Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Middle East respiratory syndrome coronavirus specific antibodies in naturally exposed Israeli llamas, alpacas and camels

Identifieur interne : 000F74 ( Pmc/Corpus ); précédent : 000F73; suivant : 000F75

Middle East respiratory syndrome coronavirus specific antibodies in naturally exposed Israeli llamas, alpacas and camels

Auteurs : Dan David ; Ditza Rotenberg ; Evgeny Khinich ; Oran Erster ; Svetlana Bardenstein ; Michael Van Straten ; Nisreen M. A. Okba ; Stalin V. Raj ; Bart L. Haagmans ; Marcelo Miculitzki ; Irit Davidson

Source :

RBID : PMC:6000904

Abstract

Thus far, no human MERS-CoV infections have been reported from Israel. Evidence for the circulation of MERS-CoV in dromedaries has been reported from almost all the countries of the Middle East, except Israel. Therefore, we aimed to analyze MERS-CoV infection in Israeli camelids, sampled between 2012 and 2017. A total of 411 camels, 102 alpacas and 19 llamas' sera were tested for the presence of antibodies to MERS-CoV. Our findings indicate a lower MERS-CoV seropositivity among Israeli dromedaries than in the surrounding countries, and for the first time naturally infected llamas were identified. In addition, nasal swabs of 661 camels, alpacas and lamas, obtained from January 2015 to December 2017, were tested for the presence of MERS-CoV RNA. All nasal swabs were negative, indicating no evidence for MERS-CoV active circulation in these camelids during that time period.


Url:
DOI: 10.1016/j.onehlt.2018.05.002
PubMed: 29911167
PubMed Central: 6000904

Links to Exploration step

PMC:6000904

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Middle East respiratory syndrome coronavirus specific antibodies in naturally exposed Israeli llamas, alpacas and camels</title>
<author>
<name sortKey="David, Dan" sort="David, Dan" uniqKey="David D" first="Dan" last="David">Dan David</name>
<affiliation>
<nlm:aff id="af0005">Kimron Veterinary Institute, Bet Dagan, Israel</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Rotenberg, Ditza" sort="Rotenberg, Ditza" uniqKey="Rotenberg D" first="Ditza" last="Rotenberg">Ditza Rotenberg</name>
<affiliation>
<nlm:aff id="af0005">Kimron Veterinary Institute, Bet Dagan, Israel</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Khinich, Evgeny" sort="Khinich, Evgeny" uniqKey="Khinich E" first="Evgeny" last="Khinich">Evgeny Khinich</name>
<affiliation>
<nlm:aff id="af0005">Kimron Veterinary Institute, Bet Dagan, Israel</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Erster, Oran" sort="Erster, Oran" uniqKey="Erster O" first="Oran" last="Erster">Oran Erster</name>
<affiliation>
<nlm:aff id="af0005">Kimron Veterinary Institute, Bet Dagan, Israel</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bardenstein, Svetlana" sort="Bardenstein, Svetlana" uniqKey="Bardenstein S" first="Svetlana" last="Bardenstein">Svetlana Bardenstein</name>
<affiliation>
<nlm:aff id="af0005">Kimron Veterinary Institute, Bet Dagan, Israel</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Van Straten, Michael" sort="Van Straten, Michael" uniqKey="Van Straten M" first="Michael" last="Van Straten">Michael Van Straten</name>
<affiliation>
<nlm:aff id="af0010">Hachaklait, Veterinary Services, Caesarea, Israel</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Okba, Nisreen M A" sort="Okba, Nisreen M A" uniqKey="Okba N" first="Nisreen M. A." last="Okba">Nisreen M. A. Okba</name>
<affiliation>
<nlm:aff id="af0015">Department of Viroscience, Erasmus Medical Centre, Rotterdam, The Netherlands</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Raj, Stalin V" sort="Raj, Stalin V" uniqKey="Raj S" first="Stalin V." last="Raj">Stalin V. Raj</name>
<affiliation>
<nlm:aff id="af0015">Department of Viroscience, Erasmus Medical Centre, Rotterdam, The Netherlands</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Haagmans, Bart L" sort="Haagmans, Bart L" uniqKey="Haagmans B" first="Bart L." last="Haagmans">Bart L. Haagmans</name>
<affiliation>
<nlm:aff id="af0015">Department of Viroscience, Erasmus Medical Centre, Rotterdam, The Netherlands</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Miculitzki, Marcelo" sort="Miculitzki, Marcelo" uniqKey="Miculitzki M" first="Marcelo" last="Miculitzki">Marcelo Miculitzki</name>
<affiliation>
<nlm:aff id="af0020">Beer Sheva District Director of Veterinary Services, Israel</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Davidson, Irit" sort="Davidson, Irit" uniqKey="Davidson I" first="Irit" last="Davidson">Irit Davidson</name>
<affiliation>
<nlm:aff id="af0005">Kimron Veterinary Institute, Bet Dagan, Israel</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">29911167</idno>
<idno type="pmc">6000904</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6000904</idno>
<idno type="RBID">PMC:6000904</idno>
<idno type="doi">10.1016/j.onehlt.2018.05.002</idno>
<date when="2018">2018</date>
<idno type="wicri:Area/Pmc/Corpus">000F74</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000F74</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Middle East respiratory syndrome coronavirus specific antibodies in naturally exposed Israeli llamas, alpacas and camels</title>
<author>
<name sortKey="David, Dan" sort="David, Dan" uniqKey="David D" first="Dan" last="David">Dan David</name>
<affiliation>
<nlm:aff id="af0005">Kimron Veterinary Institute, Bet Dagan, Israel</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Rotenberg, Ditza" sort="Rotenberg, Ditza" uniqKey="Rotenberg D" first="Ditza" last="Rotenberg">Ditza Rotenberg</name>
<affiliation>
<nlm:aff id="af0005">Kimron Veterinary Institute, Bet Dagan, Israel</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Khinich, Evgeny" sort="Khinich, Evgeny" uniqKey="Khinich E" first="Evgeny" last="Khinich">Evgeny Khinich</name>
<affiliation>
<nlm:aff id="af0005">Kimron Veterinary Institute, Bet Dagan, Israel</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Erster, Oran" sort="Erster, Oran" uniqKey="Erster O" first="Oran" last="Erster">Oran Erster</name>
<affiliation>
<nlm:aff id="af0005">Kimron Veterinary Institute, Bet Dagan, Israel</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bardenstein, Svetlana" sort="Bardenstein, Svetlana" uniqKey="Bardenstein S" first="Svetlana" last="Bardenstein">Svetlana Bardenstein</name>
<affiliation>
<nlm:aff id="af0005">Kimron Veterinary Institute, Bet Dagan, Israel</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Van Straten, Michael" sort="Van Straten, Michael" uniqKey="Van Straten M" first="Michael" last="Van Straten">Michael Van Straten</name>
<affiliation>
<nlm:aff id="af0010">Hachaklait, Veterinary Services, Caesarea, Israel</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Okba, Nisreen M A" sort="Okba, Nisreen M A" uniqKey="Okba N" first="Nisreen M. A." last="Okba">Nisreen M. A. Okba</name>
<affiliation>
<nlm:aff id="af0015">Department of Viroscience, Erasmus Medical Centre, Rotterdam, The Netherlands</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Raj, Stalin V" sort="Raj, Stalin V" uniqKey="Raj S" first="Stalin V." last="Raj">Stalin V. Raj</name>
<affiliation>
<nlm:aff id="af0015">Department of Viroscience, Erasmus Medical Centre, Rotterdam, The Netherlands</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Haagmans, Bart L" sort="Haagmans, Bart L" uniqKey="Haagmans B" first="Bart L." last="Haagmans">Bart L. Haagmans</name>
<affiliation>
<nlm:aff id="af0015">Department of Viroscience, Erasmus Medical Centre, Rotterdam, The Netherlands</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Miculitzki, Marcelo" sort="Miculitzki, Marcelo" uniqKey="Miculitzki M" first="Marcelo" last="Miculitzki">Marcelo Miculitzki</name>
<affiliation>
<nlm:aff id="af0020">Beer Sheva District Director of Veterinary Services, Israel</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Davidson, Irit" sort="Davidson, Irit" uniqKey="Davidson I" first="Irit" last="Davidson">Irit Davidson</name>
<affiliation>
<nlm:aff id="af0005">Kimron Veterinary Institute, Bet Dagan, Israel</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">One Health</title>
<idno type="eISSN">2352-7714</idno>
<imprint>
<date when="2018">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Thus far, no human MERS-CoV infections have been reported from Israel. Evidence for the circulation of MERS-CoV in dromedaries has been reported from almost all the countries of the Middle East, except Israel. Therefore, we aimed to analyze MERS-CoV infection in Israeli camelids, sampled between 2012 and 2017. A total of 411 camels, 102 alpacas and 19 llamas' sera were tested for the presence of antibodies to MERS-CoV. Our findings indicate a lower MERS-CoV seropositivity among Israeli dromedaries than in the surrounding countries, and for the first time naturally infected llamas were identified. In addition, nasal swabs of 661 camels, alpacas and lamas, obtained from January 2015 to December 2017, were tested for the presence of MERS-CoV RNA. All nasal swabs were negative, indicating no evidence for MERS-CoV active circulation in these camelids during that time period.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Zaki, A M" uniqKey="Zaki A">A.M. Zaki</name>
</author>
<author>
<name sortKey="Van Boheemen, S" uniqKey="Van Boheemen S">S. van Boheemen</name>
</author>
<author>
<name sortKey="Bestebroer, T M" uniqKey="Bestebroer T">T.M. Bestebroer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ormani, A S" uniqKey="Ormani A">A.S. Ormani</name>
</author>
<author>
<name sortKey="Al Tawfik, J" uniqKey="Al Tawfik J">J. Al-Tawfik</name>
</author>
<author>
<name sortKey="Memish, Z A" uniqKey="Memish Z">Z.A. Memish</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Azhar, E I" uniqKey="Azhar E">E.I. Azhar</name>
</author>
<author>
<name sortKey="El Kafrawy, S A" uniqKey="El Kafrawy S">S.A. El-Kafrawy</name>
</author>
<author>
<name sortKey="Suha, A" uniqKey="Suha A">A. Suha</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Adney, D R" uniqKey="Adney D">D.R. Adney</name>
</author>
<author>
<name sortKey="Bielefeldt Ohmann, H" uniqKey="Bielefeldt Ohmann H">H. Bielefeldt-Ohmann</name>
</author>
<author>
<name sortKey="Hartwig, A E" uniqKey="Hartwig A">A.E. Hartwig</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vergara Alert, J" uniqKey="Vergara Alert J">J. Vergara-Alert</name>
</author>
<author>
<name sortKey="Van Den Brand, J M A" uniqKey="Van Den Brand J">J.M.A. Van Den Brand</name>
</author>
<author>
<name sortKey="Widagdo, W" uniqKey="Widagdo W">W. Widagdo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Crameri, G" uniqKey="Crameri G">G. Crameri</name>
</author>
<author>
<name sortKey="Durr, P A" uniqKey="Durr P">P.A. Durr</name>
</author>
<author>
<name sortKey="Klein, R" uniqKey="Klein R">R. Klein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Perera, R A" uniqKey="Perera R">R.A. Perera</name>
</author>
<author>
<name sortKey="Wang, P" uniqKey="Wang P">P. Wang</name>
</author>
<author>
<name sortKey="Gomaa, M R" uniqKey="Gomaa M">M.R. Gomaa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Arabi, Y M" uniqKey="Arabi Y">Y.M. Arabi</name>
</author>
<author>
<name sortKey="Hajeer, A H" uniqKey="Hajeer A">A.H. Hajeer</name>
</author>
<author>
<name sortKey="Luke, T" uniqKey="Luke T">T. Luke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Corman, V M" uniqKey="Corman V">V.M. Corman</name>
</author>
<author>
<name sortKey="Eckerle, I" uniqKey="Eckerle I">I. Eckerle</name>
</author>
<author>
<name sortKey="Bleicker, T" uniqKey="Bleicker T">T. Bleicker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cohen, J A" uniqKey="Cohen J">J.A. Cohen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Doremalen, N V" uniqKey="Doremalen N">N.V. Doremalen</name>
</author>
<author>
<name sortKey="Hijazeen, Z S K" uniqKey="Hijazeen Z">Z.S.K. Hijazeen</name>
</author>
<author>
<name sortKey="Holloway, P" uniqKey="Holloway P">P. Holloway</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chu, D K" uniqKey="Chu D">D.K. Chu</name>
</author>
<author>
<name sortKey="Poon, L L" uniqKey="Poon L">L.L. Poon</name>
</author>
<author>
<name sortKey="Gomaa, M M" uniqKey="Gomaa M">M.M. Gomaa</name>
</author>
<author>
<name sortKey="Shehata, M M" uniqKey="Shehata M">M.M. Shehata</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reusken, C B" uniqKey="Reusken C">C.B. Reusken</name>
</author>
<author>
<name sortKey="Messadi, L" uniqKey="Messadi L">L. Messadi</name>
</author>
<author>
<name sortKey="Feyisa, A" uniqKey="Feyisa A">A. Feyisa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Haagmans, B L" uniqKey="Haagmans B">B.L. Haagmans</name>
</author>
<author>
<name sortKey="Al Dhahiry, S H" uniqKey="Al Dhahiry S">S.H. Al Dhahiry</name>
</author>
<author>
<name sortKey="Reusken, C B" uniqKey="Reusken C">C.B. Reusken</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Corman, V M" uniqKey="Corman V">V.M. Corman</name>
</author>
<author>
<name sortKey="Jores, J" uniqKey="Jores J">J. Jores</name>
</author>
<author>
<name sortKey="Meyer, B" uniqKey="Meyer B">B. Meyer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reusken, C B" uniqKey="Reusken C">C.B. Reusken</name>
</author>
<author>
<name sortKey="Schilp, C" uniqKey="Schilp C">C. Schilp</name>
</author>
<author>
<name sortKey="Raj, V S" uniqKey="Raj V">V.S. Raj</name>
</author>
<author>
<name sortKey="De Bruin, E" uniqKey="De Bruin E">E. De Bruin</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">One Health</journal-id>
<journal-id journal-id-type="iso-abbrev">One Health</journal-id>
<journal-title-group>
<journal-title>One Health</journal-title>
</journal-title-group>
<issn pub-type="epub">2352-7714</issn>
<publisher>
<publisher-name>Elsevier</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">29911167</article-id>
<article-id pub-id-type="pmc">6000904</article-id>
<article-id pub-id-type="publisher-id">S2352-7714(18)30005-3</article-id>
<article-id pub-id-type="doi">10.1016/j.onehlt.2018.05.002</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Middle East respiratory syndrome coronavirus specific antibodies in naturally exposed Israeli llamas, alpacas and camels</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" id="au0005">
<name>
<surname>David</surname>
<given-names>Dan</given-names>
</name>
<email>dand@moag.gov.il</email>
<xref rid="af0005" ref-type="aff">a</xref>
<xref rid="cr0005" ref-type="corresp"></xref>
</contrib>
<contrib contrib-type="author" id="au0010">
<name>
<surname>Rotenberg</surname>
<given-names>Ditza</given-names>
</name>
<xref rid="af0005" ref-type="aff">a</xref>
</contrib>
<contrib contrib-type="author" id="au0015">
<name>
<surname>Khinich</surname>
<given-names>Evgeny</given-names>
</name>
<xref rid="af0005" ref-type="aff">a</xref>
</contrib>
<contrib contrib-type="author" id="au0020">
<name>
<surname>Erster</surname>
<given-names>Oran</given-names>
</name>
<xref rid="af0005" ref-type="aff">a</xref>
</contrib>
<contrib contrib-type="author" id="au0025">
<name>
<surname>Bardenstein</surname>
<given-names>Svetlana</given-names>
</name>
<xref rid="af0005" ref-type="aff">a</xref>
</contrib>
<contrib contrib-type="author" id="au0030">
<name>
<surname>van Straten</surname>
<given-names>Michael</given-names>
</name>
<xref rid="af0010" ref-type="aff">b</xref>
</contrib>
<contrib contrib-type="author" id="au0035">
<name>
<surname>Okba</surname>
<given-names>Nisreen M.A.</given-names>
</name>
<xref rid="af0015" ref-type="aff">c</xref>
</contrib>
<contrib contrib-type="author" id="au0055">
<name>
<surname>Raj</surname>
<given-names>Stalin V.</given-names>
</name>
<xref rid="af0015" ref-type="aff">c</xref>
</contrib>
<contrib contrib-type="author" id="au0040">
<name>
<surname>Haagmans</surname>
<given-names>Bart L.</given-names>
</name>
<xref rid="af0015" ref-type="aff">c</xref>
</contrib>
<contrib contrib-type="author" id="au0045">
<name>
<surname>Miculitzki</surname>
<given-names>Marcelo</given-names>
</name>
<xref rid="af0020" ref-type="aff">d</xref>
</contrib>
<contrib contrib-type="author" id="au0050">
<name>
<surname>Davidson</surname>
<given-names>Irit</given-names>
</name>
<xref rid="af0005" ref-type="aff">a</xref>
</contrib>
</contrib-group>
<aff id="af0005">
<label>a</label>
Kimron Veterinary Institute, Bet Dagan, Israel</aff>
<aff id="af0010">
<label>b</label>
Hachaklait, Veterinary Services, Caesarea, Israel</aff>
<aff id="af0015">
<label>c</label>
Department of Viroscience, Erasmus Medical Centre, Rotterdam, The Netherlands</aff>
<aff id="af0020">
<label>d</label>
Beer Sheva District Director of Veterinary Services, Israel</aff>
<author-notes>
<corresp id="cr0005">
<label></label>
Corresponding author.
<email>dand@moag.gov.il</email>
</corresp>
</author-notes>
<pub-date pub-type="pmc-release">
<day>4</day>
<month>5</month>
<year>2018</year>
</pub-date>
<pmc-comment> PMC Release delay is 0 months and 0 days and was based on .</pmc-comment>
<pub-date pub-type="ppub">
<month>6</month>
<year>2018</year>
</pub-date>
<pub-date pub-type="epub">
<day>4</day>
<month>5</month>
<year>2018</year>
</pub-date>
<volume>5</volume>
<fpage>65</fpage>
<lpage>68</lpage>
<history>
<date date-type="received">
<day>1</day>
<month>2</month>
<year>2018</year>
</date>
<date date-type="rev-recd">
<day>11</day>
<month>3</month>
<year>2018</year>
</date>
<date date-type="accepted">
<day>2</day>
<month>5</month>
<year>2018</year>
</date>
</history>
<permissions>
<copyright-statement>© 2018 The Authors</copyright-statement>
<copyright-year>2018</copyright-year>
<license>
<license-p>Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.</license-p>
</license>
</permissions>
<abstract id="ab0005">
<p>Thus far, no human MERS-CoV infections have been reported from Israel. Evidence for the circulation of MERS-CoV in dromedaries has been reported from almost all the countries of the Middle East, except Israel. Therefore, we aimed to analyze MERS-CoV infection in Israeli camelids, sampled between 2012 and 2017. A total of 411 camels, 102 alpacas and 19 llamas' sera were tested for the presence of antibodies to MERS-CoV. Our findings indicate a lower MERS-CoV seropositivity among Israeli dromedaries than in the surrounding countries, and for the first time naturally infected llamas were identified. In addition, nasal swabs of 661 camels, alpacas and lamas, obtained from January 2015 to December 2017, were tested for the presence of MERS-CoV RNA. All nasal swabs were negative, indicating no evidence for MERS-CoV active circulation in these camelids during that time period.</p>
</abstract>
<kwd-group id="ks0005">
<title>Keywords</title>
<kwd>MERS coronavirus</kwd>
<kwd>Antibodies</kwd>
<kwd>Israel</kwd>
<kwd>Dromedary camels</kwd>
<kwd>Llamas</kwd>
<kwd>Alpacas</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec id="s0005">
<label>1</label>
<title>Introduction</title>
<p id="p0005">Middle East respiratory syndrome coronavirus (MERS-CoV), a lineage 2C-betacoronavirus, was first identified in 2012 [
<xref rid="bb0005" ref-type="bibr">1</xref>
]. Serologic surveys identified >90% MERS-CoV–specific antibody seroprevalence in adult dromedary camels (
<italic>Camelus dromedarius</italic>
) in many countries in the Middle East and Africa. Moreover MERS-CoV viral RNA was detected in the nasal swabs of dromedaries in Qatar, Oman, Saudi Arabia, Egypt and United Arab Emirates (UAE) [
<xref rid="bb0010" ref-type="bibr">2</xref>
].</p>
<p id="p0010">Confirmed MERS human cases in Iran, Jordan, Kuwait, Lebanon, Oman, Saudi Arabia, Qatar, UAE and Yemen, were epidemiologically linked to camels, indicating camels as a potential source of human infections [
<xref rid="bb0015" ref-type="bibr">3</xref>
]. Alpacas (
<italic>Vicugna pacos</italic>
) and llamas (
<italic>Lama glama</italic>
) are also susceptible to experimental MERS-CoV infections [
<xref rid="bb0020" ref-type="bibr">[4]</xref>
,
<xref rid="bb0025" ref-type="bibr">[5]</xref>
,
<xref rid="bb0030" ref-type="bibr">[6]</xref>
] but only alpacas were found to be naturally infected until now.</p>
<p id="p0015">Presently, the highest MERS-CoV prevalence in humans has been documented in Saudi Arabia, as reported by the World Health Organization, whereas no cases have been reported from Israel despite the occurrence human-camel contact.</p>
<p id="p0020">Approximately 155,000 Bedouins, traditionally a semi-nomadic pastoralist population, inhabit the Negev Desert and breed camels, sheep and goats. The estimated dromedary camel population in Israel is 3000–5000. In addition, the largest herd of alpacas and llamas, outside South America, is in the Negev. Since the virus is circulating in the surrounding countries, we aimed to assess the presence of MERS-CoV specific antibodies and viral RNA among camelids in Israel.</p>
</sec>
<sec id="s0010">
<label>2</label>
<title>Material and methods</title>
<sec id="s0015">
<label>2.1</label>
<title>Samples</title>
<p id="p0025">A total of 411 blood samples from dromedary camels, 102 from alpacas and 19 from llamas were collected during 2012–2017 (
<xref rid="t0005" ref-type="table">Table 1</xref>
,
<xref rid="f0005" ref-type="fig">Fig. 1</xref>
). The sampled camels were from 20 farms, 18 located in the Negev, one in central Israel and one in the north (
<xref rid="f0005" ref-type="fig">Fig. 1</xref>
). The camels included 37 were males and 374 were females, and their ages ranged from 1 month to 12 years. The alpacas and lamas sampled from one farm located in the Negev. The alpacas include 65 females and 37 males and their ages ranged from 6 month to 15 years. The lamas include 8 females and 11 males and their ages ranged from 2 years to 20 years.
<table-wrap position="float" id="t0005">
<label>Table 1</label>
<caption>
<p>Total sera collected between 2012 and 2017, by location and species.</p>
</caption>
<alt-text id="al0020">Table 1</alt-text>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th rowspan="3">No.</th>
<th rowspan="2">Village
<hr></hr>
</th>
<th colspan="6">Year of Collection
<hr></hr>
</th>
<th rowspan="3">Total</th>
</tr>
<tr>
<th>2012
<hr></hr>
</th>
<th>2013
<hr></hr>
</th>
<th>2014
<hr></hr>
</th>
<th>2015
<hr></hr>
</th>
<th>2016
<hr></hr>
</th>
<th>2017
<hr></hr>
</th>
</tr>
<tr>
<th></th>
<th colspan="5">Camels</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mas'udin Al Azazme</td>
<td>4</td>
<td>5</td>
<td></td>
<td>11</td>
<td>16</td>
<td>15</td>
<td>51</td>
</tr>
<tr>
<td>2</td>
<td>Segev- Shalom</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>En Habesor</td>
<td>12</td>
<td>10</td>
<td></td>
<td>31</td>
<td>20</td>
<td></td>
<td>73</td>
</tr>
<tr>
<td>4</td>
<td>Aroer</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>Tarabin AS-Sani</td>
<td>4</td>
<td></td>
<td>6</td>
<td>39</td>
<td></td>
<td>19</td>
<td>68</td>
</tr>
<tr>
<td>6</td>
<td>Sede Boqer</td>
<td>7</td>
<td>2</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>Abu Qureinat</td>
<td>4</td>
<td></td>
<td></td>
<td>12</td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>Abu Rubeia</td>
<td>9</td>
<td></td>
<td></td>
<td>3</td>
<td>22</td>
<td>27</td>
<td>61</td>
</tr>
<tr>
<td>9</td>
<td>Qabboa</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>10</td>
<td>Rahat</td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>18</td>
<td>10</td>
<td>32</td>
</tr>
<tr>
<td>11</td>
<td>Azem</td>
<td></td>
<td>2</td>
<td></td>
<td>1</td>
<td>3</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>12</td>
<td>Revivim</td>
<td></td>
<td></td>
<td></td>
<td>14</td>
<td>14</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>13</td>
<td>Hura</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>Shibli</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>Arara</td>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>16</td>
<td>Mitzpe Ramon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>17</td>
<td>Ksifea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>24</td>
<td>25</td>
</tr>
<tr>
<td>18</td>
<td>Tel Sheva</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>Nokdim</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>20</td>
<td>Azuz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Total camels</td>
<td>51</td>
<td>31</td>
<td>8</td>
<td>114</td>
<td>102</td>
<td>105</td>
<td>411</td>
</tr>
<tr>
<td colspan="9">

</td>
</tr>
<tr>
<td colspan="9">Alpaca</td>
</tr>
<tr>
<td></td>
<td>Mitzpe Ramon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>102</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>102</td>
<td></td>
<td>102</td>
</tr>
<tr>
<td colspan="9">

</td>
</tr>
<tr>
<td colspan="9">Llamas</td>
</tr>
<tr>
<td></td>
<td>Mitzpe Ramon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19</td>
<td></td>
<td>19</td>
</tr>
</tbody>
</table>
</table-wrap>
<fig id="f0005">
<label>Fig. 1</label>
<caption>
<p>Locations of camelids sampled for MERS CoV monitoring.</p>
</caption>
<alt-text id="al0005">Fig. 1</alt-text>
<graphic xlink:href="gr1_lrg"></graphic>
</fig>
</p>
<p id="p0030">A total of 540 nasal swabs from camels, 102 from alpacas and 19 from llama were collected between January 2015 and November 2017. Camel samples were collected from 486 females and 54 males, aged from 1 month to 19 years. The alpacas and lamas were from one farm in the Negev.</p>
</sec>
<sec id="s0020">
<label>2.2</label>
<title>Virus neutralizing antibodies test (VNT)</title>
<p id="p0035">The virus neutralizing antibodies test (VNT) is the gold standard assay for the serological diagnosis of the MERS-CoV infection. The camel, alpaca and llama sera were tested at a dilution of 1:20–1:2560 for the presence of neutralizing antibodies to MERS-CoV by the virus neutralization test (VNT) [
<xref rid="bb0035" ref-type="bibr">7</xref>
]. Briefly, sera were heat-inactivated by incubating for 30 min at 56 °C. Two-fold serial dilutions of sera were prepared in 96-well plates, starting at a 1:10 dilution. Sera reacting from a dilution of 1:20 and up were considered positive. Live MERS-CoV was diluted in Iscove's Modified Dulbecco's Medium (IMDM), supplemented with Penicillin, Streptomycin and 1% FBS, to a dilution of 2000 TCID
<sub>50</sub>
/ml. Subsequently, 50 μl virus suspensions was added to each well of plates and the plates were incubated at 37 °C for 1 h. Next, virus-serum mixtures were incubated on 96 well plates containing Vero cells for 1 h followed by washing with PBS and incubation with IMDM-1% FBS for 5 days, after which the cytopathic effect was scored.</p>
</sec>
<sec id="s0025">
<label>2.3</label>
<title>ELISA</title>
<p id="p0040">MERS-CoV antibodies were screened by ELISA (Euroimmun AG, Lubeck, Germany), according to the ELISA manufacturer's instructions. Briefly, diluted serum samples (1100) were incubated in ELISA plate wells, coated with MERS-CoV S1 antigen. Positive, negative and calibrator samples were included. Antibodies were detected by adding peroxidase-labeled rabbit anti–camel IgG. Results were reported as the optical density (OD) ratio, which was calculated as the OD value of the sample divided by the calibrator OD value. We used cutoff values recommended by the ELISA kit manufacturer: a ratio of <0.8 was considered negative, ≥0.8 to <1.1 was considered borderline, and ≥1.1 was considered positive [
<xref rid="bb0040" ref-type="bibr">8</xref>
]. Borderline reacting sera were not included in the comparison.</p>
</sec>
<sec id="s0030">
<label>2.4</label>
<title>RNA extraction and detection by real-time RT-PCR</title>
<p id="p0045">The swab specimens were suspended in 2 ml PBS, incubated for 1 h at room temperature and then clarified by centrifugation at 1000 rpm for 10 min. The supernatants were recovered for extraction and were stored at −80 °C until analysis. Total nucleic acid was extracted from 200 μl swab samples using Invisorb Spin virus RNA mini kit (STRATEC, molecular GmbH, Berlin, Germany), according to the manufacturer's instructions. Extracted RNA was tested for the presence of MERS-CoV RNA by real-time reverse transcription-quantitative polymerase chain reaction (qrt RT-PCR) hydrolysis probe assay using Bio Rad CFX 96 Real Time detection system (Bio Rad, Hercules, CA, USA). The primers and probe encompassed upstream the envelope gene (UpE) [
<xref rid="bb0045" ref-type="bibr">9</xref>
].</p>
</sec>
<sec id="s0035">
<label>2.5</label>
<title>Statistical method</title>
<p id="p0050">Serological data were entered into an Excel worksheet and analyzed using Excel functions. Results from Excel were verified using public access statistical software (
<ext-link ext-link-type="uri" xlink:href="https://www.medcalc.org/calc/diagnostic_test.php" id="ir0005">https://www.medcalc.org/calc/diagnostic_test.php</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://vassarstats.net/kappa.html" id="ir0010">http://vassarstats.net/kappa.html</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://vassarstats.net/prop1.html" id="ir0015">http://vassarstats.net/prop1.html</ext-link>
</p>
</sec>
</sec>
<sec id="s0040">
<label>3</label>
<title>Results</title>
<p id="p0055">MERS-CoV specific antibodies in Israeli camels were analyzed using two serological assays, VNT and ELISA. Until the year 2014 sera were analyzed only by VNT, as being a gold standard, performed by the reference laboratory. With the expansion of screening activities in Israel, in subsequent years, sera were analyzed by ELISA also, as enabled by safety requirements, thus both assays were performed in parallel.
<xref rid="f0010" ref-type="fig">Fig. 2</xref>
shows the neutralization titers and the percentage positives with confidence level (CI) detected by the two assays per year. While the VNT was performed on all sera collected from 2012 to 2017, ELISA was performed only on the sera collected between 2015 and 2017.
<fig id="f0010">
<label>Fig. 2</label>
<caption>
<p>Detection of MERS-CoV antibodies in sera of dromedary camels, Israel 2012–2017. A) Percentage of MERS-CoV antibody positive by VNT and ELISA. Point estimate proportions (PEP) and confidence intervals (CI) are given per year. B) Serum neutralizing antibody titers by VNT. Red line indicated median; dotted black lines at 20 indicates cutoff for the VNT assay. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)</p>
</caption>
<alt-text id="al0010">Fig. 2</alt-text>
<graphic xlink:href="gr2_lrg"></graphic>
</fig>
</p>
<p id="p0060">We initially tested 90 camel sera, obtained from 2012 to 2014, using VNT. Most camels were adults, 3 years and more, thus analysis of infection by age is not possible. MERS-CoV neutralizing antibodies for the year 2012 showed a seropositivity of 72.5% point estimate proportion (PEP) (CI: 60.3%, 84.8%) at a 95% confidence level (CL). The seropositivity seemed to drop to 38.7%, during 2013. Sera from 2015 to 2017 were analyzed by both ELISA and VNT (
<xref rid="f0010" ref-type="fig">Fig. 2</xref>
A, B). The seroprevalence of MERS-CoV antibodies obtained using ELISA did not significantly differ from those obtained using VNT, as both PEPs and Cls overlapped (
<xref rid="f0010" ref-type="fig">Fig. 2</xref>
). Most camel sera were collected from the Southern part of Israel, except of 2 farms (nos. 14 and 15) (
<xref rid="t0005" ref-type="table">Table 1</xref>
,
<xref rid="f0005" ref-type="fig">Fig. 1</xref>
), from the Northern and Central Israel, respectively. Only one camel serum from farm no. 14 was positive.</p>
<p id="p0065">The sensitivity and specificity of the two serological assays, VNT and ELISA, between 2015 and 2017 were determined on 271 camels sera that were tested in parallel by the two assays. Taking VNT as the gold-standard the sensitivity of the ELISA when compared to the VNT assay was 91.71% (CI: 86.70%, 95.29%) and the specificity was 93.33% (Cl: 86.05%, 97.51%).</p>
<p id="p0070">We performed a kappa evaluation of the agreement between the ELISA and the VNT tests, receiving a value of 0.82 (CI: 0.75, 0.89; 95% CL). As defined by Cohen [
<xref rid="bb0050" ref-type="bibr">10</xref>
], 0.82 shows a perfect strength of agreement.</p>
<p id="p0075">Overall for 2012 to 2017, 254 camels (61.8%) were VNT positive, with neutralizing titers from 20 to ≥2560 (
<xref rid="f0010" ref-type="fig">Fig. 2</xref>
A). In 184 camels (70.4%), low antibody titers, between 20 and 320, were measured, while 70 camels (29.6%) had high antibody titers, between 320 to ≥2560. No antibodies were detected (titer < 20) in 155 (37.8%) camels.</p>
<p id="p0080">During 2016, blood was collected from 102 alpacas and 19 llamas and tested by ELISA and by VNT (
<xref rid="f0015" ref-type="fig">Fig. 3</xref>
A). Using ELISA the alpaca and llama sera showed a seroprevalence of 34.3 and 36.8%, respectively (35 and 7 positives). Using VNT, 30 alpacas and 6 llamas were positive, and PEPs were 29.4% (CI: 21.4%, 38.8%) and 31.5% (CI: 15.3%, 54.0%) respectively. The VNT titers were relatively low, ranging from 20 to 320 (
<xref rid="f0015" ref-type="fig">Fig. 3</xref>
B). The two camels sampled from the same farm as the alpacas and lamas were negative for MERS-CoV by both VNT and ELISA.
<fig id="f0015">
<label>Fig. 3</label>
<caption>
<p>Detection of MERS-CoV antibodies in sera of alpacas and lamas by the VNT and ELISA. A) Percentage of MERS CoV antibody positive by VNT and ELISA per year. B) Serum neutralizing antibody titers by VNT. Dotted black line at 20 indicates cutoff for the VNT assay.</p>
</caption>
<alt-text id="al0015">Fig. 3</alt-text>
<graphic xlink:href="gr3_lrg"></graphic>
</fig>
</p>
<p id="p0085">The nasal swabs of 540 camels, 102 alpacas and 19 llamas, collected between January 2015 and December 2017, were analyzed for the presence of MERS-CoV RNA. All nasal swabs were negative for the presence of MERS-CoV RNA, providing no evidence for active circulation, at least until 2017, of MERS-CoV in the Negev camels.</p>
</sec>
<sec id="s0045">
<label>4</label>
<title>Discussion</title>
<p id="p0090">We present the first serological and molecular survey for MERS–CoV infection among Israeli camelids, from 2012 to 2017. Camels showed an average MERS–CoV seroprevalence of 60.6% between 2012 and 2017 by VNT an average seroprevalence of 62.9% by ELISA between 2015 and 2017, without any detection of viral RNA in the nasal swabs of the 540 camels. The presence of virus-specific neutralizing antibodies suggests that Israeli camels were exposed to MERS-CoV in the past. The VNT assay was more sensitive than the ELISA, which had only 91.7% sensitivity when compared to VNT assay. That feature could be related to the fact that the ELISA coating antigen was the MERS-CoV spike S1 protein, whereas the VNT assay employed complete virions that could reveal antibodies against other viral proteins. Alternatively, whereas the ELISA detects only IgG, the VNT detects any isotype of antibodies which could be IgG, IgM or IgA. The VNT assay was also more specific than the ELISA, which had a calculated specificity of only 93.33% when compared to VNT. In addition, the higher strength of the VNT assay as compared to ELISA might be attributed by the fact that borderline sera by ELISA were not considered.</p>
<p id="p0095">For the period from 2012 to 2017, the proportion of camel sera with high VNT titers (>320) in Israel was 27.3%, which is much lower than the proportion of sera with high VNT titers in the surrounding countries, such as Saudi Arabia, Qatar, UAE, Oman, Egypt, and Jordan, reaching to >90% [
<xref rid="bb0010" ref-type="bibr">2</xref>
,
<xref rid="bb0055" ref-type="bibr">[11]</xref>
,
<xref rid="bb0060" ref-type="bibr">[12]</xref>
,
<xref rid="bb0065" ref-type="bibr">[13]</xref>
,
<xref rid="bb0070" ref-type="bibr">[14]</xref>
,
<xref rid="bb0075" ref-type="bibr">[15]</xref>
.]. Moreover, the proportion of sera with low VNT titers (<320) in Israel was about 70.4%, whereas in in the surrounding countries only about 10% of the sera had low VNT titers meaning that the MERS-CoV seroprevalence in Israel is lower than that in the surrounding countries. The differences in seropositivity by year in Israel might be related to the camels included in the random sample.</p>
<p id="p0100">In contrast, low seroprevalence and probably no virus circulation were documented in the Canary Islands (14.3%) [
<xref rid="bb0070" ref-type="bibr">14</xref>
].</p>
<p id="p0105">In the present study we showed for the first time the presence of MERS-CoV antibodies in naturally infected llamas by ELISA and VNT. In our study 29.4 and 31.5% of Israeli alpacas and llamas, respectively, were seropositive using the VNT assay. Using ELISA only 34.3 and 36.8% of alpacas and llamas, respectively were detected seropositive. The two camels co-housed with the llamas and alpacas were negative for antibodies and viral RNA using the two serological assays and PCR, respectively. Previously MERS–CoV neutralizing antibodies were detected in 15/15 alpacas in Qatar [
<xref rid="bb0080" ref-type="bibr">16</xref>
]. Similar to our findings, lower neutralizing antibody titers were documented in alpacas and experimentally infected llamas than in camels [
<xref rid="bb0025" ref-type="bibr">5</xref>
,
<xref rid="bb0080" ref-type="bibr">16</xref>
].</p>
<p id="p0110">Using a MERS-CoV specific RT-PCR we detected no MERS-CoV genomic RNA in the nasal swabs of camels, alpacas and llamas during the period of 2015 to 2017 providing no evidence for active MERS-CoV circulation.</p>
</sec>
<sec id="s0050">
<label>5</label>
<title>Conclusions</title>
<p id="p0115">Altogether, the relatively low prevalence of antibodies to MERS-CoV, the low antibody titers, the absence of viral RNA in nasal swabs, and the absence of disease in humans indicate, limited MERS-CoV circulation in Israeli camelids in during the time of our survey.</p>
</sec>
</body>
<back>
<ref-list id="bi0005">
<title>References</title>
<ref id="bb0005">
<label>1</label>
<element-citation publication-type="journal" id="rf0005">
<person-group person-group-type="author">
<name>
<surname>Zaki</surname>
<given-names>A.M.</given-names>
</name>
<name>
<surname>van Boheemen</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Bestebroer</surname>
<given-names>T.M.</given-names>
</name>
</person-group>
<article-title>Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia</article-title>
<source>N. Engl. J. Med.</source>
<volume>367</volume>
<year>2012</year>
<fpage>1814</fpage>
<lpage>1820</lpage>
<pub-id pub-id-type="pmid">23075143</pub-id>
</element-citation>
</ref>
<ref id="bb0010">
<label>2</label>
<element-citation publication-type="journal" id="rf0010">
<person-group person-group-type="author">
<name>
<surname>Ormani</surname>
<given-names>A.S.</given-names>
</name>
<name>
<surname>Al-Tawfik</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Memish</surname>
<given-names>Z.A.</given-names>
</name>
</person-group>
<article-title>Middle East respiratory syndrome coronavirus (MERS-Cov): animal to human interaction</article-title>
<source>Pathog. Glob. Health</source>
<volume>109</volume>
<year>2015</year>
<fpage>354</fpage>
<lpage>362</lpage>
<pub-id pub-id-type="pmid">26924345</pub-id>
</element-citation>
</ref>
<ref id="bb0015">
<label>3</label>
<element-citation publication-type="journal" id="rf0015">
<person-group person-group-type="author">
<name>
<surname>Azhar</surname>
<given-names>E.I.</given-names>
</name>
<name>
<surname>El-Kafrawy</surname>
<given-names>S.A.</given-names>
</name>
<name>
<surname>Suha</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Evidence for camel-to-human transmission of MERS coronavirus</article-title>
<source>N. Engl. J. Med.</source>
<volume>370</volume>
<year>2014</year>
<fpage>2499</fpage>
<lpage>2505</lpage>
<pub-id pub-id-type="pmid">24896817</pub-id>
</element-citation>
</ref>
<ref id="bb0020">
<label>4</label>
<element-citation publication-type="journal" id="rf0020">
<person-group person-group-type="author">
<name>
<surname>Adney</surname>
<given-names>D.R.</given-names>
</name>
<name>
<surname>Bielefeldt-Ohmann</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Hartwig</surname>
<given-names>A.E.</given-names>
</name>
</person-group>
<article-title>Infection, replication, and transmission of middle east respiratory syndrome coronavirus in alpacas</article-title>
<source>Emerg. Infect. Dis.</source>
<volume>22</volume>
<year>2016</year>
<fpage>1031</fpage>
<lpage>1037</lpage>
<pub-id pub-id-type="pmid">27070385</pub-id>
</element-citation>
</ref>
<ref id="bb0025">
<label>5</label>
<element-citation publication-type="journal" id="rf0025">
<person-group person-group-type="author">
<name>
<surname>Vergara-Alert</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Van Den Brand</surname>
<given-names>J.M.A.</given-names>
</name>
<name>
<surname>Widagdo</surname>
<given-names>W.</given-names>
</name>
</person-group>
<article-title>Susceptibility of different livestock animal species for Middle East respiratory syndrome coronavirus infection</article-title>
<source>Emerg. Infect. Dis.</source>
<volume>23</volume>
<year>2017</year>
<fpage>232</fpage>
<lpage>240</lpage>
<pub-id pub-id-type="pmid">27901465</pub-id>
</element-citation>
</ref>
<ref id="bb0030">
<label>6</label>
<element-citation publication-type="journal" id="rf0030">
<person-group person-group-type="author">
<name>
<surname>Crameri</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Durr</surname>
<given-names>P.A.</given-names>
</name>
<name>
<surname>Klein</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Experimental infection and response to rechallenge of alpacas with Middle East respiratory syndrome coronavirus</article-title>
<source>Emerg. Infect. Dis.</source>
<volume>22</volume>
<year>2016</year>
<fpage>1071</fpage>
<lpage>1074</lpage>
<pub-id pub-id-type="pmid">27070733</pub-id>
</element-citation>
</ref>
<ref id="bb0035">
<label>7</label>
<element-citation publication-type="journal" id="rf0035">
<person-group person-group-type="author">
<name>
<surname>Perera</surname>
<given-names>R.A.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Gomaa</surname>
<given-names>M.R.</given-names>
</name>
</person-group>
<article-title>Seroepidemiology for MERS coronavirus using microneutralisation and pseudoparticle virus neutralization assays reveal a high prevalence of antibody in dromedary camels in Egypt</article-title>
<source>Euro Surveill.</source>
<volume>18</volume>
<year>2013</year>
<fpage>20574</fpage>
<pub-id pub-id-type="pmid">24079378</pub-id>
</element-citation>
</ref>
<ref id="bb0040">
<label>8</label>
<element-citation publication-type="journal" id="rf0040">
<person-group person-group-type="author">
<name>
<surname>Arabi</surname>
<given-names>Y.M.</given-names>
</name>
<name>
<surname>Hajeer</surname>
<given-names>A.H.</given-names>
</name>
<name>
<surname>Luke</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Feasibility of using convalescent plasma immunotherapy for MERS CoV infection, Saudi Arabia</article-title>
<source>Emerg. Infect. Dis.</source>
<volume>22</volume>
<year>2016</year>
<fpage>1554</fpage>
<lpage>1561</lpage>
<pub-id pub-id-type="pmid">27532807</pub-id>
</element-citation>
</ref>
<ref id="bb0045">
<label>9</label>
<element-citation publication-type="journal" id="rf0045">
<person-group person-group-type="author">
<name>
<surname>Corman</surname>
<given-names>V.M.</given-names>
</name>
<name>
<surname>Eckerle</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Bleicker</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction</article-title>
<source>Euro Surveill.</source>
<volume>17</volume>
<year>2012</year>
<fpage>39</fpage>
</element-citation>
</ref>
<ref id="bb0050">
<label>10</label>
<element-citation publication-type="journal" id="rf0050">
<person-group person-group-type="author">
<name>
<surname>Cohen</surname>
<given-names>J.A.</given-names>
</name>
</person-group>
<article-title>Coefficient of agreement for nominal scales</article-title>
<source>Educ. Psychol. Meas.</source>
<volume>20</volume>
<year>1960</year>
<fpage>213</fpage>
<lpage>220</lpage>
</element-citation>
</ref>
<ref id="bb0055">
<label>11</label>
<element-citation publication-type="journal" id="rf0055">
<person-group person-group-type="author">
<name>
<surname>Doremalen</surname>
<given-names>N.V.</given-names>
</name>
<name>
<surname>Hijazeen</surname>
<given-names>Z.S.K.</given-names>
</name>
<name>
<surname>Holloway</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>High prevalence of Middle East respiratory coronavirus in young dromedary camels in Jordan</article-title>
<source>Vector Borne Zoonotic. Dis.</source>
<volume>17</volume>
<year>2017</year>
<fpage>155</fpage>
<lpage>159</lpage>
<pub-id pub-id-type="pmid">28009529</pub-id>
</element-citation>
</ref>
<ref id="bb0060">
<label>12</label>
<element-citation publication-type="journal" id="rf0060">
<person-group person-group-type="author">
<name>
<surname>Chu</surname>
<given-names>D.K.</given-names>
</name>
<name>
<surname>Poon</surname>
<given-names>L.L.</given-names>
</name>
<name>
<surname>Gomaa</surname>
<given-names>M.M.</given-names>
</name>
<name>
<surname>Shehata</surname>
<given-names>M.M.</given-names>
</name>
</person-group>
<article-title>MERS coronaviruses in dromedary camels, Egypt</article-title>
<source>Emerg. Infect. Dis.</source>
<volume>vol. 20</volume>
<year>2014</year>
<fpage>1049</fpage>
<lpage>1053</lpage>
<pub-id pub-id-type="pmid">24856660</pub-id>
</element-citation>
</ref>
<ref id="bb0065">
<label>13</label>
<element-citation publication-type="journal" id="rf0065">
<person-group person-group-type="author">
<name>
<surname>Reusken</surname>
<given-names>C.B.</given-names>
</name>
<name>
<surname>Messadi</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Feyisa</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Geographic distribution of MERS coronavirus among dromedary camels, Africa</article-title>
<source>Emerg. Infect. Dis.</source>
<volume>20</volume>
<year>2014</year>
<fpage>1370</fpage>
<lpage>1374</lpage>
<pub-id pub-id-type="pmid">25062254</pub-id>
</element-citation>
</ref>
<ref id="bb0070">
<label>14</label>
<element-citation publication-type="journal" id="rf0070">
<person-group person-group-type="author">
<name>
<surname>Haagmans</surname>
<given-names>B.L.</given-names>
</name>
<name>
<surname>Al Dhahiry</surname>
<given-names>S.H.</given-names>
</name>
<name>
<surname>Reusken</surname>
<given-names>C.B.</given-names>
</name>
</person-group>
<article-title>Middle East respiratory syndrome coronavirus in dromedary camels: an outbreak investigation</article-title>
<source>Lancet Infect. Dis.</source>
<volume>14</volume>
<year>2014</year>
<fpage>140</fpage>
<lpage>145</lpage>
<pub-id pub-id-type="pmid">24355866</pub-id>
</element-citation>
</ref>
<ref id="bb0075">
<label>15</label>
<element-citation publication-type="journal" id="rf0075">
<person-group person-group-type="author">
<name>
<surname>Corman</surname>
<given-names>V.M.</given-names>
</name>
<name>
<surname>Jores</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Meyer</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>Antibodies against MERS coronavirus in dromedary camels, Kenya, 1992–2013</article-title>
<source>Emerg. Infect. Dis.</source>
<volume>20</volume>
<year>2014</year>
<fpage>1319</fpage>
<lpage>1322</lpage>
<pub-id pub-id-type="pmid">25075637</pub-id>
</element-citation>
</ref>
<ref id="bb0080">
<label>16</label>
<element-citation publication-type="journal" id="rf0080">
<person-group person-group-type="author">
<name>
<surname>Reusken</surname>
<given-names>C.B.</given-names>
</name>
<name>
<surname>Schilp</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Raj</surname>
<given-names>V.S.</given-names>
</name>
<name>
<surname>De Bruin</surname>
<given-names>E.</given-names>
</name>
</person-group>
<article-title>MERS- CoV infection of alpaca in a region where MERS- CoV is endemic</article-title>
<source>Emerg. Infect. Dis.</source>
<volume>22</volume>
<year>2016</year>
<fpage>1129</fpage>
<lpage>1131</lpage>
<pub-id pub-id-type="pmid">27070501</pub-id>
</element-citation>
</ref>
</ref-list>
<ack id="ac0005">
<sec id="s0060">
<title>Acknowledgments</title>
<p id="p0125">We would like to thanks Dr. Mandelbaum Michal from Central Virology Laboratory, Ministry of Health, Sheba Medical Center, Ramat-Gan, Israel for providing MERS-CoV RNA. We thank Dr. Kovtonnenko Anita and Gurochov Anna for the technical assistance.</p>
</sec>
<sec id="s0065">
<title>Conflict of interest</title>
<p id="p0130">The authors declared that they have no competing interests.</p>
</sec>
</ack>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F74 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000F74 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:6000904
   |texte=   Middle East respiratory syndrome coronavirus specific antibodies in naturally exposed Israeli llamas, alpacas and camels
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:29911167" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021