofmann Winkler, H" uniqKey="Hofmann Winkler H">H Hofmann-Winkler</name>
</author>
<author>
<name sortKey="Albuali, Wh" uniqKey="Albuali W">WH Albuali</name>
</author>
<author>
<name sortKey="Bertram, S" uniqKey="Bertram S">S Bertram</name>
</author>
<author>
<name sortKey="Al Rubaish, Am" uniqKey="Al Rubaish A">AM Al-Rubaish</name>
</author>
<author>
<name sortKey="Yousef, Aa" uniqKey="Yousef A">AA Yousef</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Muller, Ma" uniqKey="Muller M">MA Muller</name>
</author>
<author>
<name sortKey="Meyer, B" uniqKey="Meyer B">B Meyer</name>
</author>
<author>
<name sortKey="Corman, Vm" uniqKey="Corman V">VM Corman</name>
</author>
<author>
<name sortKey="Al Masri, M" uniqKey="Al Masri M">M Al-Masri</name>
</author>
<author>
<name sortKey="Turkestani, A" uniqKey="Turkestani A">A Turkestani</name>
</author>
<author>
<name sortKey="Ritz, D" uniqKey="Ritz D">D Ritz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Alshukairi, An" uniqKey="Alshukairi A">AN Alshukairi</name>
</author>
<author>
<name sortKey="Khalid, I" uniqKey="Khalid I">I Khalid</name>
</author>
<author>
<name sortKey="Ahmed, Wa" uniqKey="Ahmed W">WA Ahmed</name>
</author>
<author>
<name sortKey="Dada, Am" uniqKey="Dada A">AM Dada</name>
</author>
<author>
<name sortKey="Bayumi, Dt" uniqKey="Bayumi D">DT Bayumi</name>
</author>
<author>
<name sortKey="Malic, Ls" uniqKey="Malic L">LS Malic</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Payne, Dc" uniqKey="Payne D">DC Payne</name>
</author>
<author>
<name sortKey="Iblan, I" uniqKey="Iblan I">I Iblan</name>
</author>
<author>
<name sortKey="Rha, B" uniqKey="Rha B">B Rha</name>
</author>
<author>
<name sortKey="Alqasrawi, S" uniqKey="Alqasrawi S">S Alqasrawi</name>
</author>
<author>
<name sortKey="Haddadin, A" uniqKey="Haddadin A">A Haddadin</name>
</author>
<author>
<name sortKey="Al Nsour, M" uniqKey="Al Nsour M">M Al Nsour</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Choe, Pg" uniqKey="Choe P">PG Choe</name>
</author>
<author>
<name sortKey="Perera, R" uniqKey="Perera R">R Perera</name>
</author>
<author>
<name sortKey="Park, Wb" uniqKey="Park W">WB Park</name>
</author>
<author>
<name sortKey="Song, Kh" uniqKey="Song K">KH Song</name>
</author>
<author>
<name sortKey="Bang, Jh" uniqKey="Bang J">JH Bang</name>
</author>
<author>
<name sortKey="Kim, Es" uniqKey="Kim E">ES Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cao, Wc" uniqKey="Cao W">WC Cao</name>
</author>
<author>
<name sortKey="Liu, W" uniqKey="Liu W">W Liu</name>
</author>
<author>
<name sortKey="Zhang, Ph" uniqKey="Zhang P">PH Zhang</name>
</author>
<author>
<name sortKey="Zhang, F" uniqKey="Zhang F">F Zhang</name>
</author>
<author>
<name sortKey="Richardus, Jh" uniqKey="Richardus J">JH Richardus</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ng, Dl" uniqKey="Ng D">DL Ng</name>
</author>
<author>
<name sortKey="Al Hosani, F" uniqKey="Al Hosani F">F Al Hosani</name>
</author>
<author>
<name sortKey="Keating, Mk" uniqKey="Keating M">MK Keating</name>
</author>
<author>
<name sortKey="Gerber, Si" uniqKey="Gerber S">SI Gerber</name>
</author>
<author>
<name sortKey="Jones, Tl" uniqKey="Jones T">TL Jones</name>
</author>
<author>
<name sortKey="Metcalfe, Mg" uniqKey="Metcalfe M">MG Metcalfe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Memish, Za" uniqKey="Memish Z">ZA Memish</name>
</author>
<author>
<name sortKey="Zumla, Ai" uniqKey="Zumla A">AI Zumla</name>
</author>
<author>
<name sortKey="Assiri, A" uniqKey="Assiri A">A Assiri</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Who Mers Cov Research, G" uniqKey="Who Mers Cov Research G">G Who Mers-Cov Research</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="O Hagan, Jj" uniqKey="O Hagan J">JJ O'Hagan</name>
</author>
<author>
<name sortKey="Carias, C" uniqKey="Carias C">C Carias</name>
</author>
<author>
<name sortKey="Rudd, Jm" uniqKey="Rudd J">JM Rudd</name>
</author>
<author>
<name sortKey="Pham, Ht" uniqKey="Pham H">HT Pham</name>
</author>
<author>
<name sortKey="Haber, Y" uniqKey="Haber Y">Y Haber</name>
</author>
<author>
<name sortKey="Pesik, N" uniqKey="Pesik N">N Pesik</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Omrani, As" uniqKey="Omrani A">AS Omrani</name>
</author>
<author>
<name sortKey="Matin, Ma" uniqKey="Matin M">MA Matin</name>
</author>
<author>
<name sortKey="Haddad, Q" uniqKey="Haddad Q">Q Haddad</name>
</author>
<author>
<name sortKey="Al Nakhli, D" uniqKey="Al Nakhli D">D Al-Nakhli</name>
</author>
<author>
<name sortKey="Memish, Za" uniqKey="Memish Z">ZA Memish</name>
</author>
<author>
<name sortKey="Albarrak, Am" uniqKey="Albarrak A">AM Albarrak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Coleman, Cm" uniqKey="Coleman C">CM Coleman</name>
</author>
<author>
<name sortKey="Matthews, Kl" uniqKey="Matthews K">KL Matthews</name>
</author>
<author>
<name sortKey="Goicochea, L" uniqKey="Goicochea L">L Goicochea</name>
</author>
<author>
<name sortKey="Frieman, Mb" uniqKey="Frieman M">MB Frieman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Wit, E" uniqKey="De Wit E">E de Wit</name>
</author>
<author>
<name sortKey="Prescott, J" uniqKey="Prescott J">J Prescott</name>
</author>
<author>
<name sortKey="Baseler, L" uniqKey="Baseler L">L Baseler</name>
</author>
<author>
<name sortKey="Bushmaker, T" uniqKey="Bushmaker T">T Bushmaker</name>
</author>
<author>
<name sortKey="Thomas, T" uniqKey="Thomas T">T Thomas</name>
</author>
<author>
<name sortKey="Lackemeyer, Mg" uniqKey="Lackemeyer M">MG Lackemeyer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bosch, Bj" uniqKey="Bosch B">BJ Bosch</name>
</author>
<author>
<name sortKey="Raj, Vs" uniqKey="Raj V">VS Raj</name>
</author>
<author>
<name sortKey="Haagmans, Bl" uniqKey="Haagmans B">BL Haagmans</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Raj, Vs" uniqKey="Raj V">VS Raj</name>
</author>
<author>
<name sortKey="Smits, Sl" uniqKey="Smits S">SL Smits</name>
</author>
<author>
<name sortKey="Provacia, Lb" uniqKey="Provacia L">LB Provacia</name>
</author>
<author>
<name sortKey="Van Den Brand, Jm" uniqKey="Van Den Brand J">JM van den Brand</name>
</author>
<author>
<name sortKey="Wiersma, L" uniqKey="Wiersma L">L Wiersma</name>
</author>
<author>
<name sortKey="Ouwendijk, Wj" uniqKey="Ouwendijk W">WJ Ouwendijk</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhao, J" uniqKey="Zhao J">J Zhao</name>
</author>
<author>
<name sortKey="Li, K" uniqKey="Li K">K Li</name>
</author>
<author>
<name sortKey="Wohlford Lenane, C" uniqKey="Wohlford Lenane C">C Wohlford-Lenane</name>
</author>
<author>
<name sortKey="Agnihothram, Ss" uniqKey="Agnihothram S">SS Agnihothram</name>
</author>
<author>
<name sortKey="Fett, C" uniqKey="Fett C">C Fett</name>
</author>
<author>
<name sortKey="Zhao, J" uniqKey="Zhao J">J Zhao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Agrawal, As" uniqKey="Agrawal A">AS Agrawal</name>
</author>
<author>
<name sortKey="Garron, T" uniqKey="Garron T">T Garron</name>
</author>
<author>
<name sortKey="Tao, X" uniqKey="Tao X">X Tao</name>
</author>
<author>
<name sortKey="Peng, Bh" uniqKey="Peng B">BH Peng</name>
</author>
<author>
<name sortKey="Wakamiya, M" uniqKey="Wakamiya M">M Wakamiya</name>
</author>
<author>
<name sortKey="Chan, Ts" uniqKey="Chan T">TS Chan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pascal, Ke" uniqKey="Pascal K">KE Pascal</name>
</author>
<author>
<name sortKey="Coleman, Cm" uniqKey="Coleman C">CM Coleman</name>
</author>
<author>
<name sortKey="Mujica, Ao" uniqKey="Mujica A">AO Mujica</name>
</author>
<author>
<name sortKey="Kamat, V" uniqKey="Kamat V">V Kamat</name>
</author>
<author>
<name sortKey="Badithe, A" uniqKey="Badithe A">A Badithe</name>
</author>
<author>
<name sortKey="Fairhurst, J" uniqKey="Fairhurst J">J Fairhurst</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Wit, E" uniqKey="De Wit E">E de Wit</name>
</author>
<author>
<name sortKey="Rasmussen, Al" uniqKey="Rasmussen A">AL Rasmussen</name>
</author>
<author>
<name sortKey="Falzarano, D" uniqKey="Falzarano D">D Falzarano</name>
</author>
<author>
<name sortKey="Bushmaker, T" uniqKey="Bushmaker T">T Bushmaker</name>
</author>
<author>
<name sortKey="Feldmann, F" uniqKey="Feldmann F">F Feldmann</name>
</author>
<author>
<name sortKey="Brining, Dl" uniqKey="Brining D">DL Brining</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Munster, Vj" uniqKey="Munster V">VJ Munster</name>
</author>
<author>
<name sortKey="De Wit, E" uniqKey="De Wit E">E de Wit</name>
</author>
<author>
<name sortKey="Feldmann, H" uniqKey="Feldmann H">H Feldmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yao, Y" uniqKey="Yao Y">Y Yao</name>
</author>
<author>
<name sortKey="Bao, L" uniqKey="Bao L">L Bao</name>
</author>
<author>
<name sortKey="Deng, W" uniqKey="Deng W">W Deng</name>
</author>
<author>
<name sortKey="Xu, L" uniqKey="Xu L">L Xu</name>
</author>
<author>
<name sortKey="Li, F" uniqKey="Li F">F Li</name>
</author>
<author>
<name sortKey="Lv, Q" uniqKey="Lv Q">Q Lv</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Falzarano, D" uniqKey="Falzarano D">D Falzarano</name>
</author>
<author>
<name sortKey="De Wit, E" uniqKey="De Wit E">E de Wit</name>
</author>
<author>
<name sortKey="Feldmann, F" uniqKey="Feldmann F">F Feldmann</name>
</author>
<author>
<name sortKey="Rasmussen, Al" uniqKey="Rasmussen A">AL Rasmussen</name>
</author>
<author>
<name sortKey="Okumura, A" uniqKey="Okumura A">A Okumura</name>
</author>
<author>
<name sortKey="Peng, X" uniqKey="Peng X">X Peng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Johnson, Rf" uniqKey="Johnson R">RF Johnson</name>
</author>
<author>
<name sortKey="Via, Le" uniqKey="Via L">LE Via</name>
</author>
<author>
<name sortKey="Kumar, Mr" uniqKey="Kumar M">MR Kumar</name>
</author>
<author>
<name sortKey="Cornish, Jp" uniqKey="Cornish J">JP Cornish</name>
</author>
<author>
<name sortKey="Yellayi, S" uniqKey="Yellayi S">S Yellayi</name>
</author>
<author>
<name sortKey="Huzella, L" uniqKey="Huzella L">L Huzella</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Adney, Dr" uniqKey="Adney D">DR Adney</name>
</author>
<author>
<name sortKey="Van Doremalen, N" uniqKey="Van Doremalen N">N van Doremalen</name>
</author>
<author>
<name sortKey="Brown, Vr" uniqKey="Brown V">VR Brown</name>
</author>
<author>
<name sortKey="Bushmaker, T" uniqKey="Bushmaker T">T Bushmaker</name>
</author>
<author>
<name sortKey="Scott, D" uniqKey="Scott D">D Scott</name>
</author>
<author>
<name sortKey="De Wit, E" uniqKey="De Wit E">E de Wit</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Adney, D R B Oh" uniqKey="Adney D">D.R. B-OH Adney</name>
</author>
<author>
<name sortKey="Hartwig, A E" uniqKey="Hartwig A">A.E. Hartwig</name>
</author>
<author>
<name sortKey="Bowen, R A" uniqKey="Bowen R">R.A. Bowen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Haagmans, Bl" uniqKey="Haagmans B">BL Haagmans</name>
</author>
<author>
<name sortKey="Van Den Brand, Jm" uniqKey="Van Den Brand J">JM van den Brand</name>
</author>
<author>
<name sortKey="Provacia, Lb" uniqKey="Provacia L">LB Provacia</name>
</author>
<author>
<name sortKey="Raj, Vs" uniqKey="Raj V">VS Raj</name>
</author>
<author>
<name sortKey="Stittelaar, Kj" uniqKey="Stittelaar K">KJ Stittelaar</name>
</author>
<author>
<name sortKey="Getu, S" uniqKey="Getu S">S Getu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lu, X" uniqKey="Lu X">X Lu</name>
</author>
<author>
<name sortKey="Whitaker, B" uniqKey="Whitaker B">B Whitaker</name>
</author>
<author>
<name sortKey="Sakthivel, Sk" uniqKey="Sakthivel S">SK Sakthivel</name>
</author>
<author>
<name sortKey="Kamili, S" uniqKey="Kamili S">S Kamili</name>
</author>
<author>
<name sortKey="Rose, Le" uniqKey="Rose L">LE Rose</name>
</author>
<author>
<name sortKey="Lowe, L" uniqKey="Lowe L">L Lowe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Al Abdallat, Mm" uniqKey="Al Abdallat M">MM Al-Abdallat</name>
</author>
<author>
<name sortKey="Payne, Dc" uniqKey="Payne D">DC Payne</name>
</author>
<author>
<name sortKey="Alqasrawi, S" uniqKey="Alqasrawi S">S Alqasrawi</name>
</author>
<author>
<name sortKey="Rha, B" uniqKey="Rha B">B Rha</name>
</author>
<author>
<name sortKey="Tohme, Ra" uniqKey="Tohme R">RA Tohme</name>
</author>
<author>
<name sortKey="Abedi, Gr" uniqKey="Abedi G">GR Abedi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Takada, A" uniqKey="Takada A">A Takada</name>
</author>
<author>
<name sortKey="Kawaoka, Y" uniqKey="Kawaoka Y">Y Kawaoka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Whitehead, Ss" uniqKey="Whitehead S">SS Whitehead</name>
</author>
<author>
<name sortKey="Blaney, Je" uniqKey="Blaney J">JE Blaney</name>
</author>
<author>
<name sortKey="Durbin, Ap" uniqKey="Durbin A">AP Durbin</name>
</author>
<author>
<name sortKey="Murphy, Br" uniqKey="Murphy B">BR Murphy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kliks, Sc" uniqKey="Kliks S">SC Kliks</name>
</author>
<author>
<name sortKey="Nisalak, A" uniqKey="Nisalak A">A Nisalak</name>
</author>
<author>
<name sortKey="Brandt, We" uniqKey="Brandt W">WE Brandt</name>
</author>
<author>
<name sortKey="Wahl, L" uniqKey="Wahl L">L Wahl</name>
</author>
<author>
<name sortKey="Burke, Ds" uniqKey="Burke D">DS Burke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Olsen, Cw" uniqKey="Olsen C">CW Olsen</name>
</author>
<author>
<name sortKey="Corapi, Wv" uniqKey="Corapi W">WV Corapi</name>
</author>
<author>
<name sortKey="Ngichabe, Ck" uniqKey="Ngichabe C">CK Ngichabe</name>
</author>
<author>
<name sortKey="Baines, Jd" uniqKey="Baines J">JD Baines</name>
</author>
<author>
<name sortKey="Scott, Fw" uniqKey="Scott F">FW Scott</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Corti, D" uniqKey="Corti D">D Corti</name>
</author>
<author>
<name sortKey="Zhao, J" uniqKey="Zhao J">J Zhao</name>
</author>
<author>
<name sortKey="Pedotti, M" uniqKey="Pedotti M">M Pedotti</name>
</author>
<author>
<name sortKey="Simonelli, L" uniqKey="Simonelli L">L Simonelli</name>
</author>
<author>
<name sortKey="Agnihothram, S" uniqKey="Agnihothram S">S Agnihothram</name>
</author>
<author>
<name sortKey="Fett, C" uniqKey="Fett C">C Fett</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Houser, Kv" uniqKey="Houser K">KV Houser</name>
</author>
<author>
<name sortKey="Gretebeck, L" uniqKey="Gretebeck L">L Gretebeck</name>
</author>
<author>
<name sortKey="Ying, T" uniqKey="Ying T">T Ying</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y Wang</name>
</author>
<author>
<name sortKey="Vogel, L" uniqKey="Vogel L">L Vogel</name>
</author>
<author>
<name sortKey="Lamirande, Ew" uniqKey="Lamirande E">EW Lamirande</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Den Brand, Jma" uniqKey="Van Den Brand J">JMA Van den Brand</name>
</author>
<author>
<name sortKey="Widagdo, W" uniqKey="Widagdo W">W Widagdo</name>
</author>
<author>
<name sortKey="De Waal, L" uniqKey="De Waal L">L de Waal</name>
</author>
<author>
<name sortKey="Schipper, D" uniqKey="Schipper D">D Schipper</name>
</author>
<author>
<name sortKey="Van Amerongen, G" uniqKey="Van Amerongen G">G van Amerongen</name>
</author>
<author>
<name sortKey="Stittelaar, K" uniqKey="Stittelaar K">K Stittelaar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Morales Nebreda, L" uniqKey="Morales Nebreda L">L Morales-Nebreda</name>
</author>
<author>
<name sortKey="Chi, M" uniqKey="Chi M">M Chi</name>
</author>
<author>
<name sortKey="Lecuona, E" uniqKey="Lecuona E">E Lecuona</name>
</author>
<author>
<name sortKey="Chandel, Ns" uniqKey="Chandel N">NS Chandel</name>
</author>
<author>
<name sortKey="Dada, La" uniqKey="Dada L">LA Dada</name>
</author>
<author>
<name sortKey="Ridge, K" uniqKey="Ridge K">K Ridge</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moore, In" uniqKey="Moore I">IN Moore</name>
</author>
<author>
<name sortKey="Lamirande, Ew" uniqKey="Lamirande E">EW Lamirande</name>
</author>
<author>
<name sortKey="Paskel, M" uniqKey="Paskel M">M Paskel</name>
</author>
<author>
<name sortKey="Donahue, D" uniqKey="Donahue D">D Donahue</name>
</author>
<author>
<name sortKey="Kenney, H" uniqKey="Kenney H">H Kenney</name>
</author>
<author>
<name sortKey="Qin, J" uniqKey="Qin J">J Qin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guery, B" uniqKey="Guery B">B Guery</name>
</author>
<author>
<name sortKey="Poissy, J" uniqKey="Poissy J">J Poissy</name>
</author>
<author>
<name sortKey="El Mansouf, L" uniqKey="El Mansouf L">L el Mansouf</name>
</author>
<author>
<name sortKey="Sejourne, C" uniqKey="Sejourne C">C Sejourne</name>
</author>
<author>
<name sortKey="Ettahar, N" uniqKey="Ettahar N">N Ettahar</name>
</author>
<author>
<name sortKey="Lemaire, X" uniqKey="Lemaire X">X Lemaire</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Drosten, C" uniqKey="Drosten C">C Drosten</name>
</author>
<author>
<name sortKey="Seilmaier, M" uniqKey="Seilmaier M">M Seilmaier</name>
</author>
<author>
<name sortKey="Corman, Vm" uniqKey="Corman V">VM Corman</name>
</author>
<author>
<name sortKey="Hartmann, W" uniqKey="Hartmann W">W Hartmann</name>
</author>
<author>
<name sortKey="Scheible, G" uniqKey="Scheible G">G Scheible</name>
</author>
<author>
<name sortKey="Sack, S" uniqKey="Sack S">S Sack</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Assiri, A" uniqKey="Assiri A">A Assiri</name>
</author>
<author>
<name sortKey="Mcgeer, A" uniqKey="Mcgeer A">A McGeer</name>
</author>
<author>
<name sortKey="Perl, Tm" uniqKey="Perl T">TM Perl</name>
</author>
<author>
<name sortKey="Price, Cs" uniqKey="Price C">CS Price</name>
</author>
<author>
<name sortKey="Al Rabeeah, Aa" uniqKey="Al Rabeeah A">AA Al Rabeeah</name>
</author>
<author>
<name sortKey="Cummings, Da" uniqKey="Cummings D">DA Cummings</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ghosh, S" uniqKey="Ghosh S">S Ghosh</name>
</author>
<author>
<name sortKey="Hoselton, Sa" uniqKey="Hoselton S">SA Hoselton</name>
</author>
<author>
<name sortKey="Dorsam, Gp" uniqKey="Dorsam G">GP Dorsam</name>
</author>
<author>
<name sortKey="Schuh, Jm" uniqKey="Schuh J">JM Schuh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barrios, Rj" uniqKey="Barrios R">RJ Barrios</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Monsalvo, Ac" uniqKey="Monsalvo A">AC Monsalvo</name>
</author>
<author>
<name sortKey="Batalle, Jp" uniqKey="Batalle J">JP Batalle</name>
</author>
<author>
<name sortKey="Lopez, Mf" uniqKey="Lopez M">MF Lopez</name>
</author>
<author>
<name sortKey="Krause, Jc" uniqKey="Krause J">JC Krause</name>
</author>
<author>
<name sortKey="Klemenc, J" uniqKey="Klemenc J">J Klemenc</name>
</author>
<author>
<name sortKey="Hernandez, Jz" uniqKey="Hernandez J">JZ Hernandez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Polack, Fp" uniqKey="Polack F">FP Polack</name>
</author>
<author>
<name sortKey="Teng, Mn" uniqKey="Teng M">MN Teng</name>
</author>
<author>
<name sortKey="Collins, Pl" uniqKey="Collins P">PL Collins</name>
</author>
<author>
<name sortKey="Prince, Ga" uniqKey="Prince G">GA Prince</name>
</author>
<author>
<name sortKey="Exner, M" uniqKey="Exner M">M Exner</name>
</author>
<author>
<name sortKey="Regele, H" uniqKey="Regele H">H Regele</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hirsch, Rl" uniqKey="Hirsch R">RL Hirsch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Berry, Dm" uniqKey="Berry D">DM Berry</name>
</author>
<author>
<name sortKey="Almeida, Jd" uniqKey="Almeida J">JD Almeida</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Park, Wb" uniqKey="Park W">WB Park</name>
</author>
<author>
<name sortKey="Perera, Ra" uniqKey="Perera R">RA Perera</name>
</author>
<author>
<name sortKey="Choe, Pg" uniqKey="Choe P">PG Choe</name>
</author>
<author>
<name sortKey="Lau, Eh" uniqKey="Lau E">EH Lau</name>
</author>
<author>
<name sortKey="Choi, Sj" uniqKey="Choi S">SJ Choi</name>
</author>
<author>
<name sortKey="Chun, Jy" uniqKey="Chun J">JY Chun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chun, S" uniqKey="Chun S">S Chun</name>
</author>
<author>
<name sortKey="Chung, Cr" uniqKey="Chung C">CR Chung</name>
</author>
<author>
<name sortKey="Ha, Ye" uniqKey="Ha Y">YE Ha</name>
</author>
<author>
<name sortKey="Han, Th" uniqKey="Han T">TH Han</name>
</author>
<author>
<name sortKey="Ki, Cs" uniqKey="Ki C">CS Ki</name>
</author>
<author>
<name sortKey="Kang, Es" uniqKey="Kang E">ES Kang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Min, Ck" uniqKey="Min C">CK Min</name>
</author>
<author>
<name sortKey="Cheon, S" uniqKey="Cheon S">S Cheon</name>
</author>
<author>
<name sortKey="Ha, Ny" uniqKey="Ha N">NY Ha</name>
</author>
<author>
<name sortKey="Sohn, Km" uniqKey="Sohn K">KM Sohn</name>
</author>
<author>
<name sortKey="Kim, Y" uniqKey="Kim Y">Y Kim</name>
</author>
<author>
<name sortKey="Aigerim, A" uniqKey="Aigerim A">A Aigerim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Subbarao, K" uniqKey="Subbarao K">K Subbarao</name>
</author>
<author>
<name sortKey="Mcauliffe, J" uniqKey="Mcauliffe J">J McAuliffe</name>
</author>
<author>
<name sortKey="Vogel, L" uniqKey="Vogel L">L Vogel</name>
</author>
<author>
<name sortKey="Fahle, G" uniqKey="Fahle G">G Fahle</name>
</author>
<author>
<name sortKey="Fischer, S" uniqKey="Fischer S">S Fischer</name>
</author>
<author>
<name sortKey="Tatti, K" uniqKey="Tatti K">K Tatti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Roberts, A" uniqKey="Roberts A">A Roberts</name>
</author>
<author>
<name sortKey="Lamirande, Ew" uniqKey="Lamirande E">EW Lamirande</name>
</author>
<author>
<name sortKey="Vogel, L" uniqKey="Vogel L">L Vogel</name>
</author>
<author>
<name sortKey="Baras, B" uniqKey="Baras B">B Baras</name>
</author>
<author>
<name sortKey="Goossens, G" uniqKey="Goossens G">G Goossens</name>
</author>
<author>
<name sortKey="Knott, I" uniqKey="Knott I">I Knott</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Clay, C" uniqKey="Clay C">C Clay</name>
</author>
<author>
<name sortKey="Donart, N" uniqKey="Donart N">N Donart</name>
</author>
<author>
<name sortKey="Fomukong, N" uniqKey="Fomukong N">N Fomukong</name>
</author>
<author>
<name sortKey="Knight, Jb" uniqKey="Knight J">JB Knight</name>
</author>
<author>
<name sortKey="Lei, W" uniqKey="Lei W">W Lei</name>
</author>
<author>
<name sortKey="Price, L" uniqKey="Price L">L Price</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Roper, Rl" uniqKey="Roper R">RL Roper</name>
</author>
<author>
<name sortKey="Rehm, Ke" uniqKey="Rehm K">KE Rehm</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bolles, M" uniqKey="Bolles M">M Bolles</name>
</author>
<author>
<name sortKey="Deming, D" uniqKey="Deming D">D Deming</name>
</author>
<author>
<name sortKey="Long, K" uniqKey="Long K">K Long</name>
</author>
<author>
<name sortKey="Agnihothram, S" uniqKey="Agnihothram S">S Agnihothram</name>
</author>
<author>
<name sortKey="Whitmore, A" uniqKey="Whitmore A">A Whitmore</name>
</author>
<author>
<name sortKey="Ferris, M" uniqKey="Ferris M">M Ferris</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tseng, Ct" uniqKey="Tseng C">CT Tseng</name>
</author>
<author>
<name sortKey="Sbrana, E" uniqKey="Sbrana E">E Sbrana</name>
</author>
<author>
<name sortKey="Iwata Yoshikawa, N" uniqKey="Iwata Yoshikawa N">N Iwata-Yoshikawa</name>
</author>
<author>
<name sortKey="Newman, Pc" uniqKey="Newman P">PC Newman</name>
</author>
<author>
<name sortKey="Garron, T" uniqKey="Garron T">T Garron</name>
</author>
<author>
<name sortKey="Atmar, Rl" uniqKey="Atmar R">RL Atmar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Agrawal, As" uniqKey="Agrawal A">AS Agrawal</name>
</author>
<author>
<name sortKey="Tao, X" uniqKey="Tao X">X Tao</name>
</author>
<author>
<name sortKey="Algaissi, A" uniqKey="Algaissi A">A Algaissi</name>
</author>
<author>
<name sortKey="Garron, T" uniqKey="Garron T">T Garron</name>
</author>
<author>
<name sortKey="Narayanan, K" uniqKey="Narayanan K">K Narayanan</name>
</author>
<author>
<name sortKey="Peng, Bh" uniqKey="Peng B">BH Peng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reed, Lj" uniqKey="Reed L">LJ Reed</name>
</author>
<author>
<name sortKey="Muench, H" uniqKey="Muench H">H Muench</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kapoor, M" uniqKey="Kapoor M">M Kapoor</name>
</author>
<author>
<name sortKey="Pringle, K" uniqKey="Pringle K">K Pringle</name>
</author>
<author>
<name sortKey="Kumar, A" uniqKey="Kumar A">A Kumar</name>
</author>
<author>
<name sortKey="Dearth, S" uniqKey="Dearth S">S Dearth</name>
</author>
<author>
<name sortKey="Liu, L" uniqKey="Liu L">L Liu</name>
</author>
<author>
<name sortKey="Lovchik, J" uniqKey="Lovchik J">J Lovchik</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Genin, M" uniqKey="Genin M">M Genin</name>
</author>
<author>
<name sortKey="Clement, F" uniqKey="Clement F">F Clement</name>
</author>
<author>
<name sortKey="Fattaccioli, A" uniqKey="Fattaccioli A">A Fattaccioli</name>
</author>
<author>
<name sortKey="Raes, M" uniqKey="Raes M">M Raes</name>
</author>
<author>
<name sortKey="Michiels, C" uniqKey="Michiels C">C Michiels</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">PLoS Pathog</journal-id>
<journal-id journal-id-type="iso-abbrev">PLoS Pathog</journal-id>
<journal-id journal-id-type="publisher-id">plos</journal-id>
<journal-id journal-id-type="pmc">plospath</journal-id>
<journal-title-group>
<journal-title>PLoS Pathogens</journal-title>
</journal-title-group>
<issn pub-type="ppub">1553-7366</issn>
<issn pub-type="epub">1553-7374</issn>
<publisher>
<publisher-name>Public Library of Science</publisher-name>
<publisher-loc>San Francisco, CA USA</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">28817732</article-id>
<article-id pub-id-type="pmc">5574614</article-id>
<article-id pub-id-type="doi">10.1371/journal.ppat.1006565</article-id>
<article-id pub-id-type="publisher-id">PPATHOGENS-D-17-00350</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Biology and life sciences</subject>
<subj-group>
<subject>Organisms</subject>
<subj-group>
<subject>Viruses</subject>
<subj-group>
<subject>RNA viruses</subject>
<subj-group>
<subject>Coronaviruses</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Biology and Life Sciences</subject>
<subj-group>
<subject>Microbiology</subject>
<subj-group>
<subject>Medical Microbiology</subject>
<subj-group>
<subject>Microbial Pathogens</subject>
<subj-group>
<subject>Viral Pathogens</subject>
<subj-group>
<subject>Coronaviruses</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Medicine and Health Sciences</subject>
<subj-group>
<subject>Pathology and Laboratory Medicine</subject>
<subj-group>
<subject>Pathogens</subject>
<subj-group>
<subject>Microbial Pathogens</subject>
<subj-group>
<subject>Viral Pathogens</subject>
<subj-group>
<subject>Coronaviruses</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Biology and Life Sciences</subject>
<subj-group>
<subject>Organisms</subject>
<subj-group>
<subject>Viruses</subject>
<subj-group>
<subject>Viral Pathogens</subject>
<subj-group>
<subject>Coronaviruses</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Biology and Life Sciences</subject>
<subj-group>
<subject>Physiology</subject>
<subj-group>
<subject>Immune Physiology</subject>
<subj-group>
<subject>Antibodies</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Medicine and Health Sciences</subject>
<subj-group>
<subject>Physiology</subject>
<subj-group>
<subject>Immune Physiology</subject>
<subj-group>
<subject>Antibodies</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Biology and Life Sciences</subject>
<subj-group>
<subject>Immunology</subject>
<subj-group>
<subject>Immune System Proteins</subject>
<subj-group>
<subject>Antibodies</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Medicine and Health Sciences</subject>
<subj-group>
<subject>Immunology</subject>
<subj-group>
<subject>Immune System Proteins</subject>
<subj-group>
<subject>Antibodies</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Biology and Life Sciences</subject>
<subj-group>
<subject>Biochemistry</subject>
<subj-group>
<subject>Proteins</subject>
<subj-group>
<subject>Immune System Proteins</subject>
<subj-group>
<subject>Antibodies</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Research and Analysis Methods</subject>
<subj-group>
<subject>Immunologic Techniques</subject>
<subj-group>
<subject>Immunoassays</subject>
<subj-group>
<subject>Enzyme-Linked Immunoassays</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Biology and Life Sciences</subject>
<subj-group>
<subject>Immunology</subject>
<subj-group>
<subject>Immune Response</subject>
<subj-group>
<subject>Inflammation</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Medicine and Health Sciences</subject>
<subj-group>
<subject>Immunology</subject>
<subj-group>
<subject>Immune Response</subject>
<subj-group>
<subject>Inflammation</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Medicine and Health Sciences</subject>
<subj-group>
<subject>Diagnostic Medicine</subject>
<subj-group>
<subject>Signs and Symptoms</subject>
<subj-group>
<subject>Inflammation</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Medicine and Health Sciences</subject>
<subj-group>
<subject>Pathology and Laboratory Medicine</subject>
<subj-group>
<subject>Signs and Symptoms</subject>
<subj-group>
<subject>Inflammation</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Research and Analysis Methods</subject>
<subj-group>
<subject>Histochemistry and Cytochemistry Techniques</subject>
<subj-group>
<subject>Immunohistochemistry Techniques</subject>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Research and Analysis Methods</subject>
<subj-group>
<subject>Immunologic Techniques</subject>
<subj-group>
<subject>Immunohistochemistry Techniques</subject>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Research and Analysis Methods</subject>
<subj-group>
<subject>Experimental Organism Systems</subject>
<subj-group>
<subject>Animal Models</subject>
<subj-group>
<subject>Rabbits</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Biology and Life Sciences</subject>
<subj-group>
<subject>Organisms</subject>
<subj-group>
<subject>Animals</subject>
<subj-group>
<subject>Vertebrates</subject>
<subj-group>
<subject>Amniotes</subject>
<subj-group>
<subject>Mammals</subject>
<subj-group>
<subject>Rabbits</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Medicine and Health Sciences</subject>
<subj-group>
<subject>Pulmonology</subject>
<subj-group>
<subject>Respiratory Infections</subject>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Biology and Life Sciences</subject>
<subj-group>
<subject>Physiology</subject>
<subj-group>
<subject>Immune Physiology</subject>
<subj-group>
<subject>Complement System</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Medicine and Health Sciences</subject>
<subj-group>
<subject>Physiology</subject>
<subj-group>
<subject>Immune Physiology</subject>
<subj-group>
<subject>Complement System</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Biology and Life Sciences</subject>
<subj-group>
<subject>Immunology</subject>
<subj-group>
<subject>Immune System</subject>
<subj-group>
<subject>Complement System</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Medicine and Health Sciences</subject>
<subj-group>
<subject>Immunology</subject>
<subj-group>
<subject>Immune System</subject>
<subj-group>
<subject>Complement System</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Biology and Life Sciences</subject>
<subj-group>
<subject>Immunology</subject>
<subj-group>
<subject>Immune System Proteins</subject>
<subj-group>
<subject>Complement System</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Medicine and Health Sciences</subject>
<subj-group>
<subject>Immunology</subject>
<subj-group>
<subject>Immune System Proteins</subject>
<subj-group>
<subject>Complement System</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v3">
<subject>Biology and Life Sciences</subject>
<subj-group>
<subject>Biochemistry</subject>
<subj-group>
<subject>Proteins</subject>
<subj-group>
<subject>Immune System Proteins</subject>
<subj-group>
<subject>Complement System</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
</article-categories>
<title-group>
<article-title>Enhanced inflammation in New Zealand white rabbits when MERS-CoV reinfection occurs in the absence of neutralizing antibody</article-title>
<alt-title alt-title-type="running-head">Enhanced inflammation after MERS reinfection in rabbits</alt-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Houser</surname>
<given-names>Katherine V.</given-names>
</name>
<role content-type="http://credit.casrai.org/">Conceptualization</role>
<role content-type="http://credit.casrai.org/">Data curation</role>
<role content-type="http://credit.casrai.org/">Formal analysis</role>
<role content-type="http://credit.casrai.org/">Investigation</role>
<role content-type="http://credit.casrai.org/">Methodology</role>
<role content-type="http://credit.casrai.org/">Validation</role>
<role content-type="http://credit.casrai.org/">Visualization</role>
<role content-type="http://credit.casrai.org/">Writing – original draft</role>
<role content-type="http://credit.casrai.org/">Writing – review & editing</role>
<xref ref-type="aff" rid="aff001">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<contrib-id authenticated="true" contrib-id-type="orcid">http://orcid.org/0000-0002-4716-1835</contrib-id>
<name>
<surname>Broadbent</surname>
<given-names>Andrew J.</given-names>
</name>
<role content-type="http://credit.casrai.org/">Conceptualization</role>
<role content-type="http://credit.casrai.org/">Data curation</role>
<role content-type="http://credit.casrai.org/">Formal analysis</role>
<role content-type="http://credit.casrai.org/">Investigation</role>
<role content-type="http://credit.casrai.org/">Methodology</role>
<role content-type="http://credit.casrai.org/">Writing – review & editing</role>
<xref ref-type="aff" rid="aff001">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Gretebeck</surname>
<given-names>Lisa</given-names>
</name>
<role content-type="http://credit.casrai.org/">Data curation</role>
<role content-type="http://credit.casrai.org/">Investigation</role>
<role content-type="http://credit.casrai.org/">Writing – review & editing</role>
<xref ref-type="aff" rid="aff001">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Vogel</surname>
<given-names>Leatrice</given-names>
</name>
<role content-type="http://credit.casrai.org/">Data curation</role>
<role content-type="http://credit.casrai.org/">Investigation</role>
<role content-type="http://credit.casrai.org/">Writing – review & editing</role>
<xref ref-type="aff" rid="aff001">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<contrib-id authenticated="true" contrib-id-type="orcid">http://orcid.org/0000-0002-3597-7319</contrib-id>
<name>
<surname>Lamirande</surname>
<given-names>Elaine W.</given-names>
</name>
<role content-type="http://credit.casrai.org/">Investigation</role>
<role content-type="http://credit.casrai.org/">Writing – review & editing</role>
<xref ref-type="aff" rid="aff001">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Sutton</surname>
<given-names>Troy</given-names>
</name>
<role content-type="http://credit.casrai.org/">Data curation</role>
<role content-type="http://credit.casrai.org/">Formal analysis</role>
<role content-type="http://credit.casrai.org/">Investigation</role>
<role content-type="http://credit.casrai.org/">Validation</role>
<role content-type="http://credit.casrai.org/">Writing – review & editing</role>
<xref ref-type="aff" rid="aff001">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<contrib-id authenticated="true" contrib-id-type="orcid">http://orcid.org/0000-0001-9454-0937</contrib-id>
<name>
<surname>Bock</surname>
<given-names>Kevin W.</given-names>
</name>
<role content-type="http://credit.casrai.org/">Data curation</role>
<role content-type="http://credit.casrai.org/">Investigation</role>
<role content-type="http://credit.casrai.org/">Methodology</role>
<role content-type="http://credit.casrai.org/">Validation</role>
<role content-type="http://credit.casrai.org/">Writing – review & editing</role>
<xref ref-type="aff" rid="aff002">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<contrib-id authenticated="true" contrib-id-type="orcid">http://orcid.org/0000-0002-3642-8063</contrib-id>
<name>
<surname>Minai</surname>
<given-names>Mahnaz</given-names>
</name>
<role content-type="http://credit.casrai.org/">Data curation</role>
<role content-type="http://credit.casrai.org/">Formal analysis</role>
<role content-type="http://credit.casrai.org/">Investigation</role>
<role content-type="http://credit.casrai.org/">Methodology</role>
<role content-type="http://credit.casrai.org/">Software</role>
<role content-type="http://credit.casrai.org/">Validation</role>
<role content-type="http://credit.casrai.org/">Writing – review & editing</role>
<xref ref-type="aff" rid="aff002">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Orandle</surname>
<given-names>Marlene</given-names>
</name>
<role content-type="http://credit.casrai.org/">Data curation</role>
<role content-type="http://credit.casrai.org/">Formal analysis</role>
<role content-type="http://credit.casrai.org/">Investigation</role>
<role content-type="http://credit.casrai.org/">Visualization</role>
<role content-type="http://credit.casrai.org/">Writing – review & editing</role>
<xref ref-type="aff" rid="aff002">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Moore</surname>
<given-names>Ian N.</given-names>
</name>
<role content-type="http://credit.casrai.org/">Data curation</role>
<role content-type="http://credit.casrai.org/">Formal analysis</role>
<role content-type="http://credit.casrai.org/">Investigation</role>
<role content-type="http://credit.casrai.org/">Methodology</role>
<role content-type="http://credit.casrai.org/">Resources</role>
<role content-type="http://credit.casrai.org/">Software</role>
<role content-type="http://credit.casrai.org/">Supervision</role>
<role content-type="http://credit.casrai.org/">Validation</role>
<role content-type="http://credit.casrai.org/">Visualization</role>
<role content-type="http://credit.casrai.org/">Writing – review & editing</role>
<xref ref-type="aff" rid="aff002">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<contrib-id authenticated="true" contrib-id-type="orcid">http://orcid.org/0000-0003-1713-3056</contrib-id>
<name>
<surname>Subbarao</surname>
<given-names>Kanta</given-names>
</name>
<role content-type="http://credit.casrai.org/">Conceptualization</role>
<role content-type="http://credit.casrai.org/">Formal analysis</role>
<role content-type="http://credit.casrai.org/">Funding acquisition</role>
<role content-type="http://credit.casrai.org/">Investigation</role>
<role content-type="http://credit.casrai.org/">Methodology</role>
<role content-type="http://credit.casrai.org/">Project administration</role>
<role content-type="http://credit.casrai.org/">Resources</role>
<role content-type="http://credit.casrai.org/">Supervision</role>
<role content-type="http://credit.casrai.org/">Validation</role>
<role content-type="http://credit.casrai.org/">Writing – original draft</role>
<role content-type="http://credit.casrai.org/">Writing – review & editing</role>
<xref ref-type="aff" rid="aff001">
<sup>1</sup>
</xref>
<xref ref-type="author-notes" rid="currentaff001">
<sup>¤</sup>
</xref>
<xref ref-type="corresp" rid="cor001">*</xref>
</contrib>
</contrib-group>
<aff id="aff001">
<label>1</label>
<addr-line>Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States of America</addr-line>
</aff>
<aff id="aff002">
<label>2</label>
<addr-line>Comparative Medicine Branch, Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States of America</addr-line>
</aff>
<contrib-group>
<contrib contrib-type="editor">
<name>
<surname>Kuhn</surname>
<given-names>Jens H.</given-names>
</name>
<role>Editor</role>
<xref ref-type="aff" rid="edit1"></xref>
</contrib>
</contrib-group>
<aff id="edit1">
<addr-line>Division of Clinical Research, UNITED STATES</addr-line>
</aff>
<author-notes>
<fn fn-type="COI-statement" id="coi001">
<p>The authors have declared that no competing interests exist</p>
</fn>
<fn fn-type="current-aff" id="currentaff001">
<label>¤</label>
<p>Current address: WHO Collaborating Centre for Reference and Research on Influenza and the University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia</p>
</fn>
<corresp id="cor001">* E-mail:
<email>ksubbarao@niaid.nih.gov</email>
,
<email>Kanta.subbarao@influenzacentre.org</email>
</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>17</day>
<month>8</month>
<year>2017</year>
</pub-date>
<pub-date pub-type="collection">
<month>8</month>
<year>2017</year>
</pub-date>
<volume>13</volume>
<issue>8</issue>
<elocation-id>e1006565</elocation-id>
<history>
<date date-type="received">
<day>17</day>
<month>2</month>
<year>2017</year>
</date>
<date date-type="accepted">
<day>1</day>
<month>8</month>
<year>2017</year>
</date>
</history>
<permissions>
<license xlink:href="https://creativecommons.org/publicdomain/zero/1.0/">
<license-p>This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the
<ext-link ext-link-type="uri" xlink:href="https://creativecommons.org/publicdomain/zero/1.0/">Creative Commons CC0</ext-link>
public domain dedication.</license-p>
</license>
</permissions>
<self-uri content-type="pdf" xlink:href="ppat.1006565.pdf"></self-uri>
<abstract>
<p>The Middle East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic betacoronavirus that was first detected in humans in 2012 as a cause of severe acute respiratory disease. As of July 28, 2017, there have been 2,040 confirmed cases with 712 reported deaths. While many infections have been fatal, there have also been a large number of mild or asymptomatic cases discovered through monitoring and contact tracing. New Zealand white rabbits are a possible model for asymptomatic infection with MERS-CoV. In order to discover more about non-lethal infections and to learn whether a single infection with MERS-CoV would protect against reinfection, we inoculated rabbits with MERS-CoV and monitored the antibody and inflammatory response. Following intranasal infection, rabbits developed a transient dose-dependent pulmonary infection with moderately high levels of viral RNA, viral antigen, and perivascular inflammation in multiple lung lobes that was not associated with clinical signs. The rabbits developed antibodies against viral proteins that lacked neutralizing activity and the animals were not protected from reinfection. In fact, reinfection resulted in enhanced pulmonary inflammation, without an associated increase in viral RNA titers. Interestingly, passive transfer of serum from previously infected rabbits to naïve rabbits was associated with enhanced inflammation upon infection. We further found this inflammation was accompanied by increased recruitment of complement proteins compared to primary infection. However, reinfection elicited neutralizing antibodies that protected rabbits from subsequent viral challenge. Our data from the rabbit model suggests that people exposed to MERS-CoV who fail to develop a neutralizing antibody response, or persons whose neutralizing antibody titers have waned, may be at risk for severe lung disease on re-exposure to MERS-CoV.</p>
</abstract>
<abstract abstract-type="summary">
<title>Author summary</title>
<p>New Zealand white rabbits display an increase in lung inflammation following reinfection with MERS-CoV that is associated with non-neutralizing antibodies and complement proteins. The development of neutralizing antibodies resulted in protection from infection. These findings may have implications for individuals that fail to develop a neutralizing antibody response, or for those whose response wanes over time, upon re-exposure to MERS-CoV.</p>
</abstract>
<funding-group>
<funding-statement>This work was supported by the Division of Intramural Research of the National Institute of Allergy and Infectious Disease, National Institutes of Health. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.</funding-statement>
</funding-group>
<counts>
<fig-count count="9"></fig-count>
<table-count count="1"></table-count>
<page-count count="25"></page-count>
</counts>
<custom-meta-group>
<custom-meta>
<meta-name>PLOS Publication Stage</meta-name>
<meta-value>vor-update-to-uncorrected-proof</meta-value>
</custom-meta>
<custom-meta>
<meta-name>Publication Update</meta-name>
<meta-value>2017-08-29</meta-value>
</custom-meta>
<custom-meta id="data-availability">
<meta-name>Data Availability</meta-name>
<meta-value>All relevant data are within the paper and its Supporting Information files</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
<notes>
<title>Data Availability</title>
<p>All relevant data are within the paper and its Supporting Information files</p>
</notes>
</front>
<body>
<sec sec-type="intro" id="sec001">
<title>Introduction</title>
<p>Since its discovery in 2012, the Middle East respiratory syndrome coronavirus (MERS-CoV) has caused at least 2,040 human infections and 712 deaths worldwide [
<xref rid="ppat.1006565.ref001" ref-type="bibr">1</xref>
,
<xref rid="ppat.1006565.ref002" ref-type="bibr">2</xref>
]. Like other human coronaviruses (229E, OC43, NL63 and HKU1), MERS-CoV is associated with respiratory tract infection. However, unlike most other human coronaviruses, MERS-CoV has a zoonotic origin and can cause severe illness, resulting in acute respiratory distress syndrome. These characteristics are reminiscent of severe acute respiratory syndrome coronavirus (SARS-CoV), which caused a large outbreak of human infections in 2003 [
<xref rid="ppat.1006565.ref002" ref-type="bibr">2</xref>
].</p>
<p>Serological surveys of persons in the Arabian Peninsula have shown low or undetectable levels of preexisting antibody against MERS-CoV, although those in close contact with camels (the reservoir host for MERS-CoV) have higher rates of seropositivity than the general population [
<xref rid="ppat.1006565.ref003" ref-type="bibr">3</xref>
<xref rid="ppat.1006565.ref005" ref-type="bibr">5</xref>
]. Longitudinal studies have also indicated that serum antibody titers may wane over time, particularly following mild infections [
<xref rid="ppat.1006565.ref006" ref-type="bibr">6</xref>
<xref rid="ppat.1006565.ref008" ref-type="bibr">8</xref>
]; similar to what has been observed for other coronaviruses like SARS-CoV [
<xref rid="ppat.1006565.ref009" ref-type="bibr">9</xref>
].</p>
<p>Since the discovery of MERS-CoV, only one autopsy report has been published and the course of MERS-CoV infection in humans is still not well understood [
<xref rid="ppat.1006565.ref010" ref-type="bibr">10</xref>
]. This is particularly true for the mild or asymptomatic infections, which comprise a large number of MERS-CoV infections in healthy adults [
<xref rid="ppat.1006565.ref011" ref-type="bibr">11</xref>
<xref rid="ppat.1006565.ref014" ref-type="bibr">14</xref>
]. We wished to explore the immune response during non-lethal MERS-CoV infection, and to determine whether such infections would be protective.</p>
<p>Several small animals, including ferrets, hamsters, and mice which are frequently used as animal models for human disease have proven resistant to infection with MERS-CoV [
<xref rid="ppat.1006565.ref015" ref-type="bibr">15</xref>
<xref rid="ppat.1006565.ref018" ref-type="bibr">18</xref>
]. The dipeptidyl peptidase 4 (DPP4) protein, which is the cellular receptor for MERS-CoV in these animals differed from human DPP4 at key residues, and therefore did not bind to the MERS-CoV spike protein [
<xref rid="ppat.1006565.ref018" ref-type="bibr">18</xref>
]. Several modified mouse models have been generated to overcome this receptor-mediated restriction including both transduced and transgenic animals expressing human DPP4, and lethal infection models have been established [
<xref rid="ppat.1006565.ref019" ref-type="bibr">19</xref>
<xref rid="ppat.1006565.ref021" ref-type="bibr">21</xref>
]. Non-human primates have been successfully infected, with rhesus macaques displaying a mild, transient illness and marmosets demonstrating a more severe and sometimes lethal infection [
<xref rid="ppat.1006565.ref022" ref-type="bibr">22</xref>
<xref rid="ppat.1006565.ref025" ref-type="bibr">25</xref>
], although there is some discrepancy in findings from marmosets [
<xref rid="ppat.1006565.ref026" ref-type="bibr">26</xref>
]. Camels and alpacas have also been experimentally infected and exhibit transient viral replication in the upper respiratory tract [
<xref rid="ppat.1006565.ref027" ref-type="bibr">27</xref>
,
<xref rid="ppat.1006565.ref028" ref-type="bibr">28</xref>
]. However, the expense and care of camels and the ethical concerns surrounding the use of non-human primates limits their widespread utility for research studies.</p>
<p>The New Zealand white rabbit supports productive replication of the MERS-CoV isolate EMC/2012 without associated clinical signs of disease [
<xref rid="ppat.1006565.ref029" ref-type="bibr">29</xref>
]. We sought to characterize the role of antibodies in protection from reinfection following asymptomatic infection. We found that primary infection failed to induce neutralizing antibodies and reinfection was associated with increased pulmonary inflammation. Reinfection elicited neutralizing antibodies that protected rabbits from subsequent infection. Thus, whilst neutralizing antibodies are protective, they may not be elicited or may not last long after mild infection with MERS-CoV and infection in the presence of only non-neutralizing antibodies may be associated with enhanced pulmonary inflammation.</p>
</sec>
<sec sec-type="results" id="sec002">
<title>Results</title>
<sec id="sec003">
<title>MERS-CoV infection results in a transient pulmonary disease</title>
<p>In order to study the initial disease progression and antibody response associated with MERS-CoV infection in rabbits, we infected nine New Zealand White rabbits with either a low dose (10
<sup>3</sup>
TCID
<sub>50</sub>
) or high dose (10
<sup>5</sup>
TCID
<sub>50</sub>
) of EMC/2012 (
<xref ref-type="fig" rid="ppat.1006565.g001">Fig 1</xref>
). None of the rabbits displayed overt clinical signs of illness in the 14 days following infection. Viral RNA titers were measured by qRT-PCR using primer pairs targeting the nucleocapsid protein (N3) and are reported as genome equivalents per gram of tissue [
<xref rid="ppat.1006565.ref030" ref-type="bibr">30</xref>
], as we found this method to be more sensitive and less variable than recovering infectious virus from infected rabbit tissues (
<xref ref-type="fig" rid="ppat.1006565.g002">Fig 2A and 2B</xref>
and
<xref ref-type="supplementary-material" rid="ppat.1006565.s001">S1 Fig</xref>
) as reported previously in the rabbit and other MERS-CoV animal models [
<xref rid="ppat.1006565.ref022" ref-type="bibr">22</xref>
,
<xref rid="ppat.1006565.ref029" ref-type="bibr">29</xref>
].</p>
<fig id="ppat.1006565.g001" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.ppat.1006565.g001</object-id>
<label>Fig 1</label>
<caption>
<title>Schematic of rabbit infection studies.</title>
<p>Rabbits were inoculated intranasally with EMC/2012 strain of MERS-CoV (green arrows) and tissue samples were collected for viral titration and histopathology at necropsy (blue arrows). Three rabbits were necropsied at each time point. Numbers indicate days since virus administration for primary, (secondary), or [tertiary] infections.</p>
</caption>
<graphic xlink:href="ppat.1006565.g001"></graphic>
</fig>
<fig id="ppat.1006565.g002" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.ppat.1006565.g002</object-id>
<label>Fig 2</label>
<caption>
<title>Viral RNA titers in the respiratory tract following primary infection with MERS-CoV.</title>
<p>Viral RNA titers in the nasal turbinates (A) and lungs (B) of rabbits following infection with either 10
<sup>3</sup>
or 10
<sup>5</sup>
TCID
<sub>50</sub>
of EMC/2012 strain of MERS-CoV through day 5 after infection. In a separate experiment, viral RNA titers were determined in the nasal turbinates (C) and lungs (D) following infection with 10
<sup>6.5</sup>
TCID
<sub>50</sub>
. n = 3 rabbits per group. Statistical significance was determined using one-way ANOVA with Tukey’s multiple comparisons test. p values *<0.05, ***<0.001.</p>
</caption>
<graphic xlink:href="ppat.1006565.g002"></graphic>
</fig>
<p>We observed a transient infection following inoculation, with detection of viral RNA largely limited to the respiratory tract. In the nasal turbinates, viral RNA was detected only sporadically, although the titers increased after day 1 post-infection. In general, the higher dose of virus resulted in greater mean genome equivalent titers than infection with the lower dose of MERS-CoV (
<xref ref-type="fig" rid="ppat.1006565.g002">Fig 2A</xref>
). A dose-response was observed in the lower respiratory tract; with the 10
<sup>5</sup>
TCID
<sub>50</sub>
inoculum resulting in significantly higher titers than infection with 10
<sup>3</sup>
TCID
<sub>50</sub>
of virus on days 1 and 3 post-infection (
<xref ref-type="fig" rid="ppat.1006565.g002">Fig 2B</xref>
) (p values of 0.03 and 0.0001 respectively).</p>
<p>Following primary infection with 10
<sup>5</sup>
TCID
<sub>50</sub>
, mild inflammation involving the perivascular, peribronchiolar, and alveolar interstitial regions was observed in the lungs at day 3 post-infection, with little to no cellular debris within airways (
<xref ref-type="fig" rid="ppat.1006565.g003">Fig 3A</xref>
,
<xref ref-type="supplementary-material" rid="ppat.1006565.s005">S1</xref>
and
<xref ref-type="supplementary-material" rid="ppat.1006565.s007">S3</xref>
Tables). The cellular infiltrate was largely composed of eosinophils and macrophages and fewer lymphocytes and plasma cells (
<xref ref-type="fig" rid="ppat.1006565.g003">Fig 3A</xref>
inset). Inflammation was not observed following infection with 10
<sup>3</sup>
TCID
<sub>50</sub>
of virus or in media-only controls (
<xref ref-type="fig" rid="ppat.1006565.g003">Fig 3B and 3C</xref>
and
<xref ref-type="supplementary-material" rid="ppat.1006565.s005">S1</xref>
and
<xref ref-type="supplementary-material" rid="ppat.1006565.s007">S3</xref>
Tables) based on blind scoring and digital quantitative analysis. Immunohistochemistry (IHC) revealed virus antigen following infection with the higher (10
<sup>5</sup>
TCID
<sub>50</sub>
) dose of virus (
<xref ref-type="fig" rid="ppat.1006565.g003">Fig 3D</xref>
and inset,
<xref ref-type="supplementary-material" rid="ppat.1006565.s005">S1</xref>
and
<xref ref-type="supplementary-material" rid="ppat.1006565.s006">S2</xref>
Tables), but not the lower dose or media-only inoculum (
<xref ref-type="fig" rid="ppat.1006565.g003">Fig 3E and 3F</xref>
and
<xref ref-type="supplementary-material" rid="ppat.1006565.s005">S1</xref>
and
<xref ref-type="supplementary-material" rid="ppat.1006565.s006">S2</xref>
Tables).</p>
<fig id="ppat.1006565.g003" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.ppat.1006565.g003</object-id>
<label>Fig 3</label>
<caption>
<title>Histopathology in the lungs following primary infection with EMC/2012 strain of MERS-CoV.</title>
<p>Images show H&E (left) and IHC against the MERS-CoV N protein (right) following infection with 10
<sup>5</sup>
TCID
<sub>50</sub>
(A,D), 10
<sup>3</sup>
TCID
<sub>50</sub>
(B,E), or a media only control (C,F). All images at 10x, (bar equivalent to 100μm) with 40x insets (bar equivalent to 20μm). Images shown are from day 3 post-infection for all groups.</p>
</caption>
<graphic xlink:href="ppat.1006565.g003"></graphic>
</fig>
<p>In a separate experiment, rabbits were inoculated with 10
<sup>6.5</sup>
TCID
<sub>50</sub>
of EMC/2012 (
<xref ref-type="fig" rid="ppat.1006565.g002">Fig 2C and 2D</xref>
). Viral RNA titers in the lung were sustained until day 5, then dropped to almost baseline levels by day 10, and were undetectable on day 28 post-infection.</p>
<p>Serum was collected for detection of MERS-specific antibodies by both ELISA and microneutralization (MN) assays (
<xref ref-type="table" rid="ppat.1006565.t001">Table 1</xref>
). Eight weeks after inoculation, serum antibodies against the S protein were detected by IgG ELISA in all of the rabbits inoculated with 10
<sup>5</sup>
TCID
<sub>50</sub>
[geometric mean titer (GMT) 1016], but not in the group inoculated with 10
<sup>3</sup>
TCID
<sub>50</sub>
. Antibodies against the nucleocapsid (N) protein were detected by IgG ELISA in two rabbits previously inoculated with 10
<sup>5</sup>
TCID
<sub>50</sub>
and one rabbit with 10
<sup>3</sup>
TCID
<sub>50</sub>
. However, neutralizing antibodies were not detected in rabbits inoculated with any dose (10
<sup>3</sup>
, 10
<sup>5</sup>
, or 10
<sup>6.5</sup>
) of EMC/2012 (
<xref ref-type="table" rid="ppat.1006565.t001">Table 1</xref>
).</p>
<table-wrap id="ppat.1006565.t001" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.ppat.1006565.t001</object-id>
<label>Table 1</label>
<caption>
<title>Serum ELISA and neutralizing antibody titers in rabbits following primary and secondary infection.</title>
</caption>
<alternatives>
<graphic id="ppat.1006565.t001g" xlink:href="ppat.1006565.t001"></graphic>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
</colgroup>
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">
<break></break>
Infection</th>
<th align="left" rowspan="1" colspan="1">Inoculum dose
<xref ref-type="table-fn" rid="t001fn001">
<sup>a</sup>
</xref>
</th>
<th align="center" rowspan="1" colspan="1">Time post primary infection (weeks)</th>
<th align="center" rowspan="1" colspan="1">S ELISA titers GMT
<xref ref-type="table-fn" rid="t001fn002">
<sup>b</sup>
</xref>
(
<xref ref-type="table-fn" rid="t001fn003">#</xref>
with detectable antibody)
<xref ref-type="table-fn" rid="t001fn003">
<sup>c</sup>
</xref>
</th>
<th align="center" rowspan="1" colspan="1">N ELISA titers GMT (
<xref ref-type="table-fn" rid="t001fn003">#</xref>
with detectable antibody)</th>
<th align="center" rowspan="1" colspan="1">MN titers GMT
<break></break>
(
<xref ref-type="table-fn" rid="t001fn003">#</xref>
with detectable antibody)</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">Primary</td>
<td align="left" rowspan="1" colspan="1">10
<sup>3</sup>
</td>
<td align="center" rowspan="1" colspan="1">8</td>
<td align="center" rowspan="1" colspan="1"><10
<xref ref-type="table-fn" rid="t001fn004">
<sup>d</sup>
</xref>
(0)</td>
<td align="center" rowspan="1" colspan="1">100 (1)</td>
<td align="center" rowspan="1" colspan="1"><10 (0)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Primary</td>
<td align="left" rowspan="1" colspan="1">10
<sup>5</sup>
</td>
<td align="center" rowspan="1" colspan="1">8</td>
<td align="center" rowspan="1" colspan="1">1016 (3)</td>
<td align="center" rowspan="1" colspan="1">158 (2)</td>
<td align="center" rowspan="1" colspan="1"><10 (0)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Secondary</td>
<td align="left" rowspan="1" colspan="1">10
<sup>3//</sup>
10
<sup>5</sup>
</td>
<td align="center" rowspan="1" colspan="1">13</td>
<td align="center" rowspan="1" colspan="1">6451 (3)</td>
<td align="center" rowspan="1" colspan="1">635 (3)</td>
<td align="center" rowspan="1" colspan="1">27 (2)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Secondary</td>
<td align="left" rowspan="1" colspan="1">10
<sup>5//</sup>
10
<sup>5</sup>
</td>
<td align="center" rowspan="1" colspan="1">13</td>
<td align="center" rowspan="1" colspan="1">4064 (3)</td>
<td align="center" rowspan="1" colspan="1">400 (1)</td>
<td align="center" rowspan="1" colspan="1">73 (3)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Passive transfer</td>
<td align="left" rowspan="1" colspan="1">10
<sup>3</sup>
</td>
<td align="center" rowspan="1" colspan="1">4</td>
<td align="center" rowspan="1" colspan="1">10 (1)</td>
<td align="center" rowspan="1" colspan="1">ND
<xref ref-type="table-fn" rid="t001fn005">
<sup>e</sup>
</xref>
</td>
<td align="center" rowspan="1" colspan="1"><10 (0)</td>
</tr>
</tbody>
</table>
</alternatives>
<table-wrap-foot>
<fn id="t001fn001">
<p>
<sup>a</sup>
// indicates the sequence of subsequent infections</p>
</fn>
<fn id="t001fn002">
<p>
<sup>b</sup>
GMT- geometric mean titer</p>
</fn>
<fn id="t001fn003">
<p>
<sup>c</sup>
# with detectable antibody titer out of 3 rabbits</p>
</fn>
<fn id="t001fn004">
<p>
<sup>d</sup>
<10 indicates titers were below the limit of detection</p>
</fn>
<fn id="t001fn005">
<p>
<sup>e</sup>
ND- not determined</p>
</fn>
</table-wrap-foot>
</table-wrap>
<p>These data indicate that there is a dose-response in MERS-CoV infected rabbits measured by viral RNA and antibody titers. The peak in viral titers occurs at day 3 post-infection, with higher titers observed following infection with 10
<sup>5</sup>
or 10
<sup>6.5</sup>
TCID
<sub>50</sub>
of virus. Since the 10
<sup>5</sup>
and 10
<sup>6.5</sup>
TCID
<sub>50</sub>
doses gave similar results, the 10
<sup>5</sup>
TCID
<sub>50</sub>
dose was chosen for the remaining studies.</p>
</sec>
<sec id="sec004">
<title>Neither anti-S nor anti-N protein antibodies provide protection from reinfection</title>
<p>Our findings in rabbits are reminiscent of a few reports of human cases of qRT-PCR confirmed infection with MERS-CoV that failed to elicit either a neutralizing antibody response, or any detectable antibody response against the virus [
<xref rid="ppat.1006565.ref006" ref-type="bibr">6</xref>
,
<xref rid="ppat.1006565.ref008" ref-type="bibr">8</xref>
,
<xref rid="ppat.1006565.ref031" ref-type="bibr">31</xref>
]. In order to determine whether such patients would be susceptible to reinfection, we repeated the MERS-CoV infection in the previously infected rabbits. Eight weeks after primary infection, we challenged six rabbits that had previously received the high or low dose of MERS-CoV with 10
<sup>5</sup>
TCID
<sub>50</sub>
of EMC/2012 (
<xref ref-type="fig" rid="ppat.1006565.g001">Fig 1</xref>
). Additional naïve rabbits were inoculated for comparison. As in primary infection, clinical signs were not observed upon reinfection.</p>
<p>Neither group of reinfected rabbits had viral RNA detected in the upper respiratory tract, although viral RNA was detected in the primary infection control group (
<xref ref-type="supplementary-material" rid="ppat.1006565.s002">S2 Fig</xref>
). However, all groups had evidence of pulmonary infection. The rabbits infected serially with 10
<sup>5</sup>
TCID
<sub>50</sub>
of EMC/2012 (10
<sup>5//</sup>
10
<sup>5</sup>
) had lower viral RNA titers compared to both the 10
<sup>3//</sup>
10
<sup>5</sup>
TCID
<sub>50</sub>
and 10
<sup>5</sup>
TCID
<sub>50</sub>
primary infection groups, with mean titers of 10
<sup>2.9</sup>
, 10
<sup>3.7</sup>
, and 10
<sup>4</sup>
TCID
<sub>50</sub>
eq per gram of tissue respectively (
<xref ref-type="fig" rid="ppat.1006565.g004">Fig 4A</xref>
).</p>
<fig id="ppat.1006565.g004" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.ppat.1006565.g004</object-id>
<label>Fig 4</label>
<caption>
<title>Viral RNA titers and histopathology in the lungs of rabbits following reinfection with MERS-CoV.</title>
<p>Viral RNA titers in the lungs of rabbits following reinfection with EMC/2012 (A). Images show H&E (left) and IHC for the MERS-CoV N protein (right) following reinfection for the 10
<sup>3//</sup>
10
<sup>5</sup>
TCID
<sub>50</sub>
reinfection group (B,E) and 10
<sup>5//</sup>
10
<sup>5</sup>
TCID
<sub>50</sub>
reinfection group (C,F). The 10
<sup>5</sup>
TCID
<sub>50</sub>
<sup>//</sup>
media control group was included to demonstrate that the observed inflammation was not residual from the primary infection (D,G). n = 3 rabbits per group. All images at 10x, (bar equivalent to 100μm) with 40x inset (bar equivalent to 20μm). Images from day 3 post-infection.</p>
</caption>
<graphic xlink:href="ppat.1006565.g004"></graphic>
</fig>
<p>Inflammatory changes were more severe upon reinfection compared to primary infection, with the greatest inflammation observed in the animals previously infected with the low dose of virus (
<xref ref-type="fig" rid="ppat.1006565.g003">Fig 3A</xref>
,
<xref ref-type="fig" rid="ppat.1006565.g004">4B and 4C</xref>
, and
<xref ref-type="supplementary-material" rid="ppat.1006565.s005">S1</xref>
and
<xref ref-type="supplementary-material" rid="ppat.1006565.s007">S3</xref>
Tables). These severely inflamed regions were characterized by an abundance of eosinophils, macrophages, lymphocytes and plasma cells which formed densely cellular collars of inflammatory cells around the affected perivascular and peribronchiolar regions. In addition, the cellular infiltrate expanded and obscured much of the adjacent alveolar interstitium. The alveolar interstitium also contained regions of proteinaceous fluid and diffuse type II pneumocyte hyperplasia (
<xref ref-type="fig" rid="ppat.1006565.g004">Fig 4B</xref>
inset). This inflammatory response was driven by reinfection, and was not residual inflammation from the primary infection. This was confirmed by including a group of previously infected rabbits that received diluent alone in the reinfection study (
<xref ref-type="fig" rid="ppat.1006565.g004">Fig 4D</xref>
, and
<xref ref-type="supplementary-material" rid="ppat.1006565.s005">S1 Table</xref>
). The rabbits in the 10
<sup>3//</sup>
10
<sup>5</sup>
TCID
<sub>50</sub>
group had antigen levels comparable to primary infection, while the 10
<sup>5//</sup>
10
<sup>5</sup>
TCID
<sub>50</sub>
group had lower levels of antigen by IHC (
<xref ref-type="fig" rid="ppat.1006565.g004">Fig 4E and 4F</xref>
,
<xref ref-type="supplementary-material" rid="ppat.1006565.s005">S1</xref>
and
<xref ref-type="supplementary-material" rid="ppat.1006565.s006">S2</xref>
Tables). These data indicate that low titers of non-neutralizing antibodies do not protect rabbits from reinfection, and may instead result in enhanced inflammation.</p>
<p>The S protein-specific IgG ELISA antibody titers were boosted following secondary infection and remained detectable for five weeks, with a GMT of 6451 for the 10
<sup>3//</sup>
10
<sup>5</sup>
TCID
<sub>50</sub>
group, and a GMT of 4064 for the 10
<sup>5//</sup>
10
<sup>5</sup>
TCID
<sub>50</sub>
group (
<xref ref-type="table" rid="ppat.1006565.t001">Table 1</xref>
). N protein-specific antibodies were found in all rabbits in the 10
<sup>3//</sup>
10
<sup>5</sup>
TCID
<sub>50</sub>
group and one of the 10
<sup>5//</sup>
10
<sup>5</sup>
TCID
<sub>50</sub>
group. Secondary infections in both groups resulted in the production of neutralizing antibodies, although the titer in one rabbit in the 10
<sup>3//</sup>
10
<sup>5</sup>
TCID
<sub>50</sub>
group dropped below the detection limit by five weeks post-infection (
<xref ref-type="table" rid="ppat.1006565.t001">Table 1</xref>
). Overall the 10
<sup>3//</sup>
10
<sup>5</sup>
TCID
<sub>50</sub>
group had lower neutralizing titers than the 10
<sup>5//</sup>
10
<sup>5</sup>
TCID
<sub>50</sub>
group, with GMTs of 27 and 73 respectively.</p>
</sec>
<sec id="sec005">
<title>Neutralizing antibodies provide protection from infection</title>
<p>To determine if neutralizing antibodies would protect from reinfection, three rabbits from each secondary infection group were re-challenged with 10
<sup>5</sup>
TCID
<sub>50</sub>
EMC/2012 five weeks later (
<xref ref-type="fig" rid="ppat.1006565.g001">Fig 1</xref>
). Clinical signs of illness were not observed in any of the rabbits. As was observed with the second infection, viral RNA was not detected in the upper respiratory tract samples from either group of rabbits on day 3 post-infection. In the lungs, a significant decrease in the amount of viral RNA was observed in both the 10
<sup>5//</sup>
10
<sup>5//</sup>
10
<sup>5</sup>
TCID
<sub>50</sub>
group and the 10
<sup>3//</sup>
10
<sup>5//</sup>
10
<sup>5</sup>
TCID
<sub>50</sub>
group compared to primary infection, with mean titers of 10
<sup>1.9</sup>
, 10
<sup>2.6</sup>
, and 10
<sup>4.5</sup>
TCID
<sub>50</sub>
eq per gram of tissue respectively (p values of 0.0006 and 0.003) (
<xref ref-type="fig" rid="ppat.1006565.g005">Fig 5A</xref>
). This decrease in viral load was also observed by IHC (
<xref ref-type="supplementary-material" rid="ppat.1006565.s005">S1</xref>
and
<xref ref-type="supplementary-material" rid="ppat.1006565.s006">S2</xref>
Tables).</p>
<fig id="ppat.1006565.g005" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.ppat.1006565.g005</object-id>
<label>Fig 5</label>
<caption>
<title>Viral RNA titers and histopathology in lungs following infection with MERS-CoV when neutralizing antibodies are present.</title>
<p>Viral RNA titers in the lungs following tertiary infection with EMC/2012 strain (A). Images show H&E staining (B) and IHC with an antibody against the MERS-CoV N protein (C) in the 10
<sup>5//</sup>
10
<sup>5//</sup>
10
<sup>5</sup>
TCID
<sub>50</sub>
group. Images are representative of all rabbits following tertiary infection. All images at 10x, (bar equivalent to 100μm) with 40x inset (bar equivalent to 20μm). n = 3 rabbits per group. Statistical significance was determined using one-way ANOVA with Tukey’s multiple comparisons test. Images from day 3 post-infection. p values **<0.01, ***<0.001.</p>
</caption>
<graphic xlink:href="ppat.1006565.g005"></graphic>
</fig>
<p>Histologically, the lungs from both groups displayed mild inflammation and minimal antigen burden (
<xref ref-type="fig" rid="ppat.1006565.g005">Fig 5B and 5C</xref>
and
<xref ref-type="supplementary-material" rid="ppat.1006565.s005">S1</xref>
,
<xref ref-type="supplementary-material" rid="ppat.1006565.s006">S2</xref>
and
<xref ref-type="supplementary-material" rid="ppat.1006565.s007">S3</xref>
Tables). In these milder regions of peribronchiolar and perivascular inflammation, eosinophils and macrophages predominated (
<xref ref-type="fig" rid="ppat.1006565.g005">Fig 5B</xref>
inset).</p>
<p>Thus, infection in the presence of neutralizing antibodies was associated with significant protection from viral infection and associated pathology in both the upper and lower respiratory tract of the rabbits. Moreover, the prechallenge serum neutralizing antibody titers inversely correlated with viral RNA titers following tertiary infection (
<xref ref-type="fig" rid="ppat.1006565.g005">Fig 5A</xref>
).</p>
</sec>
<sec id="sec006">
<title>Non-neutralizing antibodies mediate enhanced inflammation following reinfection</title>
<p>To determine if non-neutralizing antibodies were responsible for the enhanced inflammation observed following reinfection, we performed a passive transfer (PT) experiment. Serum collected from rabbits four weeks following primary infection with 10
<sup>3</sup>
TCID
<sub>50</sub>
of EMC/2012 was transferred either undiluted or at a 1:10 dilution in PBS to naïve rabbits that were challenged with 10
<sup>5</sup>
TCID
<sub>50</sub>
of virus the following day. For comparison, a group of previously infected rabbits were reinfected. Although ELISA antibodies against the S protein were barely detectable in the serum (
<xref ref-type="table" rid="ppat.1006565.t001">Table 1</xref>
), after the serum was concentrated ten-fold prior to administration the ELISA titers ranged from 10 to 40. Neutralizing activity was not detected, even after concentration of the serum. Thus, very low titers of non-neutralizing antibodies were present in the transferred serum. Passively transferred antibodies did not affect viral titers in the lower respiratory tract as determined by qRT-PCR (
<xref ref-type="fig" rid="ppat.1006565.g006">Fig 6A</xref>
).</p>
<fig id="ppat.1006565.g006" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.ppat.1006565.g006</object-id>
<label>Fig 6</label>
<caption>
<title>Viral RNA titers and histopathology in the lungs following MERS-CoV infection in rabbits that received passive transfer (PT) of serum from infected rabbits.</title>
<p>Viral RNA titers in the lungs upon infection with 10
<sup>5</sup>
TCID
<sub>50</sub>
of MERS-CoV in rabbits either previously infected with a low dose of MERS-CoV (10
<sup>3</sup>
TCID
<sub>50</sub>
) four weeks prior or naïve rabbits following PT of post-infection sera at either a full dose or 1:10 dilution (A). Images show the H&E staining (left) and IHC with an antibody against the MERS-CoV N protein (right) following infection for the 10
<sup>3//</sup>
10
<sup>5</sup>
TCID
<sub>50</sub>
(reinfection) group (B,E), the group that received passive transfer of undiluted post-infection serum (C, F), and the group that received passive transfer of post-infection serum at 1:10 dilution (D,G). n = 3 rabbits per group. Images from day 3 post-infection at 10x, bar equivalent to 100μm.</p>
</caption>
<graphic xlink:href="ppat.1006565.g006"></graphic>
</fig>
<p>Rabbits that received the undiluted passively transferred (PT) serum exhibited immunopathology similar to that observed in previously infected rabbits based on blinded scoring (
<xref ref-type="fig" rid="ppat.1006565.g006">Fig 6B and 6C</xref>
and
<xref ref-type="supplementary-material" rid="ppat.1006565.s005">S1 Table</xref>
). There was an increase in observed vascular congestion in this group of PT rabbits compared to the other groups. The rabbits that received serum antibodies at the lower dilution did not demonstrate enhanced inflammation (
<xref ref-type="fig" rid="ppat.1006565.g006">Fig 6D</xref>
,
<xref ref-type="supplementary-material" rid="ppat.1006565.s005">S1 Table</xref>
). Overall, the pathology in the rabbits that were infected after PT of post-infection serum was milder than in other reinfection studies, possibly due to the shortened interval between primary infection and reinfection. Viral antigen levels appeared similar between all groups by IHC (
<xref ref-type="fig" rid="ppat.1006565.g006">Fig 6E, 6F and 6G</xref>
,
<xref ref-type="supplementary-material" rid="ppat.1006565.s005">S1</xref>
and
<xref ref-type="supplementary-material" rid="ppat.1006565.s006">S2</xref>
Tables).</p>
</sec>
<sec id="sec007">
<title>Increased complement activation is associated with enhanced inflammation</title>
<p>Non-neutralizing antibodies typically enhance inflammation and pathology during an immune response through interactions with Fc or complement receptors [
<xref rid="ppat.1006565.ref032" ref-type="bibr">32</xref>
]. We first examined the possibility that the antibodies were causing enhanced inflammation due to an increase in viral uptake and replication in macrophages through interaction with their native cellular receptor or an Fc receptor, as happens in dengue [
<xref rid="ppat.1006565.ref032" ref-type="bibr">32</xref>
<xref rid="ppat.1006565.ref034" ref-type="bibr">34</xref>
]. Antibody-dependent enhancement (ADE) during infection has also been observed with other coronaviruses, such as feline infectious peritonitis virus (FIPV) [
<xref rid="ppat.1006565.ref035" ref-type="bibr">35</xref>
]. However, it was not clear that such a mechanism was likely since the enhanced inflammation in secondary MERS-CoV infection in rabbits was not associated with an increased viral load by either qRT-PCR or IHC (
<xref ref-type="fig" rid="ppat.1006565.g004">Fig 4A</xref>
,
<xref ref-type="supplementary-material" rid="ppat.1006565.s005">S1</xref>
and
<xref ref-type="supplementary-material" rid="ppat.1006565.s006">S2</xref>
Tables).</p>
<p>In order to examine the replication of MERS-CoV in macrophages, we differentiated THP-1 cells into macrophages and infected them with MERS-CoV in the presence or absence of rabbit sera and measured viral titers after 48 hours. Heat-inactivated sera from naïve rabbits (week 0), week 8 following primary infection (only non-neutralizing antibodies present), and week 13 following secondary infection (neutralizing antibodies present) were tested at three dilutions. All dilutions displayed similar trends but only undiluted samples are shown in
<xref ref-type="fig" rid="ppat.1006565.g007">Fig 7</xref>
. Vero81 cells were used as a positive control (
<xref ref-type="fig" rid="ppat.1006565.g007">Fig 7A</xref>
) and Raji cells were included as a negative control (
<xref ref-type="fig" rid="ppat.1006565.g007">Fig 7B</xref>
) of infection. Compared to the level of viral replication observed in macrophages without serum, addition of rabbit sera produced no enhancement of viral replication. In fact, in the presence of rabbit sera, there was a significant decrease in viral replication in THP-1 cells compared to titers in the absence of rabbit serum (
<xref ref-type="fig" rid="ppat.1006565.g007">Fig 7C</xref>
), indicating that the non-neutralizing antibodies did not enhance MERS-CoV replication in these cells.</p>
<fig id="ppat.1006565.g007" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.ppat.1006565.g007</object-id>
<label>Fig 7</label>
<caption>
<title>Antibody-dependent enhancement (ADE) assay using rabbit sera throughout the infection series.</title>
<p>Sera from naïve rabbits (week 0), following primary infection (week 8), and following secondary infection (week 13) were collected from both the 10
<sup>3</sup>
and 10
<sup>5</sup>
infection schedules. Week 8 serum had no neutralizing activity while week 13 serum had neutralizing activity. Sera were tested in Vero81 cells (A), Raji cells (B) and THP-1 cells (C). None = virus only control. p values **<0.01, ***<0.001.</p>
</caption>
<graphic xlink:href="ppat.1006565.g007"></graphic>
</fig>
<p>The other possibility for ADE of inflammation is through interaction with complement receptors. We investigated the potential role of complement in the enhanced pulmonary inflammation by evaluating lung samples from primary and secondary MERS-CoV infections with an ELISA against rabbit complement protein C3a. Using this assay, we observed an increased amount of complement protein per gram of lung tissue in both secondary infection groups (mean of 1084 ng/g for 10
<sup>3//</sup>
10
<sup>5</sup>
and 939 ng/g for the 10
<sup>5//</sup>
10
<sup>5</sup>
) compared to primary infection (mean value of 699 ng/g) (
<xref ref-type="fig" rid="ppat.1006565.g008">Fig 8A</xref>
). This increase was significant for the 10
<sup>3//</sup>
10
<sup>5</sup>
group compared to primary infection (p = 0.02).</p>
<fig id="ppat.1006565.g008" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.ppat.1006565.g008</object-id>
<label>Fig 8</label>
<caption>
<title>Detection of complement protein during primary infection and reinfection.</title>
<p>ELISA against C3a protein in rabbit lung homogenates (A) show an increase in C3a levels present during reinfection compared to primary infection. Immunofluorescence images show MERS-CoV N antigen (green) and complement (red) following secondary infection (B) and primary infection (C). Images from day 3 post-infection at 40x, bar equivalent to 20μm. n = 3 rabbits per group. Statistical significance was determined using one-way ANOVA with Dunnett’s multiple comparisons test. p values *<0.05.</p>
</caption>
<graphic xlink:href="ppat.1006565.g008"></graphic>
</fig>
<p>We further validated the association between complement and increased inflammation using an anti-complement (C9) antibody. Immunofluorescence revealed complement recruitment through the deposition of virus antigen and C9 within the inflammatory milieu surrounding many vessels and airways in the lungs of the reinfected rabbits (
<xref ref-type="fig" rid="ppat.1006565.g008">Fig 8B</xref>
). This was in direct contrast to the primary infection group in which virus antigen was detected adjacent to small vessels and airways with minimal inflammation and no evidence of complement deposition (
<xref ref-type="fig" rid="ppat.1006565.g008">Fig 8C</xref>
). Staining for other complement targets (C1q, C4b, C3a, and C3c) was unsuccessful in the rabbit tissues.</p>
</sec>
<sec id="sec008">
<title>An increase in CD3+ cells occurs during reinfection in the lungs</title>
<p>Since T cell responses could also be involved in enhanced inflammation, we stained lung tissues with an anti-CD3 antibody (
<xref ref-type="fig" rid="ppat.1006565.g009">Fig 9</xref>
). Following reinfection, we observed a substantial increase in the numbers of CD3+ T cells in the lung compared to primary infection (
<xref ref-type="fig" rid="ppat.1006565.g009">Fig 9A and 9B</xref>
). These T cells were distributed in the same areas as virus antigen, largely in the areas immediately surrounding vessels and airways (
<xref ref-type="fig" rid="ppat.1006565.g009">Fig 9C</xref>
). Attempts to further characterize the CD3+ cells were unsuccessful.</p>
<fig id="ppat.1006565.g009" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.ppat.1006565.g009</object-id>
<label>Fig 9</label>
<caption>
<title>CD3+ cells in the lungs following primary infection and reinfection.</title>
<p>DAB images from primary infection (A) and reinfection (B). Immunofluorescence (IF) image of CD3 (green) and virus antigen (red) within the same perivascular region following reinfection (C). DAB images from day 3 post-infection at 10x, bar equivalent to 100μm. IF images at 40x, bar equivalent to 20μm.</p>
</caption>
<graphic xlink:href="ppat.1006565.g009"></graphic>
</fig>
</sec>
</sec>
<sec sec-type="conclusions" id="sec009">
<title>Discussion</title>
<p>While MERS-CoV is able to cause severe disease with a lethal outcome, many otherwise healthy individuals display a mild or asymptomatic disease course. Using the rabbit model, we examined the serum response following asymptomatic infection, and found that an antibody response lacking neutralizing activity was not protective against reinfection. Our study extends previously published information on the rabbit model [
<xref rid="ppat.1006565.ref029" ref-type="bibr">29</xref>
] by examining a dose response and exploring the enhanced inflammation observed during reinfection. The inclusion of a low dose of virus in our studies revealed the potentially detrimental effects of non-neutralizing antibodies and further demonstrated the protective benefit of neutralizing antibodies [
<xref rid="ppat.1006565.ref021" ref-type="bibr">21</xref>
,
<xref rid="ppat.1006565.ref036" ref-type="bibr">36</xref>
,
<xref rid="ppat.1006565.ref037" ref-type="bibr">37</xref>
]. To our knowledge, the rabbit infection model described here is the only model of MERS-CoV infection in which non-neutralizing antibodies are exclusively elicited following primary infection.</p>
<p>Our observations in the rabbit are in general agreement with those reported by Haagmans et al [
<xref rid="ppat.1006565.ref029" ref-type="bibr">29</xref>
], with the exception that neutralizing antibodies were not detected following primary infection in our study. This is likely a consequence of different routes of inoculation. Haagmans and colleagues inoculated rabbits through both the intranasal and intratracheal routes, whereas in our study rabbits were inoculated through the intranasal route alone. In addition, the volume of the inoculum was not stated by Haagmans et al, although a recent publication indicates a volume up to 3ml may have been delivered intratracheally [
<xref rid="ppat.1006565.ref038" ref-type="bibr">38</xref>
]. This differs significantly from the volume used in our studies (1ml) and may affect viral load. Differences in inoculation routes and volumes have been shown to affect disease severity and immune response in other models [
<xref rid="ppat.1006565.ref039" ref-type="bibr">39</xref>
,
<xref rid="ppat.1006565.ref040" ref-type="bibr">40</xref>
]. The lack of neutralizing antibodies in the rabbits in our model allows us to examine a phenomenon that is otherwise only observed in humans. The potential clinical implication of our findings is a risk of severe pulmonary disease in persons who fail to develop a neutralizing antibody response following exposure to MERS-CoV or in persons in whom titers of neutralizing antibodies decay and are no longer detectable.</p>
<p>In rabbits, the highest mean viral RNA levels were observed in the lower respiratory tract, as has been reported in human cases [
<xref rid="ppat.1006565.ref010" ref-type="bibr">10</xref>
,
<xref rid="ppat.1006565.ref041" ref-type="bibr">41</xref>
<xref rid="ppat.1006565.ref043" ref-type="bibr">43</xref>
]. A direct correlation was observed between the distribution and amount of viral antigen and inflammation in the lungs of the rabbits. In a limited number of samples, aberrantly high levels of viral antigen were observed by both qualitative and quantitative measures that were not mirrored in the qRT-PCR results (
<xref ref-type="supplementary-material" rid="ppat.1006565.s005">S1</xref>
and
<xref ref-type="supplementary-material" rid="ppat.1006565.s006">S2</xref>
Tables). We believe this occurred due to sampling of locations where the inoculum pooled after infection, particularly since these atypical values occurred most often in the caudal lobes.</p>
<p>The cellular infiltrates observed in the rabbit lungs were largely composed of mixed populations of eosinophils and histiocytes. In mammalian species, the presence of eosinophilic inflammation is often associated with parasitic infections, hypersensitivity reactions, and less often, certain fungal infections [
<xref rid="ppat.1006565.ref044" ref-type="bibr">44</xref>
]. There was no evidence of parasitic or fungal infection in the rabbits and the commonly observed features of hypersensitivity-related pneumonitis (i.e. edema and bronchiolitis) were absent [
<xref rid="ppat.1006565.ref045" ref-type="bibr">45</xref>
].</p>
<p>Viral replication in the upper respiratory tract was detected only during primary infection, suggesting that immune responses prevented local replication of the virus during later challenge. While we only analyzed serum IgG antibodies by ELISA, mucosal IgA antibodies in the upper respiratory tract may also play a role in preventing reinfection. However, the serum IgG antibody lacked neutralizing activity and contributed to the enhanced pulmonary inflammation observed upon reinfection. Passive transfer of serum from previously infected rabbits to naïve animals followed by MERS-CoV challenge recreated the same histopathological depiction, though there was an increase in vascular congestion following passive transfer that was not observed in the previously infected rabbits. This is likely a consequence of transferring complete serum containing additional serum proteins, including those involved in the complement cascade into naïve rabbits instead of transferring purified MERS-CoV specific IgG antibodies. As we observed in these studies, the additional complement proteins could have led to increased inflammation and congestion in the lungs.</p>
<p>Even in the presence of the enhanced inflammation following reinfection, the rabbits continued to lack any discernible clinical signs of infection. This occurrence could be explained by several factors. Rabbits are prey animals, which have evolved to mask signs of illness as a defense mechanism. Also, with the experiments being conducted in a high containment facility, we were limited in our ability to measure activity levels. Furthermore, the lesions in the lungs were typically multifocal and focally severe. The remaining lung tissue may have been sufficiently functional to limit clinical signs.</p>
<p>The effect of non-neutralizing antibodies observed in this MERS-CoV study differs from those observed with FIPV and flaviviruses such as dengue, since the non-neutralizing antibodies did not enhance MERS-CoV replication. The enhanced inflammation observed in the rabbits after MERS-CoV reinfection appears to be mediated through interactions between non-neutralizing antibodies and complement proteins, resulting in activation of the complement cascade and formation of immune complexes. The increase of C3a and C9 proteins in the rabbit lungs following reinfection supports this possibility. Immune complexes have been implicated in the pathogenesis in other viral infections, including influenza and RSV [
<xref rid="ppat.1006565.ref046" ref-type="bibr">46</xref>
,
<xref rid="ppat.1006565.ref047" ref-type="bibr">47</xref>
]. While C9 and the formation of membrane attack complexes (MACs) are typically involved in response to bacterial pathogens, enveloped viruses are also susceptible to lysis by MACs [
<xref rid="ppat.1006565.ref048" ref-type="bibr">48</xref>
,
<xref rid="ppat.1006565.ref049" ref-type="bibr">49</xref>
]. Complement activation can also be responsible for an increase in the release of anaphylotoxins and more recruitment and activation of immune cells, leading to inflammation. The presence of CD3+ T cells in the same regions of the lung as MERS-CoV N antigen during reinfection is consistent with this scenario (
<xref ref-type="fig" rid="ppat.1006565.g009">Fig 9</xref>
).</p>
<p>Our studies demonstrated that MERS-CoV reinfection elicited neutralizing antibodies that protected rabbits from further viral challenge. Antibody-mediated protection has also been exhibited in rabbits and mice following prophylaxis with neutralizing monoclonal antibodies against the MERS-CoV spike protein [
<xref rid="ppat.1006565.ref021" ref-type="bibr">21</xref>
,
<xref rid="ppat.1006565.ref036" ref-type="bibr">36</xref>
,
<xref rid="ppat.1006565.ref037" ref-type="bibr">37</xref>
]. These data support the induction of neutralizing antibodies as the primary goal for vaccines. However, the use of convalescent serum for treatment of MERS-CoV infected individuals has had limited, if any, benefit [
<xref rid="ppat.1006565.ref050" ref-type="bibr">50</xref>
<xref rid="ppat.1006565.ref052" ref-type="bibr">52</xref>
]. Also, past experience with SARS-CoV triggers a cautionary note. In mouse and hamster models, vaccine-induced neutralizing antibodies prevented or reduced replication of SARS-CoV [
<xref rid="ppat.1006565.ref053" ref-type="bibr">53</xref>
,
<xref rid="ppat.1006565.ref054" ref-type="bibr">54</xref>
]. In contrast, in ferrets and nonhuman primate models, SARS-CoV antibodies restricted replication of challenge virus but did not prevent pulmonary inflammation [
<xref rid="ppat.1006565.ref055" ref-type="bibr">55</xref>
,
<xref rid="ppat.1006565.ref056" ref-type="bibr">56</xref>
].</p>
<p>In addition, antibody-dependent enhancement and pulmonary immunopathology was seen following challenge with some vaccine strategies for SARS-CoV, including virus-like particles and inactivated vaccines [
<xref rid="ppat.1006565.ref057" ref-type="bibr">57</xref>
,
<xref rid="ppat.1006565.ref058" ref-type="bibr">58</xref>
]. There are some data to suggest that MERS-CoV vaccine approaches may also result in immunopathology; as eosinophilic infiltration with enhanced lung pathology was observed in vaccinated transgenic mice following MERS-CoV challenge [
<xref rid="ppat.1006565.ref059" ref-type="bibr">59</xref>
]. Since the mice had neutralizing antibodies before challenge, and had significant reduction in viral titers following challenge compared to control mice, we believe the mechanisms behind these two phenomena are distinct, but still require consideration. These discrepant observations highlight the critical need for additional clinical data, and continued attention during the development and testing of coronavirus vaccines.</p>
<p>Another approach to viewing our data is to consider primary infection in rabbits as a type of vaccination, resulting in an immune response without overt clinical symptoms. This “priming” infection produces an immune response that is inadequate for protection. The secondary infection then acts as a “booster”, activating the memory response elicited by the primary infection and inducing neutralizing antibodies. Either interpretation indicates that the production of neutralizing antibodies should be the goal of MERS-CoV vaccines. Additional vaccine doses may be needed if neutralizing antibody titers wane rapidly.</p>
<p>Rare cases of qRT-PCR confirmed human MERS-CoV infections have been reported in which neutralizing or S protein ELISA antibody responses were not detected [
<xref rid="ppat.1006565.ref006" ref-type="bibr">6</xref>
,
<xref rid="ppat.1006565.ref008" ref-type="bibr">8</xref>
,
<xref rid="ppat.1006565.ref031" ref-type="bibr">31</xref>
], most often following mild or asymptomatic infection. The rabbit model, particularly with use of lower viral inoculum dose and volume, may recapitulate such cases. If neutralizing antibodies against MERS-CoV are not produced or wane over time, a mild or asymptomatic infection may prime individuals for more severe disease upon re-exposure. This possibility could occur after either infection or vaccination, and should be considered during the development of MERS-CoV vaccines.</p>
</sec>
<sec sec-type="materials|methods" id="sec010">
<title>Materials and methods</title>
<sec id="sec011">
<title>Virus and cells</title>
<p>Vero81 cells (ATCC) were grown and maintained in Opti-MEM media (GIBCO) with 5% FBS (HyClone). Raji (ATCC) and THP-1 cells (ATCC) were maintained in RPMI-1640 media (GIBCO) with 10% FBS and 50μM β-mercaptoethanol (Sigma). The virus HCoV-EMC/2012 was obtained from Erasmus Medical Center, Netherlands. Virus stocks were stored at -80°C. The titer of the stock virus was determined by serial dilution in Vero81 cells and calculated by the Reed and Muench method [
<xref rid="ppat.1006565.ref060" ref-type="bibr">60</xref>
]. All experiments were performed in a biosafety level 3 (BSL3) facility.</p>
</sec>
<sec id="sec012">
<title>Rabbit infection studies</title>
<p>Male New Zealand white rabbits (Covance, Princeton, NJ) between five to nine months of age were anesthetized with a combination of intramuscular dexmedetomidine and isoflurane inhalation. Animals were inoculated intranasally (i.n.) with virus diluted in 1ml of MERS-CoV in Leibovitz-15 (L15) media (GIBCO), or mock-infected with 1ml of media alone. Atipamezole was subsequently administered subcutaneously to reverse sedation. Rabbits were monitored daily for 14 days after infection for clinical signs of disease including temperature, weight, lethargy, ocular discharge, rhinitis, labored breathing, ruffled fur, inappetence, and diarrhea. Serum was collected via the ear vein prior to inoculation and at specified times following infection. Animals were euthanized by Beuthanasia D administration and tissues were collected for viral titration, histopathology, and immunohistochemistry (IHC). For passive transfer (PT) studies, serum from rabbits infected 28 days prior was concentrated 10-fold using an Amicon Ultra-15 filter column and then transferred intravenously through the ear vein to naïve rabbits either undiluted or at a 1:10 dilution, one day prior to infection with 10
<sup>5</sup>
TCID
<sub>50</sub>
of MERS-CoV in 1ml. All infections consisted of the EMC/2012 strain unless otherwise noted. All animal studies were conducted in ABSL3 laboratories at the National Institutes of Health (NIH).</p>
</sec>
<sec id="sec013">
<title>Ethics statement</title>
<p>All procedures were reviewed and approved by the NIAID DIR Animal Care and Use Committee. The animals were housed in rabbit/ferret bio-containment racks and maintained in accordance with the Animal Welfare Act, the Guide for the Care and Use of Laboratory Animals, and other Federal statutes and regulations relating to animals, in a fully AAALAC accredited facility. All procedures were performed utilizing appropriate anesthetics as listed in the NIAID DIR Animal Care and Use Committee approved animal study proposal LID 33E. Euthanasia methods were consistent with the AVMA Guidelines on Euthanasia and the endpoint criteria listed in the NIAID DIR Animal Care and Use Committee approved animal study proposal LID 33E.</p>
<p>The NIAID DIR Animal Care and Use Program, as part of the NIH Intramural Research Program (IRP), complies with all applicable provisions of the Animal Welfare Act (
<ext-link ext-link-type="uri" xlink:href="http://www.aphis.usda.gov/animal_welfare/downloads/awa/awa.pdf">http://www.aphis.usda.gov/animal_welfare/downloads/awa/awa.pdf</ext-link>
) and other Federal statutes and regulations relating to animals. The NIAID DIR Animal Care and Use Program is guided by the "U.S. Government Principles for the Utilization and Care of Vertebrate Animals Used in Testing, Research, and Training" (
<ext-link ext-link-type="uri" xlink:href="http://oacu.od.nih.gov/regs/USGovtPrncpl.htm">http://oacu.od.nih.gov/regs/USGovtPrncpl.htm</ext-link>
).</p>
<p>The NIAID DIR Animal Care and Use Program acknowledges and accepts responsibility for the care and use of animals involved in activities covered by the NIH IRP’s PHS Assurance #A4149-01, last issued 11/24/2014. As partial fulfillment of this responsibility, the NIAID DIR Animal Care and Use Program ensures that all individuals involved in the care and use of laboratory animals understand their individual and collective responsibilities for compliance with that Assurance, as well as all other applicable laws and regulations pertaining to animal care and use.</p>
<p>The NIAID DIR Animal Care and Use Program has established and will maintain a program for activities involving animals in accordance with the most recent (2011, 8
<sup>th</sup>
edition) of “The Guide for the Care and Use of Laboratory Animals” (ILAR, NRC) (
<ext-link ext-link-type="uri" xlink:href="http://oacu.od.nih.gov/regs/guide/guide_2011.pdf">http://oacu.od.nih.gov/regs/guide/guide_2011.pdf</ext-link>
).</p>
<p>The policies, procedures and guidelines for the NIH IRP are explicitly detailed in NIH Policy Manual 3040–2, “Animal Care and Use in the Intramural Program” (PM 3040–2) and the NIH Animal Research Advisory Committee Guidelines (ARAC Guidelines). Those documents are posted on the NIH Office of Animal Care and Use public website at:
<ext-link ext-link-type="uri" xlink:href="http://oacu.od.nih.gov/">http://oacu.od.nih.gov</ext-link>
.</p>
</sec>
<sec id="sec014">
<title>qRT-PCR of viral RNA</title>
<p>Lungs and nasal turbinates collected for viral titration were stored at -80°C until processing. Tissues were weighed and homogenized in L15 media containing 1% antibiotic-antimycotic (Invitrogen) to a final 10% wt/vol. Homogenates were centrifuged for 10 minutes at 1500 rpm with a swinging bucket rotor (Sorvall 75006445). Viral RNA was then isolated from the homogenates using the QIAmp viral RNA mini kit (Qiagen) following manufacturer’s instructions. qRT-PCR reactions were amplified using 200ng of RNA per reaction with primer sets designed to detect MERS-CoV via the viral envelope (UpE) or nucleocapsid (N2 and N3) protein with the SuperScript III Platinum One-Step qRT-PCR kit (Life Technologies) [
<xref rid="ppat.1006565.ref030" ref-type="bibr">30</xref>
]. Results are displayed using N3 primers, the confirmatory primer set. A sample from a naïve rabbit was always run to verify no background was detected with the N3 primer set. A standard dilution set of a titered virus stock was run in parallel, and all samples were tested in duplicate. Titers are expressed as log
<sub>10</sub>
TCID
<sub>50</sub>
equivalents per gram of tissue.</p>
</sec>
<sec id="sec015">
<title>Histopathology</title>
<p>Lung tissue samples from all lobes were resected from formalin-fixed tissue. Tissue was embedded in paraffin, sectioned at 5-μm, and stained with hematoxylin and eosin (Histoserv, Germantown, Maryland). Sections were examined by light microscopy (LM) or fluorescence microscopy (FM), using an Olympus BX51 microscope, and photomicrographs were taken using an Olympus DP73 (LM) camera or DP80 camera (FM). All histopathology scoring of tissues was blinded.</p>
</sec>
<sec id="sec016">
<title>Immunohistochemistry and Immunofluorescence</title>
<p>Lung sections were baked at 60°C for 1 hour then paraffin was removed with xylene and the sample was rehydrated with alcohol-gradated washes. Sections were microwaved with Antigen Unmasking Solution (Vector Laboratories), and then exposed to protein block (Dako) for 30 minutes. For immunohistochemistry (IHC) mouse anti-MERS nucleocapsid protein (NP) antibody (Biorbyt) was added at a dilution of 1:100, followed by biotinylated horse anti-mouse immunoglobulin G (IgG; Vector Laboratories) at a dilution of 1:200. Rat anti-CD3 (AbD Serotec; 1:100 dilution) and goat anti-DPP4/CD26 (R&D Systems; 1:25 dilution) antibodies were followed by a hydrogen peroxide blocking step for endogenous peroxidase activity, and then respective biotinylated goat anti-rat and horse anti-goat IgG antibodies (Vector Laboratories) at dilutions of 1:200. Detection of MERS NP was completed with incubations of 30 minutes with Vectastain ABC-AP reagent (Vector Laboratories) and 25 minutes with Vulcan Fast Red (Biocare). Detection of CD3 and DPP4 was completed with incubations of 30 minutes with Vectastain ABC RTU (Vector Laboratories) and 7.5 minutes with DAB. Immunofluorescence Antibody Assay (IFA) differentiated after the primary antibody incubations. Complement C9 antibody (MyBioSource) was added at a dilution of 1:50, followed by goat anti-guinea pig IgG (Vector Laboratories) at 1:200 and streptavidin conjugated to AlexaFluor 594 (Life Technologies) at 1:500. MERS NP (same as IHC) was detected with goat anti-mouse directly conjugated to AlexaFluor 488 at a 1:500 dilution. Slides were counterstained with hematoxylin (IHC) or DAPI (IFA) and evaluated by a veterinary pathologist.</p>
</sec>
<sec id="sec017">
<title>Digital quantitative pathology</title>
<p>Image analysis was performed on MERS-CoV infected lung tissues to provide a quantitative analysis of the MERS virus antigen present in the lung and the associated inflammatory response. Following histological (Hematoxylin and Eosin; H&E) and immunohistochemical evaluation of the lung sections, tissue slides were digitized with a bright-field Leica Aperio AT2 slide scanner at 40x magnification (
<xref ref-type="supplementary-material" rid="ppat.1006565.s003">S3</xref>
and
<xref ref-type="supplementary-material" rid="ppat.1006565.s004">S4</xref>
Figs). The images were evaluated using a web-based digital pathology information management system (eslide manager) used for both digital slide viewing and image analysis. The Aperio Positive Pixel Count (PPC) and Color Deconvolution V9 based algorithms were adjusted to recognize the inflammatory regions and the intensity of Vulcan Fast Red chromogen (Biocare Medical), respectively. In the previously stained and scanned lung sections, analysis was based on the settings of Hue Value and Hue Width (PPC) or values of the red, blue, and green channels (CD); gating and selection of regions of interest prevented the incorporation of nonspecific staining in the results. After these macros were optimized to suit the desired application, the settings were saved and were used for the evaluation of all the slides. The channel parameters for the H&E and MERS-specific macros were as follows: MERS-CoV H&E (PPC): Hue Value 0.647 and Hue Width 0.347 and MERS-CoV Fast Red (CD): red component 0.561, green component 0.679, and blue component 0.185.</p>
</sec>
<sec id="sec018">
<title>Microneutralization assay</title>
<p>Neutralizing activity in rabbit sera were evaluated by a microneutralization (MN) assay. To determine the antibody titers, serial two-fold dilutions of sera were prepared. 100 TCID
<sub>50</sub>
of virus was mixed with the sera in equal volume and incubated for one hour at room temperature, before the mixture was subsequently added in quadruplicate to Vero81 cell monolayer. The serum neutralization titer was determined as the reciprocal of the serum dilution that neutralized virus as evidenced by the absence of any cytopathic effect on day 4 and confirmed on day 6.</p>
</sec>
<sec id="sec019">
<title>MERS-CoV Spike Protein Anti-IgG Capture ELISA</title>
<p>To quantify anti-S protein IgG antibodies from rabbit serum, 96-well plates were coated overnight with 100ng/well of recombinant MERS-CoV S protein (Sino Biological) in sodium bicarbonate buffer. Subsequently, the plates were blocked for 2 hours at room temperature with 10% FBS in PBS. Plates were washed and incubated for 2 hours with serial four-fold dilutions of heat-inactivated rabbit serum in duplicate. The plates were washed and further incubated at room temp with HRP conjugated goat anti-rabbit IgG (Abcam ab6721) diluted 1:120,000 in PBS with 5% BSA and 0.05% Tween-20. For detection, following additional washes, SureBlue TMB Microwell Peroxidase Substrate (KPL) was added to each well and TMB BlueSTOP solution (KPL) was added after 10 minutes. The optical density of each well was measured at 650 nm on a SpectraMax i3 plate reader (Molecular Devices) and an OD greater than two standard deviations above the mean of the background was considered positive.</p>
</sec>
<sec id="sec020">
<title>MERS-CoV Nucleocapsid Protein ELISA</title>
<p>To examine anti-N protein IgG antibodies from rabbit serum, we utilized an ELISA protocol developed by the CDC [
<xref rid="ppat.1006565.ref061" ref-type="bibr">61</xref>
]. Briefly, 96-well plates were coated overnight with purified MERS-CoV N antigen or irrelevant control antigen (both obtained from Division of Viral Diseases, Centers for Disease Control and Prevention) in PBS. Plates were then washed and serial four-fold dilutions of heat-inactivated rabbit serum were added for one hour at 37°C. After incubation the plates were washed further and incubated with HRP conjugated goat anti-rabbit IgG (Abcam ab6721) diluted 1:120,000 in PBS with 5% BSA and 0.05% Tween-20 for one hour at 37°C. Following additional washes, positive sera were determined by the addition of ABTS Peroxidase substrate solution (KPL) that was incubated for 30 minutes at 37°C, followed by the addition of ABTS stop solution (KPL). The optical density of each well was measured at 405 nm on a SpectraMax i3 plate reader (Molecular Devices) and an OD of 0.3 above the negative control was considered positive.</p>
</sec>
<sec id="sec021">
<title>Rabbit C3a ELISA</title>
<p>To compare the amounts of C3a present in rabbit lungs following infection with MERS-CoV, we utilized the Rabbit Complement Fragment 3a (C3a) ELISA kit (MBS703171, MyBioSource), according to manufacturer’s instructions. Frozen rabbit lung samples were rinsed and homogenized to 10% w/v in PBS, and stored overnight at -20°C. Following two freeze-thaw cycles, the samples were centrifuges at 5000g for 5 minutes and the supernatants were assayed immediately, in triplicate. Undiluted samples were added to pre-coated plates for 2hrs at 37°C. The samples were removed, and the biotin-antibody was added for 1hr at 37°C. The plates were then washed 3 times before the addition of the HRP-avidin antibody for 1hr at 37°C. The plates were washed 5 times, before incubation with the TMB Substrate for 20min at 37°C. Stop solution was then added, and the OD was measured at 450nm within 5 minutes. Samples were quantitated based on a standard dilution series within the plate.</p>
</sec>
<sec id="sec022">
<title>Antibody-dependent enhancement assay</title>
<p>To determine if antibodies resulted in increased viral replication in macrophages, we conducted an antibody-dependent enhancement (ADE) assay. THP-1 cells were differentiated into macrophages by addition of 20nM PMA into the RPMI media for 24 hours, followed by a week of culturing without PMA. The cells became adherent to the flask, and took on a macrophage-like appearance. The differentiation of THP-1 cells was confirmed by immunofluorescence with the loss of CD14 and increase of CD36, CD68, and CD71 on the cell surface compared to undifferentiated THP-1 cells, adapted from Genin et al [
<xref rid="ppat.1006565.ref062" ref-type="bibr">62</xref>
]. For a positive control, we infected Vero81 cells. As a negative control, we included Raji cells, which lack both DPP4 and Fc receptors. Heat-inactivated rabbit sera at three dilutions (undiluted, 1:10, and 1:100) were incubated with EMC/2012 at an MOI of 1 for 1 hour at 37°C before addition onto each cell type in duplicate in 96-well plates for 2 hours at 37°C. Cells were then washed and incubated for 48 hours before supernatants were collected for viral titration.</p>
</sec>
<sec id="sec023">
<title>Statistical analysis</title>
<p>Mean viral titers are displayed with the standard error of the mean. Statistical significance was determined using one-way ANOVA with multiple comparisons tests in GraphPad Prism v7.</p>
</sec>
</sec>
<sec sec-type="supplementary-material" id="sec024">
<title>Supporting information</title>
<supplementary-material content-type="local-data" id="ppat.1006565.s001">
<label>S1 Fig</label>
<caption>
<title>Virus titers in the respiratory tract following primary infection with MERS-CoV.</title>
<p>Virus titers in the nasal turbinates (A) and lungs (B) of rabbits following infection with either 10
<sup>3</sup>
or 10
<sup>5</sup>
TCID
<sub>50</sub>
of EMC/2012 strain of MERS-CoV through day 5 after infection, as determined by titration in Vero81 cells.</p>
<p>(TIFF)</p>
</caption>
<media xlink:href="ppat.1006565.s001.tiff">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="ppat.1006565.s002">
<label>S2 Fig</label>
<caption>
<title>Virus titers in the upper respiratory tract following reinfection with MERS-CoV.</title>
<p>Viral RNA titers in the nasal turbinates of rabbits following primary infection or reinfection with EMC/2012. n = 3 rabbits per group.</p>
<p>(TIFF)</p>
</caption>
<media xlink:href="ppat.1006565.s002.tiff">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="ppat.1006565.s003">
<label>S3 Fig</label>
<caption>
<title>Digital quantification of viral antigen.</title>
<p>Images are shown for H&E (top), IHC (middle), and Color Deconvolution Algorithm (CDA)(bottom). Images show the entire lung section that was analyzed (A), an area magnified to 10x (B), and to 20x (C) for clarity. Dashed boxes indicate regions of interest, and BV are blood vessels for orientation. On the CDA images, red indicates areas of the most intense (concentrated) viral antigen deposition, yellow indicates areas of less intense (moderate) viral antigen deposition, and purple areas are virus antigen negative.</p>
<p>(TIFF)</p>
</caption>
<media xlink:href="ppat.1006565.s003.tiff">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="ppat.1006565.s004">
<label>S4 Fig</label>
<caption>
<title>Digital quantification of inflammation in rabbit lung lobes.</title>
<p>Images are shown for H&E (left) and Positive Pixel Count (PPC) Algorithm (right). Images show the entire lung sections that were analyzed for the presence inflammatory areas (top), with an area magnified to 4x (bottom). Examples are shown of a lung lobe with abundant inflammation (A, B) and where inflammation was minimal to absent (C, D). On the algorithm images, red indicates areas positive for (inflammatory) cells and blue areas represent regions that are negative for inflammation. Positivity (% of lung lobe positive for inflammatory cell nuclei) is measured by the number of positive cells over the total number of cells in the lobe.</p>
<p>(TIFF)</p>
</caption>
<media xlink:href="ppat.1006565.s004.tiff">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="ppat.1006565.s005">
<label>S1 Table</label>
<caption>
<title>Qualitative IHC and histopathology scoring of lungs from MERS-CoV infected rabbits.</title>
<p>(DOCX)</p>
</caption>
<media xlink:href="ppat.1006565.s005.docx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="ppat.1006565.s006">
<label>S2 Table</label>
<caption>
<title>Digital quantitative IHC scoring of viral antigen in lungs from MERS-CoV infected rabbits.</title>
<p>(DOCX)</p>
</caption>
<media xlink:href="ppat.1006565.s006.docx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="ppat.1006565.s007">
<label>S3 Table</label>
<caption>
<title>Digital quantitative H&E scoring of inflammation by counting inflammatory cell nuclei in lung sections from subset of MERS-CoV infected rabbits.</title>
<p>(DOCX)</p>
</caption>
<media xlink:href="ppat.1006565.s007.docx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
</sec>
</body>
<back>
<ack>
<p>We thank the animal care staff in the ABSL3 laboratory at the NIH for their assistance throughout the studies. The experiments described in this manuscript were determined by the NIH to be urgently necessary to protect the public health or national security and as such, were exempted from the U.S. Government Research Funding Pause on Selected Gain-of-Function Research Involving Influenza, MERS, and SARS viruses.</p>
</ack>
<ref-list>
<title>References</title>
<ref id="ppat.1006565.ref001">
<label>1</label>
<mixed-citation publication-type="journal">
<name>
<surname>Zaki</surname>
<given-names>AM</given-names>
</name>
,
<name>
<surname>van Boheemen</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Bestebroer</surname>
<given-names>TM</given-names>
</name>
,
<name>
<surname>Osterhaus</surname>
<given-names>AD</given-names>
</name>
,
<name>
<surname>Fouchier</surname>
<given-names>RA</given-names>
</name>
.
<article-title>Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia</article-title>
.
<source>N Engl J Med</source>
.
<year>2012</year>
;
<volume>367</volume>
(
<issue>19</issue>
):
<fpage>1814</fpage>
<lpage>20</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1056/NEJMoa1211721">10.1056/NEJMoa1211721</ext-link>
</comment>
<pub-id pub-id-type="pmid">23075143</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1006565.ref002">
<label>2</label>
<mixed-citation publication-type="other">WHO. Middle East respiratory syndrome coronavirus (MERS-CoV) 2015 [Available from:
<ext-link ext-link-type="uri" xlink:href="http://www.who.int/emergencies/mers-cov/en/">http://www.who.int/emergencies/mers-cov/en/</ext-link>
.</mixed-citation>
</ref>
<ref id="ppat.1006565.ref003">
<label>3</label>
<mixed-citation publication-type="journal">
<name>
<surname>Aburizaiza</surname>
<given-names>AS</given-names>
</name>
,
<name>
<surname>Mattes</surname>
<given-names>FM</given-names>
</name>
,
<name>
<surname>Azhar</surname>
<given-names>EI</given-names>
</name>
,
<name>
<surname>Hassan</surname>
<given-names>AM</given-names>
</name>
,
<name>
<surname>Memish</surname>
<given-names>ZA</given-names>
</name>
,
<name>
<surname>Muth</surname>
<given-names>D</given-names>
</name>
,
<etal>et al</etal>
<article-title>Investigation of anti-middle East respiratory syndrome antibodies in blood donors and slaughterhouse workers in Jeddah and Makkah, Saudi Arabia, fall 2012</article-title>
.
<source>J Infect Dis</source>
.
<year>2014</year>
;
<volume>209</volume>
(
<issue>2</issue>
):
<fpage>243</fpage>
<lpage>6</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1093/infdis/jit589">10.1093/infdis/jit589</ext-link>
</comment>
<pub-id pub-id-type="pmid">24218504</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1006565.ref004">
<label>4</label>
<mixed-citation publication-type="journal">
<name>
<surname>Gierer</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Hofmann-Winkler</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Albuali</surname>
<given-names>WH</given-names>
</name>
,
<name>
<surname>Bertram</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Al-Rubaish</surname>
<given-names>AM</given-names>
</name>
,
<name>
<surname>Yousef</surname>
<given-names>AA</given-names>
</name>
,
<etal>et al</etal>
<article-title>Lack of MERS coronavirus neutralizing antibodies in humans, eastern province, Saudi Arabia</article-title>
.
<source>Emerg Infect Dis</source>
.
<year>2013</year>
;
<volume>19</volume>
(
<issue>12</issue>
):
<fpage>2034</fpage>
<lpage>6</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.3201/eid1912.130701">10.3201/eid1912.130701</ext-link>
</comment>
<pub-id pub-id-type="pmid">24274664</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1006565.ref005">
<label>5</label>
<mixed-citation publication-type="journal">
<name>
<surname>Muller</surname>
<given-names>MA</given-names>
</name>
,
<name>
<surname>Meyer</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Corman</surname>
<given-names>VM</given-names>
</name>
,
<name>
<surname>Al-Masri</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Turkestani</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Ritz</surname>
<given-names>D</given-names>
</name>
,
<etal>et al</etal>
<article-title>Presence of Middle East respiratory syndrome coronavirus antibodies in Saudi Arabia: a nationwide, cross-sectional, serological study</article-title>
.
<source>Lancet Infect Dis</source>
.
<year>2015</year>
.</mixed-citation>
</ref>
<ref id="ppat.1006565.ref006">
<label>6</label>
<mixed-citation publication-type="journal">
<name>
<surname>Alshukairi</surname>
<given-names>AN</given-names>
</name>
,
<name>
<surname>Khalid</surname>
<given-names>I</given-names>
</name>
,
<name>
<surname>Ahmed</surname>
<given-names>WA</given-names>
</name>
,
<name>
<surname>Dada</surname>
<given-names>AM</given-names>
</name>
,
<name>
<surname>Bayumi</surname>
<given-names>DT</given-names>
</name>
,
<name>
<surname>Malic</surname>
<given-names>LS</given-names>
</name>
,
<etal>et al</etal>
<article-title>Antibody Response and Disease Severity in Healthcare Worker MERS Survivors</article-title>
.
<source>Emerg Infect Dis</source>
.
<year>2016</year>
;
<volume>22</volume>
(
<issue>6</issue>
).</mixed-citation>
</ref>
<ref id="ppat.1006565.ref007">
<label>7</label>
<mixed-citation publication-type="journal">
<name>
<surname>Payne</surname>
<given-names>DC</given-names>
</name>
,
<name>
<surname>Iblan</surname>
<given-names>I</given-names>
</name>
,
<name>
<surname>Rha</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Alqasrawi</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Haddadin</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Al Nsour</surname>
<given-names>M</given-names>
</name>
,
<etal>et al</etal>
<article-title>Persistence of Antibodies against Middle East Respiratory Syndrome Coronavirus</article-title>
.
<source>Emerg Infect Dis</source>
.
<year>2016</year>
;
<volume>22</volume>
(
<issue>10</issue>
).</mixed-citation>
</ref>
<ref id="ppat.1006565.ref008">
<label>8</label>
<mixed-citation publication-type="journal">
<name>
<surname>Choe</surname>
<given-names>PG</given-names>
</name>
,
<name>
<surname>Perera</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Park</surname>
<given-names>WB</given-names>
</name>
,
<name>
<surname>Song</surname>
<given-names>KH</given-names>
</name>
,
<name>
<surname>Bang</surname>
<given-names>JH</given-names>
</name>
,
<name>
<surname>Kim</surname>
<given-names>ES</given-names>
</name>
,
<etal>et al</etal>
<article-title>MERS-CoV Antibody Responses 1 Year after Symptom Onset, South Korea, 2015</article-title>
.
<source>Emerg Infect Dis</source>
.
<year>2017</year>
;
<volume>23</volume>
(
<issue>7</issue>
).</mixed-citation>
</ref>
<ref id="ppat.1006565.ref009">
<label>9</label>
<mixed-citation publication-type="journal">
<name>
<surname>Cao</surname>
<given-names>WC</given-names>
</name>
,
<name>
<surname>Liu</surname>
<given-names>W</given-names>
</name>
,
<name>
<surname>Zhang</surname>
<given-names>PH</given-names>
</name>
,
<name>
<surname>Zhang</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Richardus</surname>
<given-names>JH</given-names>
</name>
.
<article-title>Disappearance of antibodies to SARS-associated coronavirus after recovery</article-title>
.
<source>N Engl J Med</source>
.
<year>2007</year>
;
<volume>357</volume>
(
<issue>11</issue>
):
<fpage>1162</fpage>
<lpage>3</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1056/NEJMc070348">10.1056/NEJMc070348</ext-link>
</comment>
<pub-id pub-id-type="pmid">17855683</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1006565.ref010">
<label>10</label>
<mixed-citation publication-type="journal">
<name>
<surname>Ng</surname>
<given-names>DL</given-names>
</name>
,
<name>
<surname>Al Hosani</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Keating</surname>
<given-names>MK</given-names>
</name>
,
<name>
<surname>Gerber</surname>
<given-names>SI</given-names>
</name>
,
<name>
<surname>Jones</surname>
<given-names>TL</given-names>
</name>
,
<name>
<surname>Metcalfe</surname>
<given-names>MG</given-names>
</name>
,
<etal>et al</etal>
<article-title>Clinicopathologic, Immunohistochemical, and Ultrastructural Findings of a Fatal Case of Middle East Respiratory Syndrome Coronavirus Infection in the United Arab Emirates, April 2014</article-title>
.
<source>Am J Pathol</source>
.
<year>2016</year>
;
<volume>186</volume>
(
<issue>3</issue>
):
<fpage>652</fpage>
<lpage>8</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1016/j.ajpath.2015.10.024">10.1016/j.ajpath.2015.10.024</ext-link>
</comment>
<pub-id pub-id-type="pmid">26857507</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1006565.ref011">
<label>11</label>
<mixed-citation publication-type="journal">
<name>
<surname>Memish</surname>
<given-names>ZA</given-names>
</name>
,
<name>
<surname>Zumla</surname>
<given-names>AI</given-names>
</name>
,
<name>
<surname>Assiri</surname>
<given-names>A</given-names>
</name>
.
<article-title>Middle East respiratory syndrome coronavirus infections in health care workers</article-title>
.
<source>N Engl J Med</source>
.
<year>2013</year>
;
<volume>369</volume>
(
<issue>9</issue>
):
<fpage>884</fpage>
<lpage>6</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1056/NEJMc1308698">10.1056/NEJMc1308698</ext-link>
</comment>
<pub-id pub-id-type="pmid">23923992</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1006565.ref012">
<label>12</label>
<mixed-citation publication-type="journal">
<name>
<surname>Who Mers-Cov Research</surname>
<given-names>G</given-names>
</name>
.
<article-title>State of Knowledge and Data Gaps of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in Humans</article-title>
.
<source>PLoS Curr</source>
.
<year>2013</year>
;
<volume>5</volume>
.</mixed-citation>
</ref>
<ref id="ppat.1006565.ref013">
<label>13</label>
<mixed-citation publication-type="journal">
<name>
<surname>O'Hagan</surname>
<given-names>JJ</given-names>
</name>
,
<name>
<surname>Carias</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Rudd</surname>
<given-names>JM</given-names>
</name>
,
<name>
<surname>Pham</surname>
<given-names>HT</given-names>
</name>
,
<name>
<surname>Haber</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Pesik</surname>
<given-names>N</given-names>
</name>
,
<etal>et al</etal>
<article-title>Estimation of Severe Middle East Respiratory Syndrome Cases in the Middle East, 2012–2016</article-title>
.
<source>Emerg Infect Dis</source>
.
<year>2016</year>
;
<volume>22</volume>
(
<issue>10</issue>
):
<fpage>1797</fpage>
<lpage>9</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.3201/2210.151121">10.3201/2210.151121</ext-link>
</comment>
<pub-id pub-id-type="pmid">27648640</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1006565.ref014">
<label>14</label>
<mixed-citation publication-type="journal">
<name>
<surname>Omrani</surname>
<given-names>AS</given-names>
</name>
,
<name>
<surname>Matin</surname>
<given-names>MA</given-names>
</name>
,
<name>
<surname>Haddad</surname>
<given-names>Q</given-names>
</name>
,
<name>
<surname>Al-Nakhli</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Memish</surname>
<given-names>ZA</given-names>
</name>
,
<name>
<surname>Albarrak</surname>
<given-names>AM</given-names>
</name>
.
<article-title>A family cluster of Middle East Respiratory Syndrome Coronavirus infections related to a likely unrecognized asymptomatic or mild case</article-title>
.
<source>Int J Infect Dis</source>
.
<year>2013</year>
;
<volume>17</volume>
(
<issue>9</issue>
):
<fpage>e668</fpage>
<lpage>72</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1016/j.ijid.2013.07.001">10.1016/j.ijid.2013.07.001</ext-link>
</comment>
<pub-id pub-id-type="pmid">23916548</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1006565.ref015">
<label>15</label>
<mixed-citation publication-type="journal">
<name>
<surname>Coleman</surname>
<given-names>CM</given-names>
</name>
,
<name>
<surname>Matthews</surname>
<given-names>KL</given-names>
</name>
,
<name>
<surname>Goicochea</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Frieman</surname>
<given-names>MB</given-names>
</name>
.
<article-title>Wild-type and innate immune-deficient mice are not susceptible to the Middle East respiratory syndrome coronavirus</article-title>
.
<source>J Gen Virol</source>
.
<year>2014</year>
;
<volume>95</volume>
(
<issue>Pt 2</issue>
):
<fpage>408</fpage>
<lpage>12</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1099/vir.0.060640-0">10.1099/vir.0.060640-0</ext-link>
</comment>
<pub-id pub-id-type="pmid">24197535</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1006565.ref016">
<label>16</label>
<mixed-citation publication-type="journal">
<name>
<surname>de Wit</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Prescott</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Baseler</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Bushmaker</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Thomas</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Lackemeyer</surname>
<given-names>MG</given-names>
</name>
,
<etal>et al</etal>
<article-title>The Middle East respiratory syndrome coronavirus (MERS-CoV) does not replicate in Syrian hamsters</article-title>
.
<source>PLoS One</source>
.
<year>2013</year>
;
<volume>8</volume>
(
<issue>7</issue>
):
<fpage>e69127</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1371/journal.pone.0069127">10.1371/journal.pone.0069127</ext-link>
</comment>
<pub-id pub-id-type="pmid">23844250</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1006565.ref017">
<label>17</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bosch</surname>
<given-names>BJ</given-names>
</name>
,
<name>
<surname>Raj</surname>
<given-names>VS</given-names>
</name>
,
<name>
<surname>Haagmans</surname>
<given-names>BL</given-names>
</name>
.
<article-title>Spiking the MERS-coronavirus receptor</article-title>
.
<source>Cell Res</source>
.
<year>2013</year>
;
<volume>23</volume>
(
<issue>9</issue>
):
<fpage>1069</fpage>
<lpage>70</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1038/cr.2013.108">10.1038/cr.2013.108</ext-link>
</comment>
<pub-id pub-id-type="pmid">23938293</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1006565.ref018">
<label>18</label>
<mixed-citation publication-type="journal">
<name>
<surname>Raj</surname>
<given-names>VS</given-names>
</name>
,
<name>
<surname>Smits</surname>
<given-names>SL</given-names>
</name>
,
<name>
<surname>Provacia</surname>
<given-names>LB</given-names>
</name>
,
<name>
<surname>van den Brand</surname>
<given-names>JM</given-names>
</name>
,
<name>
<surname>Wiersma</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Ouwendijk</surname>
<given-names>WJ</given-names>
</name>
,
<etal>et al</etal>
<article-title>Adenosine deaminase acts as a natural antagonist for dipeptidyl peptidase 4-mediated entry of the Middle East respiratory syndrome coronavirus</article-title>
.
<source>J Virol</source>
.
<year>2014</year>
;
<volume>88</volume>
(
<issue>3</issue>
):
<fpage>1834</fpage>
<lpage>8</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1128/JVI.02935-13">10.1128/JVI.02935-13</ext-link>
</comment>
<pub-id pub-id-type="pmid">24257613</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1006565.ref019">
<label>19</label>
<mixed-citation publication-type="journal">
<name>
<surname>Zhao</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Li</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Wohlford-Lenane</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Agnihothram</surname>
<given-names>SS</given-names>
</name>
,
<name>
<surname>Fett</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Zhao</surname>
<given-names>J</given-names>
</name>
,
<etal>et al</etal>
<article-title>Rapid generation of a mouse model for Middle East respiratory syndrome</article-title>
.
<source>Proc Natl Acad Sci U S A</source>
.
<year>2014</year>
;
<volume>111</volume>
(
<issue>13</issue>
):
<fpage>4970</fpage>
<lpage>5</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1073/pnas.1323279111">10.1073/pnas.1323279111</ext-link>
</comment>
<pub-id pub-id-type="pmid">24599590</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1006565.ref020">
<label>20</label>
<mixed-citation publication-type="journal">
<name>
<surname>Agrawal</surname>
<given-names>AS</given-names>
</name>
,
<name>
<surname>Garron</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Tao</surname>
<given-names>X</given-names>
</name>
,
<name>
<surname>Peng</surname>
<given-names>BH</given-names>
</name>
,
<name>
<surname>Wakamiya</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Chan</surname>
<given-names>TS</given-names>
</name>
,
<etal>et al</etal>
<article-title>Generation of Transgenic Mouse Model of Middle East Respiratory Syndrome-Coronavirus Infection and Disease</article-title>
.
<source>J Virol</source>
.
<year>2015</year>
.</mixed-citation>
</ref>
<ref id="ppat.1006565.ref021">
<label>21</label>
<mixed-citation publication-type="journal">
<name>
<surname>Pascal</surname>
<given-names>KE</given-names>
</name>
,
<name>
<surname>Coleman</surname>
<given-names>CM</given-names>
</name>
,
<name>
<surname>Mujica</surname>
<given-names>AO</given-names>
</name>
,
<name>
<surname>Kamat</surname>
<given-names>V</given-names>
</name>
,
<name>
<surname>Badithe</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Fairhurst</surname>
<given-names>J</given-names>
</name>
,
<etal>et al</etal>
<article-title>Pre- and postexposure efficacy of fully human antibodies against Spike protein in a novel humanized mouse model of MERS-CoV infection</article-title>
.
<source>Proc Natl Acad Sci U S A</source>
.
<year>2015</year>
;
<volume>112</volume>
(
<issue>28</issue>
):
<fpage>8738</fpage>
<lpage>43</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1073/pnas.1510830112">10.1073/pnas.1510830112</ext-link>
</comment>
<pub-id pub-id-type="pmid">26124093</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1006565.ref022">
<label>22</label>
<mixed-citation publication-type="journal">
<name>
<surname>de Wit</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Rasmussen</surname>
<given-names>AL</given-names>
</name>
,
<name>
<surname>Falzarano</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Bushmaker</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Feldmann</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Brining</surname>
<given-names>DL</given-names>
</name>
,
<etal>et al</etal>
<article-title>Middle East respiratory syndrome coronavirus (MERS-CoV) causes transient lower respiratory tract infection in rhesus macaques</article-title>
.
<source>Proc Natl Acad Sci U S A</source>
.
<year>2013</year>
;
<volume>110</volume>
(
<issue>41</issue>
):
<fpage>16598</fpage>
<lpage>603</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1073/pnas.1310744110">10.1073/pnas.1310744110</ext-link>
</comment>
<pub-id pub-id-type="pmid">24062443</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1006565.ref023">
<label>23</label>
<mixed-citation publication-type="journal">
<name>
<surname>Munster</surname>
<given-names>VJ</given-names>
</name>
,
<name>
<surname>de Wit</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Feldmann</surname>
<given-names>H</given-names>
</name>
.
<article-title>Pneumonia from human coronavirus in a macaque model</article-title>
.
<source>N Engl J Med</source>
.
<year>2013</year>
;
<volume>368</volume>
(
<issue>16</issue>
):
<fpage>1560</fpage>
<lpage>2</lpage>
.</mixed-citation>
</ref>
<ref id="ppat.1006565.ref024">
<label>24</label>
<mixed-citation publication-type="journal">
<name>
<surname>Yao</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Bao</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Deng</surname>
<given-names>W</given-names>
</name>
,
<name>
<surname>Xu</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Li</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Lv</surname>
<given-names>Q</given-names>
</name>
,
<etal>et al</etal>
<article-title>An animal model of MERS produced by infection of rhesus macaques with MERS coronavirus</article-title>
.
<source>J Infect Dis</source>
.
<year>2014</year>
;
<volume>209</volume>
(
<issue>2</issue>
):
<fpage>236</fpage>
<lpage>42</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1093/infdis/jit590">10.1093/infdis/jit590</ext-link>
</comment>
<pub-id pub-id-type="pmid">24218506</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1006565.ref025">
<label>25</label>
<mixed-citation publication-type="journal">
<name>
<surname>Falzarano</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>de Wit</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Feldmann</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Rasmussen</surname>
<given-names>AL</given-names>
</name>
,
<name>
<surname>Okumura</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Peng</surname>
<given-names>X</given-names>
</name>
,
<etal>et al</etal>
<article-title>Infection with MERS-CoV causes lethal pneumonia in the common marmoset</article-title>
.
<source>PLoS Pathog</source>
.
<year>2014</year>
;
<volume>10</volume>
(
<issue>8</issue>
):
<fpage>e1004250</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1371/journal.ppat.1004250">10.1371/journal.ppat.1004250</ext-link>
</comment>
<pub-id pub-id-type="pmid">25144235</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1006565.ref026">
<label>26</label>
<mixed-citation publication-type="journal">
<name>
<surname>Johnson</surname>
<given-names>RF</given-names>
</name>
,
<name>
<surname>Via</surname>
<given-names>LE</given-names>
</name>
,
<name>
<surname>Kumar</surname>
<given-names>MR</given-names>
</name>
,
<name>
<surname>Cornish</surname>
<given-names>JP</given-names>
</name>
,
<name>
<surname>Yellayi</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Huzella</surname>
<given-names>L</given-names>
</name>
,
<etal>et al</etal>
<article-title>Intratracheal exposure of common marmosets to MERS-CoV Jordan-n3/2012 or MERS-CoV EMC/2012 isolates does not result in lethal disease</article-title>
.
<source>Virology</source>
.
<year>2015</year>
;
<volume>485</volume>
:
<fpage>422</fpage>
<lpage>30</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1016/j.virol.2015.07.013">10.1016/j.virol.2015.07.013</ext-link>
</comment>
<pub-id pub-id-type="pmid">26342468</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1006565.ref027">
<label>27</label>
<mixed-citation publication-type="journal">
<name>
<surname>Adney</surname>
<given-names>DR</given-names>
</name>
,
<name>
<surname>van Doremalen</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Brown</surname>
<given-names>VR</given-names>
</name>
,
<name>
<surname>Bushmaker</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Scott</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>de Wit</surname>
<given-names>E</given-names>
</name>
,
<etal>et al</etal>
<article-title>Replication and shedding of MERS-CoV in upper respiratory tract of inoculated dromedary camels</article-title>
.
<source>Emerg Infect Dis</source>
.
<year>2014</year>
;
<volume>20</volume>
(
<issue>12</issue>
):
<fpage>1999</fpage>
<lpage>2005</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.3201/eid2012.141280">10.3201/eid2012.141280</ext-link>
</comment>
<pub-id pub-id-type="pmid">25418529</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1006565.ref028">
<label>28</label>
<mixed-citation publication-type="journal">
<name>
<surname>Adney</surname>
<given-names>D.R. B-OH</given-names>
</name>
,
<name>
<surname>Hartwig</surname>
<given-names>A.E.</given-names>
</name>
,
<name>
<surname>Bowen</surname>
<given-names>R.A.</given-names>
</name>
<article-title>Infection, Replication, and Transmission of Middle East Respiratory Syndrome Coronavirus in Alpacas</article-title>
.
<source>Emerg Infect Dis</source>
.
<year>2016</year>
;
<volume>22</volume>
(
<issue>6</issue>
).</mixed-citation>
</ref>
<ref id="ppat.1006565.ref029">
<label>29</label>
<mixed-citation publication-type="journal">
<name>
<surname>Haagmans</surname>
<given-names>BL</given-names>
</name>
,
<name>
<surname>van den Brand</surname>
<given-names>JM</given-names>
</name>
,
<name>
<surname>Provacia</surname>
<given-names>LB</given-names>
</name>
,
<name>
<surname>Raj</surname>
<given-names>VS</given-names>
</name>
,
<name>
<surname>Stittelaar</surname>
<given-names>KJ</given-names>
</name>
,
<name>
<surname>Getu</surname>
<given-names>S</given-names>
</name>
,
<etal>et al</etal>
<article-title>Asymptomatic Middle East Respiratory Syndrome Coronavirus Infection in Rabbits</article-title>
.
<source>J Virol</source>
.
<year>2015</year>
.</mixed-citation>
</ref>
<ref id="ppat.1006565.ref030">
<label>30</label>
<mixed-citation publication-type="journal">
<name>
<surname>Lu</surname>
<given-names>X</given-names>
</name>
,
<name>
<surname>Whitaker</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Sakthivel</surname>
<given-names>SK</given-names>
</name>
,
<name>
<surname>Kamili</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Rose</surname>
<given-names>LE</given-names>
</name>
,
<name>
<surname>Lowe</surname>
<given-names>L</given-names>
</name>
,
<etal>et al</etal>
<article-title>Real-time reverse transcription-PCR assay panel for Middle East respiratory syndrome coronavirus</article-title>
.
<source>J Clin Microbiol</source>
.
<year>2014</year>
;
<volume>52</volume>
(
<issue>1</issue>
):
<fpage>67</fpage>
<lpage>75</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1128/JCM.02533-13">10.1128/JCM.02533-13</ext-link>
</comment>
<pub-id pub-id-type="pmid">24153118</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1006565.ref031">
<label>31</label>
<mixed-citation publication-type="journal">
<name>
<surname>Al-Abdallat</surname>
<given-names>MM</given-names>
</name>
,
<name>
<surname>Payne</surname>
<given-names>DC</given-names>
</name>
,
<name>
<surname>Alqasrawi</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Rha</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Tohme</surname>
<given-names>RA</given-names>
</name>
,
<name>
<surname>Abedi</surname>
<given-names>GR</given-names>
</name>
,
<etal>et al</etal>
<article-title>Hospital-associated outbreak of Middle East respiratory syndrome coronavirus: a serologic, epidemiologic, and clinical description</article-title>
.
<source>Clin Infect Dis</source>
.
<year>2014</year>
;
<volume>59</volume>
(
<issue>9</issue>
):
<fpage>1225</fpage>
<lpage>33</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1093/cid/ciu359">10.1093/cid/ciu359</ext-link>
</comment>
<pub-id pub-id-type="pmid">24829216</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1006565.ref032">
<label>32</label>
<mixed-citation publication-type="journal">
<name>
<surname>Takada</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Kawaoka</surname>
<given-names>Y</given-names>
</name>
.
<article-title>Antibody-dependent enhancement of viral infection: molecular mechanisms and in vivo implications</article-title>
.
<source>Rev Med Virol</source>
.
<year>2003</year>
;
<volume>13</volume>
(
<issue>6</issue>
):
<fpage>387</fpage>
<lpage>98</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1002/rmv.405">10.1002/rmv.405</ext-link>
</comment>
<pub-id pub-id-type="pmid">14625886</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1006565.ref033">
<label>33</label>
<mixed-citation publication-type="journal">
<name>
<surname>Whitehead</surname>
<given-names>SS</given-names>
</name>
,
<name>
<surname>Blaney</surname>
<given-names>JE</given-names>
</name>
,
<name>
<surname>Durbin</surname>
<given-names>AP</given-names>
</name>
,
<name>
<surname>Murphy</surname>
<given-names>BR</given-names>
</name>
.
<article-title>Prospects for a dengue virus vaccine</article-title>
.
<source>Nat Rev Microbiol</source>
.
<year>2007</year>
;
<volume>5</volume>
(
<issue>7</issue>
):
<fpage>518</fpage>
<lpage>28</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1038/nrmicro1690">10.1038/nrmicro1690</ext-link>
</comment>
<pub-id pub-id-type="pmid">17558424</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1006565.ref034">
<label>34</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kliks</surname>
<given-names>SC</given-names>
</name>
,
<name>
<surname>Nisalak</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Brandt</surname>
<given-names>WE</given-names>
</name>
,
<name>
<surname>Wahl</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Burke</surname>
<given-names>DS</given-names>
</name>
.
<article-title>Antibody-dependent enhancement of dengue virus growth in human monocytes as a risk factor for dengue hemorrhagic fever</article-title>
.
<source>Am J Trop Med Hyg</source>
.
<year>1989</year>
;
<volume>40</volume>
(
<issue>4</issue>
):
<fpage>444</fpage>
<lpage>51</lpage>
.
<pub-id pub-id-type="pmid">2712199</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1006565.ref035">
<label>35</label>
<mixed-citation publication-type="journal">
<name>
<surname>Olsen</surname>
<given-names>CW</given-names>
</name>
,
<name>
<surname>Corapi</surname>
<given-names>WV</given-names>
</name>
,
<name>
<surname>Ngichabe</surname>
<given-names>CK</given-names>
</name>
,
<name>
<surname>Baines</surname>
<given-names>JD</given-names>
</name>
,
<name>
<surname>Scott</surname>
<given-names>FW</given-names>
</name>
.
<article-title>Monoclonal antibodies to the spike protein of feline infectious peritonitis virus mediate antibody-dependent enhancement of infection of feline macrophages</article-title>
.
<source>J Virol</source>
.
<year>1992</year>
;
<volume>66</volume>
(
<issue>2</issue>
):
<fpage>956</fpage>
<lpage>65</lpage>
.
<pub-id pub-id-type="pmid">1309922</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1006565.ref036">
<label>36</label>
<mixed-citation publication-type="journal">
<name>
<surname>Corti</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Zhao</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Pedotti</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Simonelli</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Agnihothram</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Fett</surname>
<given-names>C</given-names>
</name>
,
<etal>et al</etal>
<article-title>Prophylactic and postexposure efficacy of a potent human monoclonal antibody against MERS coronavirus</article-title>
.
<source>Proc Natl Acad Sci U S A</source>
.
<year>2015</year>
.</mixed-citation>
</ref>
<ref id="ppat.1006565.ref037">
<label>37</label>
<mixed-citation publication-type="journal">
<name>
<surname>Houser</surname>
<given-names>KV</given-names>
</name>
,
<name>
<surname>Gretebeck</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Ying</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Wang</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Vogel</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Lamirande</surname>
<given-names>EW</given-names>
</name>
,
<etal>et al</etal>
<article-title>Prophylaxis with a MERS-CoV-specific human monoclonal antibody protects rabbits from MERS-CoV infection</article-title>
.
<source>J Infect Dis</source>
.
<year>2016</year>
.</mixed-citation>
</ref>
<ref id="ppat.1006565.ref038">
<label>38</label>
<mixed-citation publication-type="journal">
<name>
<surname>Van den Brand</surname>
<given-names>JMA</given-names>
</name>
,
<name>
<surname>Widagdo</surname>
<given-names>W</given-names>
</name>
,
<name>
<surname>de Waal</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Schipper</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>van Amerongen</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Stittelaar</surname>
<given-names>K</given-names>
</name>
,
<etal>et al</etal>
<article-title>Respiratory Infection Routes of MERS-CoV in Rabbits</article-title>
.
<source>Journal of Comparative Pathology</source>
.
<year>2017</year>
;
<volume>156</volume>
(
<issue>1</issue>
):
<fpage>79</fpage>
.</mixed-citation>
</ref>
<ref id="ppat.1006565.ref039">
<label>39</label>
<mixed-citation publication-type="journal">
<name>
<surname>Morales-Nebreda</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Chi</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Lecuona</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Chandel</surname>
<given-names>NS</given-names>
</name>
,
<name>
<surname>Dada</surname>
<given-names>LA</given-names>
</name>
,
<name>
<surname>Ridge</surname>
<given-names>K</given-names>
</name>
,
<etal>et al</etal>
<article-title>Intratracheal administration of influenza virus is superior to intranasal administration as a model of acute lung injury</article-title>
.
<source>J Virol Methods</source>
.
<year>2014</year>
;
<volume>209</volume>
:
<fpage>116</fpage>
<lpage>20</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1016/j.jviromet.2014.09.004">10.1016/j.jviromet.2014.09.004</ext-link>
</comment>
<pub-id pub-id-type="pmid">25239366</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1006565.ref040">
<label>40</label>
<mixed-citation publication-type="journal">
<name>
<surname>Moore</surname>
<given-names>IN</given-names>
</name>
,
<name>
<surname>Lamirande</surname>
<given-names>EW</given-names>
</name>
,
<name>
<surname>Paskel</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Donahue</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Kenney</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Qin</surname>
<given-names>J</given-names>
</name>
,
<etal>et al</etal>
<article-title>Correction for Moore et al., Severity of Clinical Disease and Pathology in Ferrets Experimentally Infected with Influenza Viruses Is Influenced by Inoculum Volume</article-title>
.
<source>J Virol</source>
.
<year>2016</year>
;
<volume>90</volume>
(
<issue>2</issue>
):
<fpage>1153</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1128/JVI.02806-15">10.1128/JVI.02806-15</ext-link>
</comment>
<pub-id pub-id-type="pmid">26719560</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1006565.ref041">
<label>41</label>
<mixed-citation publication-type="journal">
<name>
<surname>Guery</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Poissy</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>el Mansouf</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Sejourne</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Ettahar</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Lemaire</surname>
<given-names>X</given-names>
</name>
,
<etal>et al</etal>
<article-title>Clinical features and viral diagnosis of two cases of infection with Middle East Respiratory Syndrome coronavirus: a report of nosocomial transmission</article-title>
.
<source>Lancet</source>
.
<year>2013</year>
;
<volume>381</volume>
(
<issue>9885</issue>
):
<fpage>2265</fpage>
<lpage>72</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1016/S0140-6736(13)60982-4">10.1016/S0140-6736(13)60982-4</ext-link>
</comment>
<pub-id pub-id-type="pmid">23727167</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1006565.ref042">
<label>42</label>
<mixed-citation publication-type="journal">
<name>
<surname>Drosten</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Seilmaier</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Corman</surname>
<given-names>VM</given-names>
</name>
,
<name>
<surname>Hartmann</surname>
<given-names>W</given-names>
</name>
,
<name>
<surname>Scheible</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Sack</surname>
<given-names>S</given-names>
</name>
,
<etal>et al</etal>
<article-title>Clinical features and virological analysis of a case of Middle East respiratory syndrome coronavirus infection</article-title>
.
<source>Lancet Infect Dis</source>
.
<year>2013</year>
;
<volume>13</volume>
(
<issue>9</issue>
):
<fpage>745</fpage>
<lpage>51</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1016/S1473-3099(13)70154-3">10.1016/S1473-3099(13)70154-3</ext-link>
</comment>
<pub-id pub-id-type="pmid">23782859</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1006565.ref043">
<label>43</label>
<mixed-citation publication-type="journal">
<name>
<surname>Assiri</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>McGeer</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Perl</surname>
<given-names>TM</given-names>
</name>
,
<name>
<surname>Price</surname>
<given-names>CS</given-names>
</name>
,
<name>
<surname>Al Rabeeah</surname>
<given-names>AA</given-names>
</name>
,
<name>
<surname>Cummings</surname>
<given-names>DA</given-names>
</name>
,
<etal>et al</etal>
<article-title>Hospital outbreak of Middle East respiratory syndrome coronavirus</article-title>
.
<source>N Engl J Med</source>
.
<year>2013</year>
;
<volume>369</volume>
(
<issue>5</issue>
):
<fpage>407</fpage>
<lpage>16</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1056/NEJMoa1306742">10.1056/NEJMoa1306742</ext-link>
</comment>
<pub-id pub-id-type="pmid">23782161</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1006565.ref044">
<label>44</label>
<mixed-citation publication-type="journal">
<name>
<surname>Ghosh</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Hoselton</surname>
<given-names>SA</given-names>
</name>
,
<name>
<surname>Dorsam</surname>
<given-names>GP</given-names>
</name>
,
<name>
<surname>Schuh</surname>
<given-names>JM</given-names>
</name>
.
<article-title>Eosinophils in fungus-associated allergic pulmonary disease</article-title>
.
<source>Front Pharmacol</source>
.
<year>2013</year>
;
<volume>4</volume>
:
<fpage>8</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.3389/fphar.2013.00008">10.3389/fphar.2013.00008</ext-link>
</comment>
<pub-id pub-id-type="pmid">23378838</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1006565.ref045">
<label>45</label>
<mixed-citation publication-type="journal">
<name>
<surname>Barrios</surname>
<given-names>RJ</given-names>
</name>
.
<article-title>Hypersensitivity pneumonitis: histopathology</article-title>
.
<source>Arch Pathol Lab Med</source>
.
<year>2008</year>
;
<volume>132</volume>
(
<issue>2</issue>
):
<fpage>199</fpage>
<lpage>203</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1043/1543-2165(2008)132[199:HPH]2.0.CO;2">10.1043/1543-2165(2008)132[199:HPH]2.0.CO;2</ext-link>
</comment>
<pub-id pub-id-type="pmid">18251576</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1006565.ref046">
<label>46</label>
<mixed-citation publication-type="journal">
<name>
<surname>Monsalvo</surname>
<given-names>AC</given-names>
</name>
,
<name>
<surname>Batalle</surname>
<given-names>JP</given-names>
</name>
,
<name>
<surname>Lopez</surname>
<given-names>MF</given-names>
</name>
,
<name>
<surname>Krause</surname>
<given-names>JC</given-names>
</name>
,
<name>
<surname>Klemenc</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Hernandez</surname>
<given-names>JZ</given-names>
</name>
,
<etal>et al</etal>
<article-title>Severe pandemic 2009 H1N1 influenza disease due to pathogenic immune complexes</article-title>
.
<source>Nat Med</source>
.
<year>2011</year>
;
<volume>17</volume>
(
<issue>2</issue>
):
<fpage>195</fpage>
<lpage>9</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1038/nm.2262">10.1038/nm.2262</ext-link>
</comment>
<pub-id pub-id-type="pmid">21131958</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1006565.ref047">
<label>47</label>
<mixed-citation publication-type="journal">
<name>
<surname>Polack</surname>
<given-names>FP</given-names>
</name>
,
<name>
<surname>Teng</surname>
<given-names>MN</given-names>
</name>
,
<name>
<surname>Collins</surname>
<given-names>PL</given-names>
</name>
,
<name>
<surname>Prince</surname>
<given-names>GA</given-names>
</name>
,
<name>
<surname>Exner</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Regele</surname>
<given-names>H</given-names>
</name>
,
<etal>et al</etal>
<article-title>A role for immune complexes in enhanced respiratory syncytial virus disease</article-title>
.
<source>J Exp Med</source>
.
<year>2002</year>
;
<volume>196</volume>
(
<issue>6</issue>
):
<fpage>859</fpage>
<lpage>65</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1084/jem.20020781">10.1084/jem.20020781</ext-link>
</comment>
<pub-id pub-id-type="pmid">12235218</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1006565.ref048">
<label>48</label>
<mixed-citation publication-type="journal">
<name>
<surname>Hirsch</surname>
<given-names>RL</given-names>
</name>
.
<article-title>The complement system: its importance in the host response to viral infection</article-title>
.
<source>Microbiol Rev</source>
.
<year>1982</year>
;
<volume>46</volume>
(
<issue>1</issue>
):
<fpage>71</fpage>
<lpage>85</lpage>
.
<pub-id pub-id-type="pmid">7045625</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1006565.ref049">
<label>49</label>
<mixed-citation publication-type="journal">
<name>
<surname>Berry</surname>
<given-names>DM</given-names>
</name>
,
<name>
<surname>Almeida</surname>
<given-names>JD</given-names>
</name>
.
<article-title>The morphological and biological effects of various antisera on avian infectious bronchitis virus</article-title>
.
<source>J Gen Virol</source>
.
<year>1968</year>
;
<volume>3</volume>
(
<issue>1</issue>
):
<fpage>97</fpage>
<lpage>102</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1099/0022-1317-3-1-97">10.1099/0022-1317-3-1-97</ext-link>
</comment>
<pub-id pub-id-type="pmid">5692879</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1006565.ref050">
<label>50</label>
<mixed-citation publication-type="journal">
<name>
<surname>Park</surname>
<given-names>WB</given-names>
</name>
,
<name>
<surname>Perera</surname>
<given-names>RA</given-names>
</name>
,
<name>
<surname>Choe</surname>
<given-names>PG</given-names>
</name>
,
<name>
<surname>Lau</surname>
<given-names>EH</given-names>
</name>
,
<name>
<surname>Choi</surname>
<given-names>SJ</given-names>
</name>
,
<name>
<surname>Chun</surname>
<given-names>JY</given-names>
</name>
,
<etal>et al</etal>
<article-title>Kinetics of Serologic Responses to MERS Coronavirus Infection in Humans, South Korea</article-title>
.
<source>Emerg Infect Dis</source>
.
<year>2015</year>
;
<volume>21</volume>
(
<issue>12</issue>
):
<fpage>2186</fpage>
<lpage>9</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.3201/eid2112.151421">10.3201/eid2112.151421</ext-link>
</comment>
<pub-id pub-id-type="pmid">26583829</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1006565.ref051">
<label>51</label>
<mixed-citation publication-type="journal">
<name>
<surname>Chun</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Chung</surname>
<given-names>CR</given-names>
</name>
,
<name>
<surname>Ha</surname>
<given-names>YE</given-names>
</name>
,
<name>
<surname>Han</surname>
<given-names>TH</given-names>
</name>
,
<name>
<surname>Ki</surname>
<given-names>CS</given-names>
</name>
,
<name>
<surname>Kang</surname>
<given-names>ES</given-names>
</name>
,
<etal>et al</etal>
<article-title>Possible Transfusion-Related Acute Lung Injury Following Convalescent Plasma Transfusion in a Patient With Middle East Respiratory Syndrome</article-title>
.
<source>Ann Lab Med</source>
.
<year>2016</year>
;
<volume>36</volume>
(
<issue>4</issue>
):
<fpage>393</fpage>
<lpage>5</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.3343/alm.2016.36.4.393">10.3343/alm.2016.36.4.393</ext-link>
</comment>
<pub-id pub-id-type="pmid">27139619</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1006565.ref052">
<label>52</label>
<mixed-citation publication-type="journal">
<name>
<surname>Min</surname>
<given-names>CK</given-names>
</name>
,
<name>
<surname>Cheon</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Ha</surname>
<given-names>NY</given-names>
</name>
,
<name>
<surname>Sohn</surname>
<given-names>KM</given-names>
</name>
,
<name>
<surname>Kim</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Aigerim</surname>
<given-names>A</given-names>
</name>
,
<etal>et al</etal>
<article-title>Comparative and kinetic analysis of viral shedding and immunological responses in MERS patients representing a broad spectrum of disease severity</article-title>
.
<source>Sci Rep</source>
.
<year>2016</year>
;
<volume>6</volume>
:
<fpage>25359</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1038/srep25359">10.1038/srep25359</ext-link>
</comment>
<pub-id pub-id-type="pmid">27146253</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1006565.ref053">
<label>53</label>
<mixed-citation publication-type="journal">
<name>
<surname>Subbarao</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>McAuliffe</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Vogel</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Fahle</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Fischer</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Tatti</surname>
<given-names>K</given-names>
</name>
,
<etal>et al</etal>
<article-title>Prior infection and passive transfer of neutralizing antibody prevent replication of severe acute respiratory syndrome coronavirus in the respiratory tract of mice</article-title>
.
<source>J Virol</source>
.
<year>2004</year>
;
<volume>78</volume>
(
<issue>7</issue>
):
<fpage>3572</fpage>
<lpage>7</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1128/JVI.78.7.3572-3577.2004">10.1128/JVI.78.7.3572-3577.2004</ext-link>
</comment>
<pub-id pub-id-type="pmid">15016880</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1006565.ref054">
<label>54</label>
<mixed-citation publication-type="journal">
<name>
<surname>Roberts</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Lamirande</surname>
<given-names>EW</given-names>
</name>
,
<name>
<surname>Vogel</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Baras</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Goossens</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Knott</surname>
<given-names>I</given-names>
</name>
,
<etal>et al</etal>
<article-title>Immunogenicity and protective efficacy in mice and hamsters of a beta-propiolactone inactivated whole virus SARS-CoV vaccine</article-title>
.
<source>Viral Immunol</source>
.
<year>2010</year>
;
<volume>23</volume>
(
<issue>5</issue>
):
<fpage>509</fpage>
<lpage>19</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1089/vim.2010.0028">10.1089/vim.2010.0028</ext-link>
</comment>
<pub-id pub-id-type="pmid">20883165</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1006565.ref055">
<label>55</label>
<mixed-citation publication-type="journal">
<name>
<surname>Clay</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Donart</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Fomukong</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Knight</surname>
<given-names>JB</given-names>
</name>
,
<name>
<surname>Lei</surname>
<given-names>W</given-names>
</name>
,
<name>
<surname>Price</surname>
<given-names>L</given-names>
</name>
,
<etal>et al</etal>
<article-title>Primary severe acute respiratory syndrome coronavirus infection limits replication but not lung inflammation upon homologous rechallenge</article-title>
.
<source>J Virol</source>
.
<year>2012</year>
;
<volume>86</volume>
(
<issue>8</issue>
):
<fpage>4234</fpage>
<lpage>44</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1128/JVI.06791-11">10.1128/JVI.06791-11</ext-link>
</comment>
<pub-id pub-id-type="pmid">22345460</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1006565.ref056">
<label>56</label>
<mixed-citation publication-type="journal">
<name>
<surname>Roper</surname>
<given-names>RL</given-names>
</name>
,
<name>
<surname>Rehm</surname>
<given-names>KE</given-names>
</name>
.
<article-title>SARS vaccines: where are we?</article-title>
<source>Expert Rev Vaccines</source>
.
<year>2009</year>
;
<volume>8</volume>
(
<issue>7</issue>
):
<fpage>887</fpage>
<lpage>98</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1586/erv.09.43">10.1586/erv.09.43</ext-link>
</comment>
<pub-id pub-id-type="pmid">19538115</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1006565.ref057">
<label>57</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bolles</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Deming</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Long</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Agnihothram</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Whitmore</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Ferris</surname>
<given-names>M</given-names>
</name>
,
<etal>et al</etal>
<article-title>A double-inactivated severe acute respiratory syndrome coronavirus vaccine provides incomplete protection in mice and induces increased eosinophilic proinflammatory pulmonary response upon challenge</article-title>
.
<source>J Virol</source>
.
<year>2011</year>
;
<volume>85</volume>
(
<issue>23</issue>
):
<fpage>12201</fpage>
<lpage>15</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1128/JVI.06048-11">10.1128/JVI.06048-11</ext-link>
</comment>
<pub-id pub-id-type="pmid">21937658</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1006565.ref058">
<label>58</label>
<mixed-citation publication-type="journal">
<name>
<surname>Tseng</surname>
<given-names>CT</given-names>
</name>
,
<name>
<surname>Sbrana</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Iwata-Yoshikawa</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Newman</surname>
<given-names>PC</given-names>
</name>
,
<name>
<surname>Garron</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Atmar</surname>
<given-names>RL</given-names>
</name>
,
<etal>et al</etal>
<article-title>Immunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virus</article-title>
.
<source>PLoS One</source>
.
<year>2012</year>
;
<volume>7</volume>
(
<issue>4</issue>
):
<fpage>e35421</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1371/journal.pone.0035421">10.1371/journal.pone.0035421</ext-link>
</comment>
<pub-id pub-id-type="pmid">22536382</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1006565.ref059">
<label>59</label>
<mixed-citation publication-type="journal">
<name>
<surname>Agrawal</surname>
<given-names>AS</given-names>
</name>
,
<name>
<surname>Tao</surname>
<given-names>X</given-names>
</name>
,
<name>
<surname>Algaissi</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Garron</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Narayanan</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Peng</surname>
<given-names>BH</given-names>
</name>
,
<etal>et al</etal>
<article-title>Immunization with inactivated Middle East Respiratory Syndrome coronavirus vaccine leads to lung immunopathology on challenge with live virus</article-title>
.
<source>Hum Vaccin Immunother</source>
.
<year>2016</year>
:
<fpage>1</fpage>
<lpage>6</lpage>
.</mixed-citation>
</ref>
<ref id="ppat.1006565.ref060">
<label>60</label>
<mixed-citation publication-type="journal">
<name>
<surname>Reed</surname>
<given-names>LJ</given-names>
</name>
,
<name>
<surname>Muench</surname>
<given-names>H</given-names>
</name>
.
<article-title>A simple method of estimation fifty per cent endpoints</article-title>
.
<source>American Journal of Hygiene</source>
.
<year>1938</year>
;
<volume>27</volume>
:
<fpage>493</fpage>
<lpage>7</lpage>
.</mixed-citation>
</ref>
<ref id="ppat.1006565.ref061">
<label>61</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kapoor</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Pringle</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Kumar</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Dearth</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Liu</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Lovchik</surname>
<given-names>J</given-names>
</name>
,
<etal>et al</etal>
<article-title>Clinical and laboratory findings of the first imported case of Middle East respiratory syndrome coronavirus to the United States</article-title>
.
<source>Clin Infect Dis</source>
.
<year>2014</year>
;
<volume>59</volume>
(
<issue>11</issue>
):
<fpage>1511</fpage>
<lpage>8</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1093/cid/ciu635">10.1093/cid/ciu635</ext-link>
</comment>
<pub-id pub-id-type="pmid">25100864</pub-id>
</mixed-citation>
</ref>
<ref id="ppat.1006565.ref062">
<label>62</label>
<mixed-citation publication-type="journal">
<name>
<surname>Genin</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Clement</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Fattaccioli</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Raes</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Michiels</surname>
<given-names>C</given-names>
</name>
.
<article-title>M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide</article-title>
.
<source>BMC Cancer</source>
.
<year>2015</year>
;
<volume>15</volume>
:
<fpage>577</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.1186/s12885-015-1546-9">10.1186/s12885-015-1546-9</ext-link>
</comment>
<pub-id pub-id-type="pmid">26253167</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001106  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 001106  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021