Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Identification and Typing of Human Enterovirus: A Genomic Barcode Approach

Identifieur interne : 001064 ( Pmc/Corpus ); précédent : 001063; suivant : 001065

Identification and Typing of Human Enterovirus: A Genomic Barcode Approach

Auteurs : Chengguo Wei ; Guoqing Wang ; Xin Chen ; Honglan Huang ; Bin Liu ; Ying Xu ; Fan Li

Source :

RBID : PMC:3194813

Abstract

Identification and typing of human enterovirus (HEVs) are important to pathogen detection and therapy. Previous phylogeny-based typing methods are mainly based on multiple sequence alignments of specific genes in the HEVs, but the results are not stable with respect to different choices of genes. Here we report a novel method for identification and typing of HEVs based on information derived from their whole genomes. Specifically, we calculate the k-mer based barcode image for each genome, HEV or other human viruses, for a fixed k, 1mer frequency distribution across the whole genome for all combinations of k-mers. A phylogenetic tree is constructed using a barcode-based distance and a neighbor-joining method among a set of 443 representative non-HEV human viruses and 395 HEV sequences. The tree shows a clear separation of the HEV viruses from all the non-HEV viruses with 100% accuracy and a separation of the HEVs into four distinct clads with 93.4% consistency with a multiple sequence alignment-based phylogeny. Our detailed analyses of the HEVs having different typing results by the two methods indicate that our results are in better agreement with known information about the HEVs.


Url:
DOI: 10.1371/journal.pone.0026296
PubMed: 22022592
PubMed Central: 3194813

Links to Exploration step

PMC:3194813

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Identification and Typing of Human Enterovirus: A Genomic Barcode Approach</title>
<author>
<name sortKey="Wei, Chengguo" sort="Wei, Chengguo" uniqKey="Wei C" first="Chengguo" last="Wei">Chengguo Wei</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Department of Pathogeny Biology, Norman Bethune Medical College of Jilin University, Changchun, Jilin, China</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Guoqing" sort="Wang, Guoqing" uniqKey="Wang G" first="Guoqing" last="Wang">Guoqing Wang</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Department of Pathogeny Biology, Norman Bethune Medical College of Jilin University, Changchun, Jilin, China</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chen, Xin" sort="Chen, Xin" uniqKey="Chen X" first="Xin" last="Chen">Xin Chen</name>
<affiliation>
<nlm:aff id="aff3">
<addr-line>College of Computer Science and Technology, Jilin University, Changchun, Jilin, China</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Huang, Honglan" sort="Huang, Honglan" uniqKey="Huang H" first="Honglan" last="Huang">Honglan Huang</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Department of Pathogeny Biology, Norman Bethune Medical College of Jilin University, Changchun, Jilin, China</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Liu, Bin" sort="Liu, Bin" uniqKey="Liu B" first="Bin" last="Liu">Bin Liu</name>
<affiliation>
<nlm:aff id="aff4">
<addr-line>The First Bethune Hospital of Jilin University, Changchun, Jilin, China</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Xu, Ying" sort="Xu, Ying" uniqKey="Xu Y" first="Ying" last="Xu">Ying Xu</name>
<affiliation>
<nlm:aff id="aff2">
<addr-line>Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology, and Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">
<addr-line>College of Computer Science and Technology, Jilin University, Changchun, Jilin, China</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Li, Fan" sort="Li, Fan" uniqKey="Li F" first="Fan" last="Li">Fan Li</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Department of Pathogeny Biology, Norman Bethune Medical College of Jilin University, Changchun, Jilin, China</addr-line>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">22022592</idno>
<idno type="pmc">3194813</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3194813</idno>
<idno type="RBID">PMC:3194813</idno>
<idno type="doi">10.1371/journal.pone.0026296</idno>
<date when="2011">2011</date>
<idno type="wicri:Area/Pmc/Corpus">001064</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">001064</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Identification and Typing of Human Enterovirus: A Genomic Barcode Approach</title>
<author>
<name sortKey="Wei, Chengguo" sort="Wei, Chengguo" uniqKey="Wei C" first="Chengguo" last="Wei">Chengguo Wei</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Department of Pathogeny Biology, Norman Bethune Medical College of Jilin University, Changchun, Jilin, China</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Guoqing" sort="Wang, Guoqing" uniqKey="Wang G" first="Guoqing" last="Wang">Guoqing Wang</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Department of Pathogeny Biology, Norman Bethune Medical College of Jilin University, Changchun, Jilin, China</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chen, Xin" sort="Chen, Xin" uniqKey="Chen X" first="Xin" last="Chen">Xin Chen</name>
<affiliation>
<nlm:aff id="aff3">
<addr-line>College of Computer Science and Technology, Jilin University, Changchun, Jilin, China</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Huang, Honglan" sort="Huang, Honglan" uniqKey="Huang H" first="Honglan" last="Huang">Honglan Huang</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Department of Pathogeny Biology, Norman Bethune Medical College of Jilin University, Changchun, Jilin, China</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Liu, Bin" sort="Liu, Bin" uniqKey="Liu B" first="Bin" last="Liu">Bin Liu</name>
<affiliation>
<nlm:aff id="aff4">
<addr-line>The First Bethune Hospital of Jilin University, Changchun, Jilin, China</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Xu, Ying" sort="Xu, Ying" uniqKey="Xu Y" first="Ying" last="Xu">Ying Xu</name>
<affiliation>
<nlm:aff id="aff2">
<addr-line>Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology, and Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">
<addr-line>College of Computer Science and Technology, Jilin University, Changchun, Jilin, China</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Li, Fan" sort="Li, Fan" uniqKey="Li F" first="Fan" last="Li">Fan Li</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Department of Pathogeny Biology, Norman Bethune Medical College of Jilin University, Changchun, Jilin, China</addr-line>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS ONE</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2011">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Identification and typing of human enterovirus (HEVs) are important to pathogen detection and therapy. Previous phylogeny-based typing methods are mainly based on multiple sequence alignments of specific genes in the HEVs, but the results are not stable with respect to different choices of genes. Here we report a novel method for identification and typing of HEVs based on information derived from their whole genomes. Specifically, we calculate the k-
<italic>mer</italic>
based barcode image for each genome, HEV or other human viruses, for a fixed k, 1<italic>mer</italic>
frequency distribution across the whole genome for all combinations of k-
<italic>mers</italic>
. A phylogenetic tree is constructed using a barcode-based distance and a neighbor-joining method among a set of 443 representative non-HEV human viruses and 395 HEV sequences. The tree shows a clear separation of the HEV viruses from all the non-HEV viruses with 100% accuracy and a separation of the HEVs into four distinct clads with 93.4% consistency with a multiple sequence alignment-based phylogeny. Our detailed analyses of the HEVs having different typing results by the two methods indicate that our results are in better agreement with known information about the HEVs.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Palacios, G" uniqKey="Palacios G">G Palacios</name>
</author>
<author>
<name sortKey="Oberste, Ms" uniqKey="Oberste M">MS Oberste</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kearney, Mt" uniqKey="Kearney M">MT Kearney</name>
</author>
<author>
<name sortKey="Cotton, Jm" uniqKey="Cotton J">JM Cotton</name>
</author>
<author>
<name sortKey="Richardson, Pj" uniqKey="Richardson P">PJ Richardson</name>
</author>
<author>
<name sortKey="Shah, Am" uniqKey="Shah A">AM Shah</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, Ks" uniqKey="Kim K">KS Kim</name>
</author>
<author>
<name sortKey="Hufnagel, G" uniqKey="Hufnagel G">G Hufnagel</name>
</author>
<author>
<name sortKey="Chapman, Nm" uniqKey="Chapman N">NM Chapman</name>
</author>
<author>
<name sortKey="Tracy, S" uniqKey="Tracy S">S Tracy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hober, D" uniqKey="Hober D">D Hober</name>
</author>
<author>
<name sortKey="Sauter, P" uniqKey="Sauter P">P Sauter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Richer, Mj" uniqKey="Richer M">MJ Richer</name>
</author>
<author>
<name sortKey="Horwitz, Ms" uniqKey="Horwitz M">MS Horwitz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcminn, Pc" uniqKey="Mcminn P">PC McMinn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cardosa, Mj" uniqKey="Cardosa M">MJ Cardosa</name>
</author>
<author>
<name sortKey="Perera, D" uniqKey="Perera D">D Perera</name>
</author>
<author>
<name sortKey="Brown, Ba" uniqKey="Brown B">BA Brown</name>
</author>
<author>
<name sortKey="Cheon, D" uniqKey="Cheon D">D Cheon</name>
</author>
<author>
<name sortKey="Chan, Hm" uniqKey="Chan H">HM Chan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Miyazawa, I" uniqKey="Miyazawa I">I Miyazawa</name>
</author>
<author>
<name sortKey="Azegami, Y" uniqKey="Azegami Y">Y Azegami</name>
</author>
<author>
<name sortKey="Kasuo, S" uniqKey="Kasuo S">S Kasuo</name>
</author>
<author>
<name sortKey="Yoshida, T" uniqKey="Yoshida T">T Yoshida</name>
</author>
<author>
<name sortKey="Kobayashi, M" uniqKey="Kobayashi M">M Kobayashi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y Zhang</name>
</author>
<author>
<name sortKey="Tan, Xj" uniqKey="Tan X">XJ Tan</name>
</author>
<author>
<name sortKey="Wang, Hy" uniqKey="Wang H">HY Wang</name>
</author>
<author>
<name sortKey="Yan, Dm" uniqKey="Yan D">DM Yan</name>
</author>
<author>
<name sortKey="Zhu, Sl" uniqKey="Zhu S">SL Zhu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oberste, Ms" uniqKey="Oberste M">MS Oberste</name>
</author>
<author>
<name sortKey="Michele, Sm" uniqKey="Michele S">SM Michele</name>
</author>
<author>
<name sortKey="Maher, K" uniqKey="Maher K">K Maher</name>
</author>
<author>
<name sortKey="Schnurr, D" uniqKey="Schnurr D">D Schnurr</name>
</author>
<author>
<name sortKey="Cisterna, D" uniqKey="Cisterna D">D Cisterna</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oberste, Ms" uniqKey="Oberste M">MS Oberste</name>
</author>
<author>
<name sortKey="Maher, K" uniqKey="Maher K">K Maher</name>
</author>
<author>
<name sortKey="Michele, Sm" uniqKey="Michele S">SM Michele</name>
</author>
<author>
<name sortKey="Belliot, G" uniqKey="Belliot G">G Belliot</name>
</author>
<author>
<name sortKey="Uddin, M" uniqKey="Uddin M">M Uddin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Norder, H" uniqKey="Norder H">H Norder</name>
</author>
<author>
<name sortKey="Bjerregaard, L" uniqKey="Bjerregaard L">L Bjerregaard</name>
</author>
<author>
<name sortKey="Magnius, L" uniqKey="Magnius L">L Magnius</name>
</author>
<author>
<name sortKey="Lina, B" uniqKey="Lina B">B Lina</name>
</author>
<author>
<name sortKey="Aymard, M" uniqKey="Aymard M">M Aymard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fauquet Cm Mayo, Ma" uniqKey="Fauquet Cm Mayo M">MA Fauquet CM Mayo</name>
</author>
<author>
<name sortKey="Maniloff, J" uniqKey="Maniloff J">J Maniloff</name>
</author>
<author>
<name sortKey="Desselberger, U" uniqKey="Desselberger U">U Desselberger</name>
</author>
<author>
<name sortKey="Ball, La" uniqKey="Ball L">LA Ball</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhu, Z" uniqKey="Zhu Z">Z Zhu</name>
</author>
<author>
<name sortKey="Zhu, S" uniqKey="Zhu S">S Zhu</name>
</author>
<author>
<name sortKey="Guo, X" uniqKey="Guo X">X Guo</name>
</author>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J Wang</name>
</author>
<author>
<name sortKey="Wang, D" uniqKey="Wang D">D Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Heinsbroek, E" uniqKey="Heinsbroek E">E Heinsbroek</name>
</author>
<author>
<name sortKey="Ruitenberg, Ej" uniqKey="Ruitenberg E">EJ Ruitenberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Khetsuriani, N" uniqKey="Khetsuriani N">N Khetsuriani</name>
</author>
<author>
<name sortKey="Lamonte Fowlkes, A" uniqKey="Lamonte Fowlkes A">A Lamonte-Fowlkes</name>
</author>
<author>
<name sortKey="Oberst, S" uniqKey="Oberst S">S Oberst</name>
</author>
<author>
<name sortKey="Pallansch, Ma" uniqKey="Pallansch M">MA Pallansch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Grandien, M" uniqKey="Grandien M">M Grandien</name>
</author>
<author>
<name sortKey="Forsgren, M" uniqKey="Forsgren M">M Forsgren</name>
</author>
<author>
<name sortKey="Ehrnst, A" uniqKey="Ehrnst A">A Ehrnst</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stanway, G" uniqKey="Stanway G">G Stanway</name>
</author>
<author>
<name sortKey="Brown, F" uniqKey="Brown F">F Brown</name>
</author>
<author>
<name sortKey="Christian, P" uniqKey="Christian P">P Christian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nasri, D" uniqKey="Nasri D">D Nasri</name>
</author>
<author>
<name sortKey="Bouslama, L" uniqKey="Bouslama L">L Bouslama</name>
</author>
<author>
<name sortKey="Pillet, S" uniqKey="Pillet S">S Pillet</name>
</author>
<author>
<name sortKey="Bourlet, T" uniqKey="Bourlet T">T Bourlet</name>
</author>
<author>
<name sortKey="Aouni, M" uniqKey="Aouni M">M Aouni</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brown, B" uniqKey="Brown B">B Brown</name>
</author>
<author>
<name sortKey="Oberste, Ms" uniqKey="Oberste M">MS Oberste</name>
</author>
<author>
<name sortKey="Maher, K" uniqKey="Maher K">K Maher</name>
</author>
<author>
<name sortKey="Pallansch, Ma" uniqKey="Pallansch M">MA Pallansch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kapsenberg, Jg" uniqKey="Kapsenberg J">JG Kapsenberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pallansch, M" uniqKey="Pallansch M">M Pallansch</name>
</author>
<author>
<name sortKey="Roos, R" uniqKey="Roos R">R Roos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kottaridi, C" uniqKey="Kottaridi C">C Kottaridi</name>
</author>
<author>
<name sortKey="Bolanaki, E" uniqKey="Bolanaki E">E Bolanaki</name>
</author>
<author>
<name sortKey="Mamuris, Z" uniqKey="Mamuris Z">Z Mamuris</name>
</author>
<author>
<name sortKey="Stathopoulos, C" uniqKey="Stathopoulos C">C Stathopoulos</name>
</author>
<author>
<name sortKey="Markoulatos, P" uniqKey="Markoulatos P">P Markoulatos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oberste, Ms" uniqKey="Oberste M">MS Oberste</name>
</author>
<author>
<name sortKey="Penaranda, S" uniqKey="Penaranda S">S Penaranda</name>
</author>
<author>
<name sortKey="Rogers, Sl" uniqKey="Rogers S">SL Rogers</name>
</author>
<author>
<name sortKey="Henderson, E" uniqKey="Henderson E">E Henderson</name>
</author>
<author>
<name sortKey="Nix, Wa" uniqKey="Nix W">WA Nix</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oberste, Ms" uniqKey="Oberste M">MS Oberste</name>
</author>
<author>
<name sortKey="Maher, K" uniqKey="Maher K">K Maher</name>
</author>
<author>
<name sortKey="Kilpatrick, Dr" uniqKey="Kilpatrick D">DR Kilpatrick</name>
</author>
<author>
<name sortKey="Pallansch, Ma" uniqKey="Pallansch M">MA Pallansch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nasri, D" uniqKey="Nasri D">D Nasri</name>
</author>
<author>
<name sortKey="Bouslama, L" uniqKey="Bouslama L">L Bouslama</name>
</author>
<author>
<name sortKey="Omar, S" uniqKey="Omar S">S Omar</name>
</author>
<author>
<name sortKey="Saoudin, H" uniqKey="Saoudin H">H Saoudin</name>
</author>
<author>
<name sortKey="Bourlet, T" uniqKey="Bourlet T">T Bourlet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stadnick, E" uniqKey="Stadnick E">E Stadnick</name>
</author>
<author>
<name sortKey="Dan, M" uniqKey="Dan M">M Dan</name>
</author>
<author>
<name sortKey="Sadeghi, A" uniqKey="Sadeghi A">A Sadeghi</name>
</author>
<author>
<name sortKey="Chantler, Jk" uniqKey="Chantler J">JK Chantler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ishiko, H" uniqKey="Ishiko H">H Ishiko</name>
</author>
<author>
<name sortKey="Shimada, Y" uniqKey="Shimada Y">Y Shimada</name>
</author>
<author>
<name sortKey="Yonaha, M" uniqKey="Yonaha M">M Yonaha</name>
</author>
<author>
<name sortKey="Hashimoto, O" uniqKey="Hashimoto O">O Hashimoto</name>
</author>
<author>
<name sortKey="Hayashi, A" uniqKey="Hayashi A">A Hayashi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhou, F" uniqKey="Zhou F">F Zhou</name>
</author>
<author>
<name sortKey="Olman, V" uniqKey="Olman V">V Olman</name>
</author>
<author>
<name sortKey="Xu, Y" uniqKey="Xu Y">Y Xu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Savolainen Kopra, C" uniqKey="Savolainen Kopra C">C Savolainen-Kopra</name>
</author>
<author>
<name sortKey="Blomqvist, S" uniqKey="Blomqvist S">S Blomqvist</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kumar, S" uniqKey="Kumar S">S Kumar</name>
</author>
<author>
<name sortKey="Nei, M" uniqKey="Nei M">M Nei</name>
</author>
<author>
<name sortKey="Dudley, J" uniqKey="Dudley J">J Dudley</name>
</author>
<author>
<name sortKey="Tamura, K" uniqKey="Tamura K">K Tamura</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jun, Ej" uniqKey="Jun E">EJ Jun</name>
</author>
<author>
<name sortKey="Won, Ma" uniqKey="Won M">MA Won</name>
</author>
<author>
<name sortKey="Ahn, J" uniqKey="Ahn J">J Ahn</name>
</author>
<author>
<name sortKey="Ko, A" uniqKey="Ko A">A Ko</name>
</author>
<author>
<name sortKey="Moon, H" uniqKey="Moon H">H Moon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xiao, Xl" uniqKey="Xiao X">XL Xiao</name>
</author>
<author>
<name sortKey="Wu, H" uniqKey="Wu H">H Wu</name>
</author>
<author>
<name sortKey="Li, Yj" uniqKey="Li Y">YJ Li</name>
</author>
<author>
<name sortKey="Li, Hf" uniqKey="Li H">HF Li</name>
</author>
<author>
<name sortKey="He, Yq" uniqKey="He Y">YQ He</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chang, Ch" uniqKey="Chang C">CH Chang</name>
</author>
<author>
<name sortKey="Lin, Kh" uniqKey="Lin K">KH Lin</name>
</author>
<author>
<name sortKey="Sheu, Mm" uniqKey="Sheu M">MM Sheu</name>
</author>
<author>
<name sortKey="Huang, Wl" uniqKey="Huang W">WL Huang</name>
</author>
<author>
<name sortKey="Wang, Hz" uniqKey="Wang H">HZ Wang</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">PLoS One</journal-id>
<journal-id journal-id-type="iso-abbrev">PLoS ONE</journal-id>
<journal-id journal-id-type="publisher-id">plos</journal-id>
<journal-id journal-id-type="pmc">plosone</journal-id>
<journal-title-group>
<journal-title>PLoS ONE</journal-title>
</journal-title-group>
<issn pub-type="epub">1932-6203</issn>
<publisher>
<publisher-name>Public Library of Science</publisher-name>
<publisher-loc>San Francisco, USA</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">22022592</article-id>
<article-id pub-id-type="pmc">3194813</article-id>
<article-id pub-id-type="publisher-id">PONE-D-11-10269</article-id>
<article-id pub-id-type="doi">10.1371/journal.pone.0026296</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
<subj-group subj-group-type="Discipline-v2">
<subject>Biology</subject>
<subj-group>
<subject>Genomics</subject>
<subj-group>
<subject>Comparative Genomics</subject>
<subject>Genome Analysis Tools</subject>
<subject>Genome Expression Analysis</subject>
<subject>Genome Sequencing</subject>
</subj-group>
</subj-group>
<subj-group>
<subject>Microbiology</subject>
<subj-group>
<subject>Virology</subject>
<subj-group>
<subject>Viral classification</subject>
<subj-group>
<subject>RNA viruses</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v2">
<subject>Medicine</subject>
<subj-group>
<subject>Infectious Diseases</subject>
<subj-group>
<subject>Viral Diseases</subject>
<subj-group>
<subject>Enterovirus Infection</subject>
</subj-group>
</subj-group>
</subj-group>
</subj-group>
</article-categories>
<title-group>
<article-title>Identification and Typing of Human Enterovirus: A Genomic Barcode Approach</article-title>
<alt-title alt-title-type="running-head">Typing of Human Enterovirus</alt-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" equal-contrib="yes">
<name>
<surname>Wei</surname>
<given-names>Chengguo</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author" equal-contrib="yes">
<name>
<surname>Wang</surname>
<given-names>Guoqing</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Chen</surname>
<given-names>Xin</given-names>
</name>
<xref ref-type="aff" rid="aff3">
<sup>3</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Huang</surname>
<given-names>Honglan</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Liu</surname>
<given-names>Bin</given-names>
</name>
<xref ref-type="aff" rid="aff4">
<sup>4</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Xu</surname>
<given-names>Ying</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
<xref ref-type="aff" rid="aff3">
<sup>3</sup>
</xref>
<xref ref-type="corresp" rid="cor1">
<sup>*</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Li</surname>
<given-names>Fan</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="corresp" rid="cor1">
<sup>*</sup>
</xref>
</contrib>
</contrib-group>
<aff id="aff1">
<label>1</label>
<addr-line>Department of Pathogeny Biology, Norman Bethune Medical College of Jilin University, Changchun, Jilin, China</addr-line>
</aff>
<aff id="aff2">
<label>2</label>
<addr-line>Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology, and Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America</addr-line>
</aff>
<aff id="aff3">
<label>3</label>
<addr-line>College of Computer Science and Technology, Jilin University, Changchun, Jilin, China</addr-line>
</aff>
<aff id="aff4">
<label>4</label>
<addr-line>The First Bethune Hospital of Jilin University, Changchun, Jilin, China</addr-line>
</aff>
<contrib-group>
<contrib contrib-type="editor">
<name>
<surname>Norris</surname>
<given-names>Philip J.</given-names>
</name>
<role>Editor</role>
<xref ref-type="aff" rid="edit1"></xref>
</contrib>
</contrib-group>
<aff id="edit1">Blood Systems Research Institute, United States of America</aff>
<author-notes>
<corresp id="cor1">* E-mail:
<email>xyn@bmb.uga.edu</email>
(YX);
<email>lifan@jlu.edu.cn</email>
(FL)</corresp>
<fn fn-type="con">
<p>Conceived and designed the experiments: CW GW. Performed the experiments: CW XC HH. Analyzed the data: XC BL. Contributed reagents/materials/analysis tools: XC CW GW BL. Wrote the paper: CW. Designed the study: FL YX.</p>
</fn>
</author-notes>
<pub-date pub-type="collection">
<year>2011</year>
</pub-date>
<pub-date pub-type="epub">
<day>14</day>
<month>10</month>
<year>2011</year>
</pub-date>
<volume>6</volume>
<issue>10</issue>
<elocation-id>e26296</elocation-id>
<history>
<date date-type="received">
<day>7</day>
<month>6</month>
<year>2011</year>
</date>
<date date-type="accepted">
<day>23</day>
<month>9</month>
<year>2011</year>
</date>
</history>
<permissions>
<copyright-statement>Wei et al.</copyright-statement>
<copyright-year>2011</copyright-year>
<license xlink:href="http://creativecommons.org/licenses/by/4.0/">
<license-p>This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.</license-p>
</license>
</permissions>
<abstract>
<p>Identification and typing of human enterovirus (HEVs) are important to pathogen detection and therapy. Previous phylogeny-based typing methods are mainly based on multiple sequence alignments of specific genes in the HEVs, but the results are not stable with respect to different choices of genes. Here we report a novel method for identification and typing of HEVs based on information derived from their whole genomes. Specifically, we calculate the k-
<italic>mer</italic>
based barcode image for each genome, HEV or other human viruses, for a fixed k, 1<italic>mer</italic>
frequency distribution across the whole genome for all combinations of k-
<italic>mers</italic>
. A phylogenetic tree is constructed using a barcode-based distance and a neighbor-joining method among a set of 443 representative non-HEV human viruses and 395 HEV sequences. The tree shows a clear separation of the HEV viruses from all the non-HEV viruses with 100% accuracy and a separation of the HEVs into four distinct clads with 93.4% consistency with a multiple sequence alignment-based phylogeny. Our detailed analyses of the HEVs having different typing results by the two methods indicate that our results are in better agreement with known information about the HEVs.</p>
</abstract>
<counts>
<page-count count="5"></page-count>
</counts>
</article-meta>
</front>
<body>
<sec id="s1">
<title>Introduction</title>
<p>Human enterovirus (HEVs) are a genus of (+)ssRNA viruses, and they are among the most common human viruses, causing a wide range of acute diseases, such as upper respiratory tract infection, febrile rash, encephalitis, acute flaccid paralysis
<xref rid="pone.0026296-Palacios1" ref-type="bibr">[1]</xref>
and severe chronic disorders
<xref rid="pone.0026296-Kearney1" ref-type="bibr">[2]</xref>
,
<xref rid="pone.0026296-Kim1" ref-type="bibr">[3]</xref>
,
<xref rid="pone.0026296-Hober1" ref-type="bibr">[4]</xref>
,
<xref rid="pone.0026296-Richer1" ref-type="bibr">[5]</xref>
. The prevalence and the clinical significance of HEVs are further manifested by multiple outbreaks of the hand, foot and mouth disease (HFMD) in Asia, mainly caused by enterovirus 71
<xref rid="pone.0026296-McMinn1" ref-type="bibr">[6]</xref>
,
<xref rid="pone.0026296-Cardosa1" ref-type="bibr">[7]</xref>
,
<xref rid="pone.0026296-Miyazawa1" ref-type="bibr">[8]</xref>
,
<xref rid="pone.0026296-Zhang1" ref-type="bibr">[9]</xref>
. As of now, over 100 serotypes of the HEV have been documented
<xref rid="pone.0026296-Oberste1" ref-type="bibr">[10]</xref>
,
<xref rid="pone.0026296-Oberste2" ref-type="bibr">[11]</xref>
,
<xref rid="pone.0026296-Norder1" ref-type="bibr">[12]</xref>
,
<xref rid="pone.0026296-FauquetCMMayo1" ref-type="bibr">[13]</xref>
, and only a handful of them can cause severe diseases
<xref rid="pone.0026296-Zhu1" ref-type="bibr">[14]</xref>
such as poliomyelitis by poliovirus
<xref rid="pone.0026296-Heinsbroek1" ref-type="bibr">[15]</xref>
. It is known that 83.5% of the HEV-related disease cases were caused by 15 serotypes
<xref rid="pone.0026296-Khetsuriani1" ref-type="bibr">[16]</xref>
. Therefore, classification of HEVs is important to designing novel diagnostic and treatment strategies.</p>
<p>A number of methods have been developed for classification (typing) of HEVs. The traditional method, based on biological properties of viruses such as antigenic differences
<xref rid="pone.0026296-Grandien1" ref-type="bibr">[17]</xref>
, subdivided HEVs into poliovirus (PV), coxsackievirus (CV) groups A and B, echovirus, and the ‘new’ serotypes designated as EV-68 through EV-71
<xref rid="pone.0026296-Stanway1" ref-type="bibr">[18]</xref>
,
<xref rid="pone.0026296-Nasri1" ref-type="bibr">[19]</xref>
,
<xref rid="pone.0026296-Brown1" ref-type="bibr">[20]</xref>
. This method is expensive and time consuming, and could not handle some of the recently discovered HEV types such as some coxsackieviruses due to the lack of specific antisera
<xref rid="pone.0026296-Kapsenberg1" ref-type="bibr">[21]</xref>
. Molecular techniques such as RT-PCR in conjunction with sequence alignment-based phylogeny reconstruction algorithms offer a sensitive and rapid alternative for the classification of HEVs. Based on a specific gene shared by the HEV genomes, this approach divides HEVs into four types: HEV-A through D
<xref rid="pone.0026296-Pallansch1" ref-type="bibr">[22]</xref>
. However, this approach is not stable when tested using a different set of HEV genes, giving rise to a classification result (VP1
<xref rid="pone.0026296-Kottaridi1" ref-type="bibr">[23]</xref>
,
<xref rid="pone.0026296-Oberste3" ref-type="bibr">[24]</xref>
,
<xref rid="pone.0026296-Oberste4" ref-type="bibr">[25]</xref>
, VP2
<xref rid="pone.0026296-Nasri2" ref-type="bibr">[26]</xref>
, VP3
<xref rid="pone.0026296-Stadnick1" ref-type="bibr">[27]</xref>
, VP4
<xref rid="pone.0026296-Ishiko1" ref-type="bibr">[28]</xref>
), inconsistent with the first classification result. Phylogeny reconstruction based on the whole HEV genomes will not work easily since these genomes are not well conserved in multiple aspects including the gene orders and different levels of conservation for different sets of orthologous genes. And many genetic fragment, emerging with metagenome sequencing technique development, can not be classified using this sequence alignment method.</p>
<p>We present a novel classification method based on information derived from the whole genome sequences of HEVs instead of specific genes. To the best of our knowledge, there has not been any published research on virus typing using information derived from the whole genome sequences. Instead of appending all the gene sequences from the HEVs and then building a phylogeny based on such artificial sequences, which could be highly sensitive to weighting factors for different genes, we use information more intrinsic to individual HEV genomes to construct the phylogeny. Specifically we have used a barcode representation to represent each HEV genome
<xref rid="pone.0026296-Zhou1" ref-type="bibr">[29]</xref>
. We have previously demonstrated that each organism has a unique barcode image; and more closely related genomes generally have more similar barcodes
<xref rid="pone.0026296-Zhou1" ref-type="bibr">[29]</xref>
. This provides the basis for our barcode-based phylogeny analysis.</p>
<p>The basic idea of the genomic barcode is to represent a genome using a two-dimensional array with the row representing the genome axis contracted by N fold, the column representing the axis of all k-
<italic>mers</italic>
for a fixed k (1<sup>th</sup>
k-
<italic>mer</italic>
within the window from base-pair j*N + 1 to base-pair (j+1)*N, with N being the window size (the default values of the barcode program
<xref rid="pone.0026296-Zhou1" ref-type="bibr">[29]</xref>
are k = 4 and N = 1,000 base-pairs (bps) but can be adjusted by the user). One very interesting property of any genomic barcode is that the frequency distribution for any k-
<italic>mer</italic>
(for a fixed 1<italic>mer</italic>
although more sophisticated ways can be used to capture more information of the targeted barcodes
<xref rid="pone.0026296-Zhou1" ref-type="bibr">[29]</xref>
.</p>
</sec>
<sec id="s2">
<title>Results and Discussion</title>
<sec id="s2a">
<title>Genomic barcodes of human viruses</title>
<p>We have calculated the barcodes for a total of 838 human ssRNA virus genomes of four families, namely HIV (279), Rabies virus (63), SARS coronavirus (101) and HEVs (395) using the barcode server at
<ext-link ext-link-type="uri" xlink:href="http://csbl1.bmb.uga.edu/Barcode/">http://csbl1.bmb.uga.edu/Barcode/</ext-link>
. We also calculated a barcode for dsDNA virus genome, Hepatitis B virus (993) as comparison.
<xref ref-type="fig" rid="pone-0026296-g001">Figure 1</xref>
shows the barcodes of one representative genome for each of the five virus families, where different heights for different barcodes reflect sizes of the joint sequence of the same kind of virus. We can see from the barcode images that different viruses have different barcode images. Furthermore, it should be noted that regardless whether a virus is DNA (Hepatitis B virus) or RNA virus (HIV, Rabies virus, SARS coronavirus, HEVs) its genome has this barcode property. It's worth noting that, if we change the parameter N and k, the frequency of different k-
<italic>mers</italic>
were consistent.</p>
<fig id="pone-0026296-g001" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0026296.g001</object-id>
<label>Figure 1</label>
<caption>
<title>Barcodes of five representative human viruses: (a) HIV, (b) Enterovirus, (c) Rabies virus, (d) SARS Coronavirus, and (e) Hepatitis B virus.</title>
<p>For each barcode, the x-axis is the list of all unique combinations of 4-mers arranged in the alphabetical order, the y-axis is same kind of virus joint genome axis contracted by 2,000 fold, and the gray level shows the frequency of each k-mer within a 2,000 bp window in the corresponding location.</p>
</caption>
<graphic xlink:href="pone.0026296.g001"></graphic>
</fig>
</sec>
<sec id="s2b">
<title>Typing of HEVs</title>
<p>We have studied the barcode similarities among the 838 virus genomes from four families measured in terms of two specific distances, for k = 4 (see
<xref ref-type="fig" rid="pone-0026296-g002">Figure 2</xref>
for definition and results).
<xref ref-type="fig" rid="pone-0026296-g002">Figure 2A</xref>
shows the scattering plot of all the 838 viruses in the two-dimensional space defined by the two distance measures. From the figure, we can see that the four families of viruses can be well separated (through non-linear functions) in this two dimensional space. In addition, we can also see the enterovirus have a relatively large variation measured by the current two features, compared to other families of viruses. The mechanism of HEVs having very great genetic diversity was not very clear yet. Some reports show that Polioviruses had greater genetic diversity duo to the frequent recombination
<xref rid="pone.0026296-SavolainenKopra1" ref-type="bibr">[30]</xref>
. Maybe these mechanism works in all HEVs.</p>
<fig id="pone-0026296-g002" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0026296.g002</object-id>
<label>Figure 2</label>
<caption>
<title>Identification and typing of HEVs.</title>
<p>The x-axis for each plot is the distance between the feature vector of each virus' barcode and the average feature vector of all the viruses we used (in A we used the average feature vector of four kinds of virus: HIV, HEV, SARS and rabies virus; in B we used the average feature vector of all subtypes of HEV), and the y-axis is the distance between the feature vector of each virus' barcode and a normalization vector with value  = 1/136 for each of its dimensions, where 136 is the total of number of unique k-
<italic>mers</italic>
(paired with its reverse complement
<xref rid="pone.0026296-Jun1" ref-type="bibr">[32]</xref>
). (A): the red dots represent HEVs (395 genomes), the blue ones for HIV (279 genomes), the magenta ones for SARS coronavirus (101 genomes), and the cyan ones for rabies virus genomes (63 genomes). (B): the blue dots represent poliovirus (78 genomes), the green ones for echovirus (52 genomes), the red ones for new virus strain enterovirus 68-71 (72 genomes), and the magenta ones for coxsackievirus A and B group genomes (85 genomes).</p>
</caption>
<graphic xlink:href="pone.0026296.g002"></graphic>
</fig>
<p>We subsequently applied a similar method to all the HEVs.
<xref ref-type="fig" rid="pone-0026296-g002">Figure 2B</xref>
shows the scattering plot of the four different types of HEVs, which are color-coded based on the classification results by a phylogenic analysis using a specific gene of the HEVs. Although there was a small overlap between echovirus and coxakievirus, most of the HEV stains can be correctly clustered with clear boundaries, which shows the typing accuracy of this barcode approach on HEVs</p>
</sec>
<sec id="s2c">
<title>Comparing HEV typing results based on barcodes
<italic>versus</italic>
specific genes</title>
<p>In order to analyze the accuracy of HEV typing results based on barcodes, we generate two phylogenetic trees for HEV.
<xref ref-type="fig" rid="pone-0026296-g003">Figure 3A</xref>
shows the phylogenetic tree we constructed based on the VP1 gene of HEVs using the MEGA Clustal-W alignment and neighbor joining clustering method
<xref rid="pone.0026296-Kumar1" ref-type="bibr">[31]</xref>
, which groups the HEVs into four clads, named HEV-A through D. We also did a reconstruction of a phylogeny based on the barcodes of all the HEV genomes, as shown in
<xref ref-type="fig" rid="pone-0026296-g003">Figure 3B</xref>
, which also gives rise to four large clads, named HEV1 through 4. Clearly the two trees are largely in agreement except for some CV-A strains, giving rise to a consistency level at 93.4%. The details of the differences are given in
<xref ref-type="table" rid="pone-0026296-t001">Table 1</xref>
. The difference between the two classification results is whether HEVs of serotype CVA1, 11, 13, 15, 18, 19, 20, 21, 22 or 24 should be grouped together with EV68, 70 and 94 or PV1, 2 and 3. The reason causing these differences between these two methods is that we can obtain some more information from a whole genome view. We have carried out extensive literature to find any previous reports that may suggest our classification method is reliable to have biological meaning. For instance, EV70 and CVA24 can both cause a highly contagious eye disease, acute hemorrhagic conjunctivitis
<xref rid="pone.0026296-Jun1" ref-type="bibr">[32]</xref>
,
<xref rid="pone.0026296-Xiao1" ref-type="bibr">[33]</xref>
,
<xref rid="pone.0026296-Chang1" ref-type="bibr">[34]</xref>
. The details of the differences are given in
<xref ref-type="table" rid="pone-0026296-t001">Table 1</xref>
. The difference between the two classification results is whether HEVs of serotype CVA1, 11, 13, 15, 18, 19, 20, 21, 22 or 24 should be grouped together with EV68, 70 and 94 or PV1, 2 and 3. The reason causing these differences between these two methods is that we can obtain some more information from a whole genome view. We have carried out extensive literature to find any previous reports that may suggest our classification method is reliable to have biological meaning. For instance, EV70 and CVA24 can both cause a highly contagious eye disease, acute hemorrhagic conjunctivitis
<xref rid="pone.0026296-Jun1" ref-type="bibr">[32]</xref>
,
<xref rid="pone.0026296-Xiao1" ref-type="bibr">[33]</xref>
,
<xref rid="pone.0026296-Chang1" ref-type="bibr">[34]</xref>
.</p>
<fig id="pone-0026296-g003" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0026296.g003</object-id>
<label>Figure 3</label>
<caption>
<title>Phylogenetic trees for the HEVs based on a specific HEV gene (A)
<italic>versus</italic>
the HEV barcodes (B).</title>
<p>The edge lengths in the trees reflect the genetic distance calculated according to the Kimura-parameter model. The VP1-based tree's reliability was estimated using 1,000 bootstrap replications. The serotype names beside the trees denote what the serotypes of the species having HEVs.</p>
</caption>
<graphic xlink:href="pone.0026296.g003"></graphic>
</fig>
<table-wrap id="pone-0026296-t001" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0026296.t001</object-id>
<label>Table 1</label>
<caption>
<title>Comparison of one gene-based and whole genome barcode-based phylogenetic trees (the numbers inside parentheses are the number of virus types for the corresponding serotype).</title>
</caption>
<alternatives>
<graphic id="pone-0026296-t001-1" xlink:href="pone.0026296.t001"></graphic>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
</colgroup>
<thead>
<tr>
<td align="left" rowspan="1" colspan="1">Num.</td>
<td colspan="4" align="left" rowspan="1">Typing results by two methods</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">Serotypes</td>
<td align="left" rowspan="1" colspan="1">Barcode based</td>
<td align="left" rowspan="1" colspan="1">One gene based</td>
<td align="left" rowspan="1" colspan="1">Comparison</td>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">1</td>
<td align="left" rowspan="1" colspan="1">EV71(82), CV-A2 to A7(1), CV-A10(1), CV-A12(1), CV-A14(1), CV-A16(3)</td>
<td align="left" rowspan="1" colspan="1">HEV-1</td>
<td align="left" rowspan="1" colspan="1">HEV-A</td>
<td align="left" rowspan="1" colspan="1">Exact match</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">2</td>
<td align="left" rowspan="1" colspan="1">CV-A9(1), CV-B1(1), CV-B2(3), CV-B3(15), CV-B4 to 6(3)E3(2), E4(3), E5(2), E6(3), E7(2), E9(4), E11(4), E12 to 16(1), E18 to 20(1), E24(1), E25(2), E26(1), E27(1), E29(1), E30(6), E30 to 33(1)EV69(1), EV74(1), EV75(1), EV77(1), EV79-87(1), EV97-98(2), EV100(2), EV101(1), EV107(2), EV109(1)</td>
<td align="left" rowspan="1" colspan="1">HEV-2</td>
<td align="left" rowspan="1" colspan="1">HEV-B</td>
<td align="left" rowspan="1" colspan="1">Exact match</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">3</td>
<td align="left" rowspan="1" colspan="1">PV-1(72), PV-2(32), PV-3(13)</td>
<td align="left" rowspan="1" colspan="1">HEV-3</td>
<td align="left" rowspan="1" colspan="1">HEV-C</td>
<td align="left" rowspan="1" colspan="1">Exact match</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">CV-A1(1),CV-A11(2),CV-A13(3), CV-A15(2), CV-A18(3), CV-A19(2), CV-A20(4), CV-A21(3), CV-A22(3), CV-A24(3)</td>
<td align="left" rowspan="1" colspan="1">HEV-4</td>
<td align="left" rowspan="1" colspan="1">HEV-C</td>
<td align="left" rowspan="1" colspan="1">
<bold>Different</bold>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">5</td>
<td align="left" rowspan="1" colspan="1">EV-68(2), 70(2), EV94(2)</td>
<td align="left" rowspan="1" colspan="1">HEV-4</td>
<td align="left" rowspan="1" colspan="1">HEV-D</td>
<td align="left" rowspan="1" colspan="1">Exact match</td>
</tr>
<tr>
<td colspan="5" align="left" rowspan="1">Match rate: 93.41%
<xref ref-type="table-fn" rid="nt101">*</xref>
</td>
</tr>
</tbody>
</table>
</alternatives>
<table-wrap-foot>
<fn id="nt101">
<label></label>
<p>*The match rate is calculated by the match sequence number/total sequence number.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<p>In a word, with the next generation high-throughput sequencing technique developing (Solexa, SOLiD, et al.), sequencing a bacterial and virus genome is not challenging work. In the future, how to take advantage of this available whole genomic sequence information will give us new vision to identify viruses. Otherwise, we could find more and more metagenomic sequences have been generated so far, most of them are fragments without any VP1 gene sequences, our barcode-based method has the metagenome binning property, which can be found in our previous paper
<xref rid="pone.0026296-Zhou1" ref-type="bibr">[29]</xref>
. We hope this genome featured method could be wildly used as more and more whole genomic sequences have been generated.</p>
</sec>
<sec id="s2d">
<title>Concluding remark</title>
<p>Due to various factors such as the high diversity and the plasticity of the RNA genomes, accurate typing of HEVs remains a challenging task. The purpose of this work is to provide a new genome typing method,which allows utilizing information derived from whole genome sequences instead of specific genes. Since this method does not rely on detailed sequence information, it avoids the issue in finding the “correct” set of orthologous genes for phylogenetic analysis, which is particularly useful for virus genomes as they generally do not have signature genes like 16S rRNA gene for genomes of living organisms, making such whole-genome based phylogeny analysis particularly useful for viruses.</p>
<p>Through our study, we demonstrated that this new method is at least as good as the widely used specific gene-based phylogeny reconstruction even when using more sophisticated phylogeny reconstruction algorithms.</p>
</sec>
</sec>
<sec sec-type="materials|methods" id="s3">
<title>Materials and Methods</title>
<sec id="s3a">
<title>Virus sequence data</title>
<p>Five classes of viruses' complete genomes, HIV, human enterovirus, Rabies virus, SARS coronavirus and Hepatitis B virus are retrieved from (
<ext-link ext-link-type="uri" xlink:href="http://www.ncbi.nlm.nih.gov/nucleotide/">http://www.ncbi.nlm.nih.gov/nucleotide/</ext-link>
) using Bioperl. The information of these five classes of viruses is given in
<xref ref-type="table" rid="pone-0026296-t002">Table 2</xref>
.</p>
<table-wrap id="pone-0026296-t002" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0026296.t002</object-id>
<label>Table 2</label>
<caption>
<title>Information of five classes of viruses' complete genome sequences.</title>
</caption>
<alternatives>
<graphic id="pone-0026296-t002-2" xlink:href="pone.0026296.t002"></graphic>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
</colgroup>
<thead>
<tr>
<td align="left" rowspan="1" colspan="1">Virus</td>
<td align="left" rowspan="1" colspan="1">Genome Length</td>
<td align="left" rowspan="1" colspan="1">Genome Number</td>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">HIV</td>
<td align="left" rowspan="1" colspan="1">∼9,006</td>
<td align="left" rowspan="1" colspan="1">279</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">HEVs</td>
<td align="left" rowspan="1" colspan="1">∼7,200</td>
<td align="left" rowspan="1" colspan="1">395</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Rabies virus</td>
<td align="left" rowspan="1" colspan="1">∼11,900</td>
<td align="left" rowspan="1" colspan="1">63</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">SARS Coronavirus</td>
<td align="left" rowspan="1" colspan="1">∼29,700</td>
<td align="left" rowspan="1" colspan="1">101</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Hepatitis B virus</td>
<td align="left" rowspan="1" colspan="1">∼3,200</td>
<td align="left" rowspan="1" colspan="1">993</td>
</tr>
</tbody>
</table>
</alternatives>
</table-wrap>
</sec>
<sec id="s3b">
<title>Calculation of genomic barcode distance</title>
<p>We calculated the barcode using the genomic barcode server at
<ext-link ext-link-type="uri" xlink:href="http://csbl1.bmb.uga.edu/Barcode/nsertion.php">http://csbl1.bmb.uga.edu/Barcode/nsertion.php</ext-link>
. For each kind of virus, we firstly made the same kind viruses genomes head to tail into a long sequence, then partitioned it into non-overlapping fragments of M = 2,000bps long and calculated 4-
<italic>mer</italic>
based barcode for each genome. Specifically, the barcode for each genome is a matrix of K = 136 columns and genome_length/M rows, with the
<italic>i
<sup>th</sup>
</italic>
value being the combined frequency of the
<italic>i
<sup>th</sup>
</italic>
4-
<italic>mer</italic>
and its reverse complement in this fragment. Actually, we obtained the HEVs' complementary strand by base pairing and calculated k-
<italic>mer</italic>
reverse complement frequency. We had proved that combines of a k-
<italic>mer</italic>
and its reverse complement are more reliable and accurate in classifying organisms in our previous work
<xref rid="pone.0026296-Zhou1" ref-type="bibr">[29]</xref>
. Then, we mapped the k-
<italic>mer</italic>
frequencies to grey levels so we can generate a barcode image for a whole genome (as well as for each segment of the genome), darker grey levels are for lower frequencies. The distance between two barcodes is calculated as the Euclidean distance between the corresponding 136-dimensional vectors. For two such matrices M1 and M2 with K columns and L rows, we defined their barcode distance as
<inline-formula>
<inline-graphic xlink:href="pone.0026296.e001.jpg" mimetype="image"></inline-graphic>
</inline-formula>
. For details, we refer the reader to
<xref rid="pone.0026296-Zhou1" ref-type="bibr">[29]</xref>
.</p>
</sec>
<sec id="s3c">
<title>Phylogenetic trees building using barcode distance and Clustal W alignment</title>
<p>We calculated the barcode distance between two HEV genomes using the above barcode distance. Then we entered the pair-wise distance among all the genomes under consideration into the MEGA meg file to build the phylogenetic tree using neighbor-joining method in MEGA 4 software.</p>
</sec>
</sec>
</body>
<back>
<fn-group>
<fn fn-type="COI-statement">
<p>
<bold>Competing Interests: </bold>
The authors have declared that no competing interests exist.</p>
</fn>
<fn fn-type="financial-disclosure">
<p>
<bold>Funding: </bold>
This work was supported by National Basic Research Program of China (973 program, 2011CB512003) and National Natural Science Foundation of China (30872415). It is also supported in part by National Natural Science Foundation of China (81071424 and 81101295 ), China Postdoctoral Science Foundation (20110491311) and National Science Foundation (DEB-0830024). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.</p>
</fn>
</fn-group>
<ref-list>
<title>References</title>
<ref id="pone.0026296-Palacios1">
<label>1</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Palacios</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Oberste</surname>
<given-names>MS</given-names>
</name>
</person-group>
<year>2005</year>
<article-title>Enteroviruses as agents of emerging infectious diseases.</article-title>
<source>J Neurovirol</source>
<volume>11</volume>
<fpage>424</fpage>
<lpage>433</lpage>
<pub-id pub-id-type="pmid">16287683</pub-id>
</element-citation>
</ref>
<ref id="pone.0026296-Kearney1">
<label>2</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kearney</surname>
<given-names>MT</given-names>
</name>
<name>
<surname>Cotton</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Richardson</surname>
<given-names>PJ</given-names>
</name>
<name>
<surname>Shah</surname>
<given-names>AM</given-names>
</name>
</person-group>
<year>2001</year>
<article-title>Viral myocarditis and dilated cardiomyopathy: mechanisms, manifestations, and management.</article-title>
<source>Postgrad Med J</source>
<volume>77</volume>
<fpage>4</fpage>
<lpage>10</lpage>
<pub-id pub-id-type="pmid">11123385</pub-id>
</element-citation>
</ref>
<ref id="pone.0026296-Kim1">
<label>3</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>KS</given-names>
</name>
<name>
<surname>Hufnagel</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Chapman</surname>
<given-names>NM</given-names>
</name>
<name>
<surname>Tracy</surname>
<given-names>S</given-names>
</name>
</person-group>
<year>2001</year>
<article-title>The group B coxsackieviruses and myocarditis.</article-title>
<source>Rev Med Virol</source>
<volume>11</volume>
<fpage>355</fpage>
<lpage>368</lpage>
<pub-id pub-id-type="pmid">11746998</pub-id>
</element-citation>
</ref>
<ref id="pone.0026296-Hober1">
<label>4</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hober</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Sauter</surname>
<given-names>P</given-names>
</name>
</person-group>
<year>2010</year>
<article-title>Pathogenesis of type 1 diabetes mellitus: interplay between enterovirus and host.</article-title>
<source>Nat Rev Endocrinol</source>
<volume>6</volume>
<fpage>279</fpage>
<lpage>289</lpage>
<pub-id pub-id-type="pmid">20351698</pub-id>
</element-citation>
</ref>
<ref id="pone.0026296-Richer1">
<label>5</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Richer</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Horwitz</surname>
<given-names>MS</given-names>
</name>
</person-group>
<year>2009</year>
<article-title>Coxsackievirus infection as an environmental factor in the etiology of type 1 diabetes.</article-title>
<source>Autoimmun Rev</source>
<volume>8</volume>
<fpage>611</fpage>
<lpage>615</lpage>
<pub-id pub-id-type="pmid">19393207</pub-id>
</element-citation>
</ref>
<ref id="pone.0026296-McMinn1">
<label>6</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>McMinn</surname>
<given-names>PC</given-names>
</name>
</person-group>
<year>2002</year>
<article-title>An overview of the evolution of enterovirus 71 and its clinical and public health significance.</article-title>
<source>FEMS Microbiol Rev</source>
<volume>26</volume>
<fpage>91</fpage>
<lpage>107</lpage>
<pub-id pub-id-type="pmid">12007645</pub-id>
</element-citation>
</ref>
<ref id="pone.0026296-Cardosa1">
<label>7</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cardosa</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Perera</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>BA</given-names>
</name>
<name>
<surname>Cheon</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Chan</surname>
<given-names>HM</given-names>
</name>
<etal></etal>
</person-group>
<year>2003</year>
<article-title>Molecular epidemiology of human enterovirus 71 strains and recent outbreaks in the Asia-Pacific region: comparative analysis of the VP1 and VP4 genes.</article-title>
<source>Emerg Infect Dis</source>
<volume>9</volume>
<fpage>461</fpage>
<lpage>468</lpage>
<pub-id pub-id-type="pmid">12702227</pub-id>
</element-citation>
</ref>
<ref id="pone.0026296-Miyazawa1">
<label>8</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Miyazawa</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Azegami</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Kasuo</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Yoshida</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Kobayashi</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<year>2008</year>
<article-title>Prevalence of enterovirus from patients with herpangina and hand, foot and mouth disease in Nagano Prefecture, Japan, 2007.</article-title>
<source>Jpn J Infect Dis</source>
<volume>61</volume>
<fpage>247</fpage>
<lpage>248</lpage>
<pub-id pub-id-type="pmid">18503184</pub-id>
</element-citation>
</ref>
<ref id="pone.0026296-Zhang1">
<label>9</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Tan</surname>
<given-names>XJ</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>HY</given-names>
</name>
<name>
<surname>Yan</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>SL</given-names>
</name>
<etal></etal>
</person-group>
<year>2009</year>
<article-title>An outbreak of hand, foot, and mouth disease associated with subgenotype C4 of human enterovirus 71 in Shandong, China.</article-title>
<source>J Clin Virol</source>
<volume>44</volume>
<fpage>262</fpage>
<lpage>267</lpage>
<pub-id pub-id-type="pmid">19269888</pub-id>
</element-citation>
</ref>
<ref id="pone.0026296-Oberste1">
<label>10</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Oberste</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Michele</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Maher</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Schnurr</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Cisterna</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<year>2004</year>
<article-title>Molecular identification and characterization of two proposed new enterovirus serotypes, EV74 and EV75.</article-title>
<source>J Gen Virol</source>
<volume>85</volume>
<fpage>3205</fpage>
<lpage>3212</lpage>
<pub-id pub-id-type="pmid">15483233</pub-id>
</element-citation>
</ref>
<ref id="pone.0026296-Oberste2">
<label>11</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Oberste</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Maher</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Michele</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Belliot</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Uddin</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<year>2005</year>
<article-title>Enteroviruses 76, 89, 90 and 91 represent a novel group within the species Human enterovirus A.</article-title>
<source>J Gen Virol</source>
<volume>86</volume>
<fpage>445</fpage>
<lpage>451</lpage>
<pub-id pub-id-type="pmid">15659764</pub-id>
</element-citation>
</ref>
<ref id="pone.0026296-Norder1">
<label>12</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Norder</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Bjerregaard</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Magnius</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Lina</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Aymard</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<year>2003</year>
<article-title>Sequencing of 'untypable' enteroviruses reveals two new types, EV-77 and EV-78, within human enterovirus type B and substitutions in the BC loop of the VP1 protein for known types.</article-title>
<source>J Gen Virol</source>
<volume>84</volume>
<fpage>827</fpage>
<lpage>836</lpage>
<pub-id pub-id-type="pmid">12655083</pub-id>
</element-citation>
</ref>
<ref id="pone.0026296-FauquetCMMayo1">
<label>13</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Fauquet CM Mayo</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Maniloff</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Desselberger</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Ball</surname>
<given-names>LA</given-names>
</name>
</person-group>
<year>2005</year>
<article-title>Virus taxonomy classification and nomenclature of viruses.</article-title>
<source>International Committee on Taxonomy of Viruses IUoMS, Virology Division., editor. eighth report of the International Committee on the Taxonomy of Viruses</source>
<publisher-loc>San Diego</publisher-loc>
<publisher-name>Elsevier Academic Press</publisher-name>
</element-citation>
</ref>
<ref id="pone.0026296-Zhu1">
<label>14</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhu</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<year>2010</year>
<article-title>Retrospective seroepidemiology indicated that human enterovirus 71 and coxsackievirus A16 circulated wildly in central and southern China before large-scale outbreaks from 2008.</article-title>
<source>Virol J</source>
<volume>7</volume>
<fpage>300</fpage>
<pub-id pub-id-type="pmid">21050463</pub-id>
</element-citation>
</ref>
<ref id="pone.0026296-Heinsbroek1">
<label>15</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Heinsbroek</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Ruitenberg</surname>
<given-names>EJ</given-names>
</name>
</person-group>
<year>2010</year>
<article-title>The global introduction of inactivated polio vaccine can circumvent the oral polio vaccine paradox.</article-title>
<source>Vaccine</source>
<volume>28</volume>
<fpage>3778</fpage>
<lpage>3783</lpage>
<pub-id pub-id-type="pmid">20362626</pub-id>
</element-citation>
</ref>
<ref id="pone.0026296-Khetsuriani1">
<label>16</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Khetsuriani</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Lamonte-Fowlkes</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Oberst</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Pallansch</surname>
<given-names>MA</given-names>
</name>
</person-group>
<year>2006</year>
<article-title>Enterovirus surveillance—United States, 1970-2005.</article-title>
<source>MMWR Surveill Summ</source>
<volume>55</volume>
<fpage>1</fpage>
<lpage>20</lpage>
</element-citation>
</ref>
<ref id="pone.0026296-Grandien1">
<label>17</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Grandien</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Forsgren</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ehrnst</surname>
<given-names>A</given-names>
</name>
</person-group>
<year>1989</year>
<article-title>Enteroviruses and reoviruses.</article-title>
<person-group person-group-type="editor">
<name>
<surname>Emmons</surname>
<given-names>NJ</given-names>
</name>
<name>
<surname>Sa</surname>
<given-names>RW</given-names>
</name>
</person-group>
<source>Diagnosticprocedures for viral, rickettsial and chlamydial infections</source>
<publisher-loc>Washington, DC</publisher-loc>
<publisher-name>American Public Health Association</publisher-name>
<fpage>513</fpage>
<lpage>569</lpage>
</element-citation>
</ref>
<ref id="pone.0026296-Stanway1">
<label>18</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Stanway</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Christian</surname>
<given-names>P</given-names>
</name>
</person-group>
<year>2005</year>
<article-title>Picornaviridae.</article-title>
<person-group person-group-type="editor">
<name>
<surname>Fauquet</surname>
<given-names>CM MM</given-names>
</name>
<name>
<surname>Maniloff</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Desselberger</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Ball</surname>
<given-names>LA</given-names>
</name>
</person-group>
<source>Virus taxonomy classification and nomenclature of viruses 8th report of the International Committee on the Taxonomy of Viruses</source>
<publisher-loc>Amsterdam</publisher-loc>
<publisher-name>Elsevier Academic Press</publisher-name>
<fpage>757</fpage>
<lpage>778</lpage>
</element-citation>
</ref>
<ref id="pone.0026296-Nasri1">
<label>19</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nasri</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Bouslama</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Pillet</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Bourlet</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Aouni</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<year>2007</year>
<article-title>Basic rationale, current methods and future directions for molecular typing of human enterovirus.</article-title>
<source>Expert Rev Mol Diagn</source>
<volume>7</volume>
<fpage>419</fpage>
<lpage>434</lpage>
<pub-id pub-id-type="pmid">17620049</pub-id>
</element-citation>
</ref>
<ref id="pone.0026296-Brown1">
<label>20</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brown</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Oberste</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Maher</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Pallansch</surname>
<given-names>MA</given-names>
</name>
</person-group>
<year>2003</year>
<article-title>Complete genomic sequencing shows that polioviruses and members of human enterovirus species C are closely related in the noncapsid coding region.</article-title>
<source>J Virol</source>
<volume>77</volume>
<fpage>8973</fpage>
<lpage>8984</lpage>
<pub-id pub-id-type="pmid">12885914</pub-id>
</element-citation>
</ref>
<ref id="pone.0026296-Kapsenberg1">
<label>21</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Kapsenberg</surname>
<given-names>JG</given-names>
</name>
</person-group>
<year>1988</year>
<article-title>Picornaviridae: the enteroviruses (polioviruses, coxsackieviruses,echoviruses).</article-title>
<person-group person-group-type="editor">
<name>
<surname>Balows</surname>
<given-names>AHW</given-names>
</name>
<name>
<surname>Lennette</surname>
<given-names>EH</given-names>
</name>
</person-group>
<source>Laboratory diagnosis ofinfectious diseases Principles and Practice</source>
<publisher-loc>NY, USA</publisher-loc>
<publisher-name>Springer-Verlag</publisher-name>
<fpage>692</fpage>
<lpage>722</lpage>
</element-citation>
</ref>
<ref id="pone.0026296-Pallansch1">
<label>22</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Pallansch</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Roos</surname>
<given-names>R</given-names>
</name>
</person-group>
<year>2007</year>
<article-title>Enteroviruses: polioviruses, coxsackieviruses, echoviruses, and newer enteroviruses.</article-title>
<person-group person-group-type="editor">
<name>
<surname>Knipe PMH</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Griffin</surname>
<given-names>DE</given-names>
</name>
<name>
<surname>Lamb</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Roizman</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Straus</surname>
<given-names>SE</given-names>
</name>
</person-group>
<source>Fields virology</source>
<publisher-loc>Philadelphia</publisher-loc>
<publisher-name>Lippincott Williams & Wilkins</publisher-name>
<fpage>839</fpage>
<lpage>894</lpage>
</element-citation>
</ref>
<ref id="pone.0026296-Kottaridi1">
<label>23</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kottaridi</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Bolanaki</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Mamuris</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Stathopoulos</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Markoulatos</surname>
<given-names>P</given-names>
</name>
</person-group>
<year>2006</year>
<article-title>Molecular phylogeny of VP1, 2A, and 2B genes of echovirus isolates: epidemiological linkage and observations on genetic variation.</article-title>
<source>Arch Virol</source>
<volume>151</volume>
<fpage>1117</fpage>
<lpage>1132</lpage>
<pub-id pub-id-type="pmid">16437188</pub-id>
</element-citation>
</ref>
<ref id="pone.0026296-Oberste3">
<label>24</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Oberste</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Penaranda</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Rogers</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Henderson</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Nix</surname>
<given-names>WA</given-names>
</name>
</person-group>
<year>2010</year>
<article-title>Comparative evaluation of Taqman real-time PCR and semi-nested VP1 PCR for detection of enteroviruses in clinical specimens.</article-title>
<source>J Clin Virol</source>
<volume>49</volume>
<fpage>73</fpage>
<lpage>74</lpage>
<pub-id pub-id-type="pmid">20667767</pub-id>
</element-citation>
</ref>
<ref id="pone.0026296-Oberste4">
<label>25</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Oberste</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Maher</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Kilpatrick</surname>
<given-names>DR</given-names>
</name>
<name>
<surname>Pallansch</surname>
<given-names>MA</given-names>
</name>
</person-group>
<year>1999</year>
<article-title>Molecular evolution of the human enteroviruses: correlation of serotype with VP1 sequence and application to picornavirus classification.</article-title>
<source>J Virol</source>
<volume>73</volume>
<fpage>1941</fpage>
<lpage>1948</lpage>
<pub-id pub-id-type="pmid">9971773</pub-id>
</element-citation>
</ref>
<ref id="pone.0026296-Nasri2">
<label>26</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nasri</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Bouslama</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Omar</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Saoudin</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Bourlet</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
<year>2007</year>
<article-title>Typing of human enterovirus by partial sequencing of VP2.</article-title>
<source>J Clin Microbiol</source>
<volume>45</volume>
<fpage>2370</fpage>
<lpage>2379</lpage>
<pub-id pub-id-type="pmid">17537940</pub-id>
</element-citation>
</ref>
<ref id="pone.0026296-Stadnick1">
<label>27</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stadnick</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Dan</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Sadeghi</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Chantler</surname>
<given-names>JK</given-names>
</name>
</person-group>
<year>2004</year>
<article-title>Attenuating mutations in coxsackievirus B3 map to a conformational epitope that comprises the puff region of VP2 and the knob of VP3.</article-title>
<source>J Virol</source>
<volume>78</volume>
<fpage>13987</fpage>
<lpage>14002</lpage>
<pub-id pub-id-type="pmid">15564506</pub-id>
</element-citation>
</ref>
<ref id="pone.0026296-Ishiko1">
<label>28</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ishiko</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Shimada</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Yonaha</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Hashimoto</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Hayashi</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<year>2002</year>
<article-title>Molecular diagnosis of human enteroviruses by phylogeny-based classification by use of the VP4 sequence.</article-title>
<source>J Infect Dis</source>
<volume>185</volume>
<fpage>744</fpage>
<lpage>754</lpage>
<pub-id pub-id-type="pmid">11920292</pub-id>
</element-citation>
</ref>
<ref id="pone.0026296-Zhou1">
<label>29</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhou</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Olman</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>Y</given-names>
</name>
</person-group>
<year>2008</year>
<article-title>Barcodes for genomes and applications.</article-title>
<source>BMC Bioinformatics</source>
<volume>9</volume>
<fpage>546</fpage>
<pub-id pub-id-type="pmid">19091119</pub-id>
</element-citation>
</ref>
<ref id="pone.0026296-SavolainenKopra1">
<label>30</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Savolainen-Kopra</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Blomqvist</surname>
<given-names>S</given-names>
</name>
</person-group>
<year>2010</year>
<article-title>Mechanisms of genetic variation in polioviruses.</article-title>
<source>Rev Med Virol</source>
<volume>20</volume>
<fpage>358</fpage>
<lpage>371</lpage>
<pub-id pub-id-type="pmid">20949639</pub-id>
</element-citation>
</ref>
<ref id="pone.0026296-Kumar1">
<label>31</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kumar</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Nei</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Dudley</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Tamura</surname>
<given-names>K</given-names>
</name>
</person-group>
<year>2008</year>
<article-title>MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences.</article-title>
<source>Brief Bioinform</source>
<volume>9</volume>
<fpage>299</fpage>
<lpage>306</lpage>
<pub-id pub-id-type="pmid">18417537</pub-id>
</element-citation>
</ref>
<ref id="pone.0026296-Jun1">
<label>32</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jun</surname>
<given-names>EJ</given-names>
</name>
<name>
<surname>Won</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Ahn</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Ko</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Moon</surname>
<given-names>H</given-names>
</name>
<etal></etal>
</person-group>
<year>2010</year>
<article-title>An antiviral small-interfering RNA simultaneously effective against the most prevalent enteroviruses causing acute hemorrhagic conjunctivitis.</article-title>
<source>Invest Ophthalmol Vis Sci</source>
<volume>52</volume>
<fpage>58</fpage>
<lpage>63</lpage>
</element-citation>
</ref>
<ref id="pone.0026296-Xiao1">
<label>33</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xiao</surname>
<given-names>XL</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>YJ</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>HF</given-names>
</name>
<name>
<surname>He</surname>
<given-names>YQ</given-names>
</name>
<etal></etal>
</person-group>
<year>2009</year>
<article-title>Simultaneous detection of enterovirus 70 and coxsackievirus A24 variant by multiplex real-time RT-PCR using an internal control.</article-title>
<source>J Virol Methods</source>
<volume>159</volume>
<fpage>23</fpage>
<lpage>28</lpage>
<pub-id pub-id-type="pmid">19442840</pub-id>
</element-citation>
</ref>
<ref id="pone.0026296-Chang1">
<label>34</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chang</surname>
<given-names>CH</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>KH</given-names>
</name>
<name>
<surname>Sheu</surname>
<given-names>MM</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>WL</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>HZ</given-names>
</name>
<etal></etal>
</person-group>
<year>2003</year>
<article-title>The change of etiological agents and clinical signs of epidemic viral conjunctivitis over an 18-year period in southern Taiwan.</article-title>
<source>Graefes Arch Clin Exp Ophthalmol</source>
<volume>241</volume>
<fpage>554</fpage>
<lpage>560</lpage>
<pub-id pub-id-type="pmid">12768288</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
</pmc></record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001064 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 001064 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:3194813
   |texte=   Identification and Typing of Human Enterovirus: A Genomic Barcode Approach
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:22022592" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021