Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding

Identifieur interne : 000F11 ( Pmc/Corpus ); précédent : 000F10; suivant : 000F12

Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding

Auteurs : Roujian Lu ; Xiang Zhao ; Juan Li ; Peihua Niu ; Bo Yang ; Honglong Wu ; Wenling Wang ; Hao Song ; Baoying Huang ; Na Zhu ; Yuhai Bi ; Xuejun Ma ; Faxian Zhan ; Liang Wang ; Tao Hu ; Hong Zhou ; Zhenhong Hu ; Weimin Zhou ; Li Zhao ; Jing Chen ; Yao Meng ; Ji Wang ; Yang Lin ; Jianying Yuan ; Zhihao Xie ; Jinmin Ma ; William J. Liu ; Dayan Wang ; Wenbo Xu ; Edward C. Holmes ; George F. Gao ; Guizhen Wu ; Weijun Chen ; Weifeng Shi ; Wenjie Tan

Source :

RBID : PMC:7159086

Abstract

SummaryBackground

In late December, 2019, patients presenting with viral pneumonia due to an unidentified microbial agent were reported in Wuhan, China. A novel coronavirus was subsequently identified as the causative pathogen, provisionally named 2019 novel coronavirus (2019-nCoV). As of Jan 26, 2020, more than 2000 cases of 2019-nCoV infection have been confirmed, most of which involved people living in or visiting Wuhan, and human-to-human transmission has been confirmed.

Methods

We did next-generation sequencing of samples from bronchoalveolar lavage fluid and cultured isolates from nine inpatients, eight of whom had visited the Huanan seafood market in Wuhan. Complete and partial 2019-nCoV genome sequences were obtained from these individuals. Viral contigs were connected using Sanger sequencing to obtain the full-length genomes, with the terminal regions determined by rapid amplification of cDNA ends. Phylogenetic analysis of these 2019-nCoV genomes and those of other coronaviruses was used to determine the evolutionary history of the virus and help infer its likely origin. Homology modelling was done to explore the likely receptor-binding properties of the virus.

Findings

The ten genome sequences of 2019-nCoV obtained from the nine patients were extremely similar, exhibiting more than 99·98% sequence identity. Notably, 2019-nCoV was closely related (with 88% identity) to two bat-derived severe acute respiratory syndrome (SARS)-like coronaviruses, bat-SL-CoVZC45 and bat-SL-CoVZXC21, collected in 2018 in Zhoushan, eastern China, but were more distant from SARS-CoV (about 79%) and MERS-CoV (about 50%). Phylogenetic analysis revealed that 2019-nCoV fell within the subgenus Sarbecovirus of the genus Betacoronavirus, with a relatively long branch length to its closest relatives bat-SL-CoVZC45 and bat-SL-CoVZXC21, and was genetically distinct from SARS-CoV. Notably, homology modelling revealed that 2019-nCoV had a similar receptor-binding domain structure to that of SARS-CoV, despite amino acid variation at some key residues.

Interpretation

2019-nCoV is sufficiently divergent from SARS-CoV to be considered a new human-infecting betacoronavirus. Although our phylogenetic analysis suggests that bats might be the original host of this virus, an animal sold at the seafood market in Wuhan might represent an intermediate host facilitating the emergence of the virus in humans. Importantly, structural analysis suggests that 2019-nCoV might be able to bind to the angiotensin-converting enzyme 2 receptor in humans. The future evolution, adaptation, and spread of this virus warrant urgent investigation.

Funding

National Key Research and Development Program of China, National Major Project for Control and Prevention of Infectious Disease in China, Chinese Academy of Sciences, Shandong First Medical University.


Url:
DOI: 10.1016/S0140-6736(20)30251-8
PubMed: 32007145
PubMed Central: 7159086

Links to Exploration step

PMC:7159086

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding</title>
<author>
<name sortKey="Lu, Roujian" sort="Lu, Roujian" uniqKey="Lu R" first="Roujian" last="Lu">Roujian Lu</name>
<affiliation>
<nlm:aff id="aff1">NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Xiang" sort="Zhao, Xiang" uniqKey="Zhao X" first="Xiang" last="Zhao">Xiang Zhao</name>
<affiliation>
<nlm:aff id="aff1">NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Li, Juan" sort="Li, Juan" uniqKey="Li J" first="Juan" last="Li">Juan Li</name>
<affiliation>
<nlm:aff id="aff2">Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Niu, Peihua" sort="Niu, Peihua" uniqKey="Niu P" first="Peihua" last="Niu">Peihua Niu</name>
<affiliation>
<nlm:aff id="aff1">NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yang, Bo" sort="Yang, Bo" uniqKey="Yang B" first="Bo" last="Yang">Bo Yang</name>
<affiliation>
<nlm:aff id="aff3">Division for Viral Disease Detection, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wu, Honglong" sort="Wu, Honglong" uniqKey="Wu H" first="Honglong" last="Wu">Honglong Wu</name>
<affiliation>
<nlm:aff id="aff4">BGI PathoGenesis Pharmaceutical Technology, Shenzhen, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Wenling" sort="Wang, Wenling" uniqKey="Wang W" first="Wenling" last="Wang">Wenling Wang</name>
<affiliation>
<nlm:aff id="aff1">NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Song, Hao" sort="Song, Hao" uniqKey="Song H" first="Hao" last="Song">Hao Song</name>
<affiliation>
<nlm:aff id="aff5">Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Huang, Baoying" sort="Huang, Baoying" uniqKey="Huang B" first="Baoying" last="Huang">Baoying Huang</name>
<affiliation>
<nlm:aff id="aff1">NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhu, Na" sort="Zhu, Na" uniqKey="Zhu N" first="Na" last="Zhu">Na Zhu</name>
<affiliation>
<nlm:aff id="aff1">NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bi, Yuhai" sort="Bi, Yuhai" uniqKey="Bi Y" first="Yuhai" last="Bi">Yuhai Bi</name>
<affiliation>
<nlm:aff id="aff6">Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff7">Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ma, Xuejun" sort="Ma, Xuejun" uniqKey="Ma X" first="Xuejun" last="Ma">Xuejun Ma</name>
<affiliation>
<nlm:aff id="aff1">NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhan, Faxian" sort="Zhan, Faxian" uniqKey="Zhan F" first="Faxian" last="Zhan">Faxian Zhan</name>
<affiliation>
<nlm:aff id="aff3">Division for Viral Disease Detection, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Liang" sort="Wang, Liang" uniqKey="Wang L" first="Liang" last="Wang">Liang Wang</name>
<affiliation>
<nlm:aff id="aff6">Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff7">Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hu, Tao" sort="Hu, Tao" uniqKey="Hu T" first="Tao" last="Hu">Tao Hu</name>
<affiliation>
<nlm:aff id="aff2">Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Hong" sort="Zhou, Hong" uniqKey="Zhou H" first="Hong" last="Zhou">Hong Zhou</name>
<affiliation>
<nlm:aff id="aff2">Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hu, Zhenhong" sort="Hu, Zhenhong" uniqKey="Hu Z" first="Zhenhong" last="Hu">Zhenhong Hu</name>
<affiliation>
<nlm:aff id="aff8">Central Theater, People's Liberation Army General Hospital, Wuhan, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Weimin" sort="Zhou, Weimin" uniqKey="Zhou W" first="Weimin" last="Zhou">Weimin Zhou</name>
<affiliation>
<nlm:aff id="aff1">NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Li" sort="Zhao, Li" uniqKey="Zhao L" first="Li" last="Zhao">Li Zhao</name>
<affiliation>
<nlm:aff id="aff1">NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chen, Jing" sort="Chen, Jing" uniqKey="Chen J" first="Jing" last="Chen">Jing Chen</name>
<affiliation>
<nlm:aff id="aff9">Key Laboratory of Laboratory Medicine, Ministry of Education, and Zhejiang Provincial Key Laboratory of Medical Genetics, Institute of Medical Virology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Meng, Yao" sort="Meng, Yao" uniqKey="Meng Y" first="Yao" last="Meng">Yao Meng</name>
<affiliation>
<nlm:aff id="aff1">NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Ji" sort="Wang, Ji" uniqKey="Wang J" first="Ji" last="Wang">Ji Wang</name>
<affiliation>
<nlm:aff id="aff1">NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lin, Yang" sort="Lin, Yang" uniqKey="Lin Y" first="Yang" last="Lin">Yang Lin</name>
<affiliation>
<nlm:aff id="aff4">BGI PathoGenesis Pharmaceutical Technology, Shenzhen, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yuan, Jianying" sort="Yuan, Jianying" uniqKey="Yuan J" first="Jianying" last="Yuan">Jianying Yuan</name>
<affiliation>
<nlm:aff id="aff4">BGI PathoGenesis Pharmaceutical Technology, Shenzhen, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Xie, Zhihao" sort="Xie, Zhihao" uniqKey="Xie Z" first="Zhihao" last="Xie">Zhihao Xie</name>
<affiliation>
<nlm:aff id="aff4">BGI PathoGenesis Pharmaceutical Technology, Shenzhen, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ma, Jinmin" sort="Ma, Jinmin" uniqKey="Ma J" first="Jinmin" last="Ma">Jinmin Ma</name>
<affiliation>
<nlm:aff id="aff4">BGI PathoGenesis Pharmaceutical Technology, Shenzhen, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Liu, William J" sort="Liu, William J" uniqKey="Liu W" first="William J" last="Liu">William J. Liu</name>
<affiliation>
<nlm:aff id="aff1">NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Dayan" sort="Wang, Dayan" uniqKey="Wang D" first="Dayan" last="Wang">Dayan Wang</name>
<affiliation>
<nlm:aff id="aff1">NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Xu, Wenbo" sort="Xu, Wenbo" uniqKey="Xu W" first="Wenbo" last="Xu">Wenbo Xu</name>
<affiliation>
<nlm:aff id="aff1">NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Holmes, Edward C" sort="Holmes, Edward C" uniqKey="Holmes E" first="Edward C" last="Holmes">Edward C. Holmes</name>
<affiliation>
<nlm:aff id="aff10">Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, University of Sydney, Sydney, NSW, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Gao, George F" sort="Gao, George F" uniqKey="Gao G" first="George F" last="Gao">George F. Gao</name>
<affiliation>
<nlm:aff id="aff1">NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff6">Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff7">Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wu, Guizhen" sort="Wu, Guizhen" uniqKey="Wu G" first="Guizhen" last="Wu">Guizhen Wu</name>
<affiliation>
<nlm:aff id="aff1">NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chen, Weijun" sort="Chen, Weijun" uniqKey="Chen W" first="Weijun" last="Chen">Weijun Chen</name>
<affiliation>
<nlm:aff id="aff4">BGI PathoGenesis Pharmaceutical Technology, Shenzhen, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Shi, Weifeng" sort="Shi, Weifeng" uniqKey="Shi W" first="Weifeng" last="Shi">Weifeng Shi</name>
<affiliation>
<nlm:aff id="aff2">Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff11">The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital), Jinan, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tan, Wenjie" sort="Tan, Wenjie" uniqKey="Tan W" first="Wenjie" last="Tan">Wenjie Tan</name>
<affiliation>
<nlm:aff id="aff1">NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff8">Central Theater, People's Liberation Army General Hospital, Wuhan, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff12">Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">32007145</idno>
<idno type="pmc">7159086</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7159086</idno>
<idno type="RBID">PMC:7159086</idno>
<idno type="doi">10.1016/S0140-6736(20)30251-8</idno>
<date when="2020">2020</date>
<idno type="wicri:Area/Pmc/Corpus">000F11</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000F11</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding</title>
<author>
<name sortKey="Lu, Roujian" sort="Lu, Roujian" uniqKey="Lu R" first="Roujian" last="Lu">Roujian Lu</name>
<affiliation>
<nlm:aff id="aff1">NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Xiang" sort="Zhao, Xiang" uniqKey="Zhao X" first="Xiang" last="Zhao">Xiang Zhao</name>
<affiliation>
<nlm:aff id="aff1">NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Li, Juan" sort="Li, Juan" uniqKey="Li J" first="Juan" last="Li">Juan Li</name>
<affiliation>
<nlm:aff id="aff2">Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Niu, Peihua" sort="Niu, Peihua" uniqKey="Niu P" first="Peihua" last="Niu">Peihua Niu</name>
<affiliation>
<nlm:aff id="aff1">NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yang, Bo" sort="Yang, Bo" uniqKey="Yang B" first="Bo" last="Yang">Bo Yang</name>
<affiliation>
<nlm:aff id="aff3">Division for Viral Disease Detection, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wu, Honglong" sort="Wu, Honglong" uniqKey="Wu H" first="Honglong" last="Wu">Honglong Wu</name>
<affiliation>
<nlm:aff id="aff4">BGI PathoGenesis Pharmaceutical Technology, Shenzhen, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Wenling" sort="Wang, Wenling" uniqKey="Wang W" first="Wenling" last="Wang">Wenling Wang</name>
<affiliation>
<nlm:aff id="aff1">NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Song, Hao" sort="Song, Hao" uniqKey="Song H" first="Hao" last="Song">Hao Song</name>
<affiliation>
<nlm:aff id="aff5">Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Huang, Baoying" sort="Huang, Baoying" uniqKey="Huang B" first="Baoying" last="Huang">Baoying Huang</name>
<affiliation>
<nlm:aff id="aff1">NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhu, Na" sort="Zhu, Na" uniqKey="Zhu N" first="Na" last="Zhu">Na Zhu</name>
<affiliation>
<nlm:aff id="aff1">NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bi, Yuhai" sort="Bi, Yuhai" uniqKey="Bi Y" first="Yuhai" last="Bi">Yuhai Bi</name>
<affiliation>
<nlm:aff id="aff6">Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff7">Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ma, Xuejun" sort="Ma, Xuejun" uniqKey="Ma X" first="Xuejun" last="Ma">Xuejun Ma</name>
<affiliation>
<nlm:aff id="aff1">NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhan, Faxian" sort="Zhan, Faxian" uniqKey="Zhan F" first="Faxian" last="Zhan">Faxian Zhan</name>
<affiliation>
<nlm:aff id="aff3">Division for Viral Disease Detection, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Liang" sort="Wang, Liang" uniqKey="Wang L" first="Liang" last="Wang">Liang Wang</name>
<affiliation>
<nlm:aff id="aff6">Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff7">Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hu, Tao" sort="Hu, Tao" uniqKey="Hu T" first="Tao" last="Hu">Tao Hu</name>
<affiliation>
<nlm:aff id="aff2">Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Hong" sort="Zhou, Hong" uniqKey="Zhou H" first="Hong" last="Zhou">Hong Zhou</name>
<affiliation>
<nlm:aff id="aff2">Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hu, Zhenhong" sort="Hu, Zhenhong" uniqKey="Hu Z" first="Zhenhong" last="Hu">Zhenhong Hu</name>
<affiliation>
<nlm:aff id="aff8">Central Theater, People's Liberation Army General Hospital, Wuhan, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Weimin" sort="Zhou, Weimin" uniqKey="Zhou W" first="Weimin" last="Zhou">Weimin Zhou</name>
<affiliation>
<nlm:aff id="aff1">NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Li" sort="Zhao, Li" uniqKey="Zhao L" first="Li" last="Zhao">Li Zhao</name>
<affiliation>
<nlm:aff id="aff1">NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chen, Jing" sort="Chen, Jing" uniqKey="Chen J" first="Jing" last="Chen">Jing Chen</name>
<affiliation>
<nlm:aff id="aff9">Key Laboratory of Laboratory Medicine, Ministry of Education, and Zhejiang Provincial Key Laboratory of Medical Genetics, Institute of Medical Virology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Meng, Yao" sort="Meng, Yao" uniqKey="Meng Y" first="Yao" last="Meng">Yao Meng</name>
<affiliation>
<nlm:aff id="aff1">NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Ji" sort="Wang, Ji" uniqKey="Wang J" first="Ji" last="Wang">Ji Wang</name>
<affiliation>
<nlm:aff id="aff1">NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lin, Yang" sort="Lin, Yang" uniqKey="Lin Y" first="Yang" last="Lin">Yang Lin</name>
<affiliation>
<nlm:aff id="aff4">BGI PathoGenesis Pharmaceutical Technology, Shenzhen, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yuan, Jianying" sort="Yuan, Jianying" uniqKey="Yuan J" first="Jianying" last="Yuan">Jianying Yuan</name>
<affiliation>
<nlm:aff id="aff4">BGI PathoGenesis Pharmaceutical Technology, Shenzhen, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Xie, Zhihao" sort="Xie, Zhihao" uniqKey="Xie Z" first="Zhihao" last="Xie">Zhihao Xie</name>
<affiliation>
<nlm:aff id="aff4">BGI PathoGenesis Pharmaceutical Technology, Shenzhen, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ma, Jinmin" sort="Ma, Jinmin" uniqKey="Ma J" first="Jinmin" last="Ma">Jinmin Ma</name>
<affiliation>
<nlm:aff id="aff4">BGI PathoGenesis Pharmaceutical Technology, Shenzhen, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Liu, William J" sort="Liu, William J" uniqKey="Liu W" first="William J" last="Liu">William J. Liu</name>
<affiliation>
<nlm:aff id="aff1">NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Dayan" sort="Wang, Dayan" uniqKey="Wang D" first="Dayan" last="Wang">Dayan Wang</name>
<affiliation>
<nlm:aff id="aff1">NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Xu, Wenbo" sort="Xu, Wenbo" uniqKey="Xu W" first="Wenbo" last="Xu">Wenbo Xu</name>
<affiliation>
<nlm:aff id="aff1">NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Holmes, Edward C" sort="Holmes, Edward C" uniqKey="Holmes E" first="Edward C" last="Holmes">Edward C. Holmes</name>
<affiliation>
<nlm:aff id="aff10">Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, University of Sydney, Sydney, NSW, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Gao, George F" sort="Gao, George F" uniqKey="Gao G" first="George F" last="Gao">George F. Gao</name>
<affiliation>
<nlm:aff id="aff1">NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff6">Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff7">Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wu, Guizhen" sort="Wu, Guizhen" uniqKey="Wu G" first="Guizhen" last="Wu">Guizhen Wu</name>
<affiliation>
<nlm:aff id="aff1">NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chen, Weijun" sort="Chen, Weijun" uniqKey="Chen W" first="Weijun" last="Chen">Weijun Chen</name>
<affiliation>
<nlm:aff id="aff4">BGI PathoGenesis Pharmaceutical Technology, Shenzhen, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Shi, Weifeng" sort="Shi, Weifeng" uniqKey="Shi W" first="Weifeng" last="Shi">Weifeng Shi</name>
<affiliation>
<nlm:aff id="aff2">Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff11">The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital), Jinan, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tan, Wenjie" sort="Tan, Wenjie" uniqKey="Tan W" first="Wenjie" last="Tan">Wenjie Tan</name>
<affiliation>
<nlm:aff id="aff1">NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff8">Central Theater, People's Liberation Army General Hospital, Wuhan, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff12">Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Lancet (London, England)</title>
<idno type="ISSN">0140-6736</idno>
<idno type="eISSN">1474-547X</idno>
<imprint>
<date when="2020">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<title>Summary</title>
<sec>
<title>Background</title>
<p>In late December, 2019, patients presenting with viral pneumonia due to an unidentified microbial agent were reported in Wuhan, China. A novel coronavirus was subsequently identified as the causative pathogen, provisionally named 2019 novel coronavirus (2019-nCoV). As of Jan 26, 2020, more than 2000 cases of 2019-nCoV infection have been confirmed, most of which involved people living in or visiting Wuhan, and human-to-human transmission has been confirmed.</p>
</sec>
<sec>
<title>Methods</title>
<p>We did next-generation sequencing of samples from bronchoalveolar lavage fluid and cultured isolates from nine inpatients, eight of whom had visited the Huanan seafood market in Wuhan. Complete and partial 2019-nCoV genome sequences were obtained from these individuals. Viral contigs were connected using Sanger sequencing to obtain the full-length genomes, with the terminal regions determined by rapid amplification of cDNA ends. Phylogenetic analysis of these 2019-nCoV genomes and those of other coronaviruses was used to determine the evolutionary history of the virus and help infer its likely origin. Homology modelling was done to explore the likely receptor-binding properties of the virus.</p>
</sec>
<sec>
<title>Findings</title>
<p>The ten genome sequences of 2019-nCoV obtained from the nine patients were extremely similar, exhibiting more than 99·98% sequence identity. Notably, 2019-nCoV was closely related (with 88% identity) to two bat-derived severe acute respiratory syndrome (SARS)-like coronaviruses, bat-SL-CoVZC45 and bat-SL-CoVZXC21, collected in 2018 in Zhoushan, eastern China, but were more distant from SARS-CoV (about 79%) and MERS-CoV (about 50%). Phylogenetic analysis revealed that 2019-nCoV fell within the subgenus Sarbecovirus of the genus Betacoronavirus, with a relatively long branch length to its closest relatives bat-SL-CoVZC45 and bat-SL-CoVZXC21, and was genetically distinct from SARS-CoV. Notably, homology modelling revealed that 2019-nCoV had a similar receptor-binding domain structure to that of SARS-CoV, despite amino acid variation at some key residues.</p>
</sec>
<sec>
<title>Interpretation</title>
<p>2019-nCoV is sufficiently divergent from SARS-CoV to be considered a new human-infecting betacoronavirus. Although our phylogenetic analysis suggests that bats might be the original host of this virus, an animal sold at the seafood market in Wuhan might represent an intermediate host facilitating the emergence of the virus in humans. Importantly, structural analysis suggests that 2019-nCoV might be able to bind to the angiotensin-converting enzyme 2 receptor in humans. The future evolution, adaptation, and spread of this virus warrant urgent investigation.</p>
</sec>
<sec>
<title>Funding</title>
<p>National Key Research and Development Program of China, National Major Project for Control and Prevention of Infectious Disease in China, Chinese Academy of Sciences, Shandong First Medical University.</p>
</sec>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Su, S" uniqKey="Su S">S Su</name>
</author>
<author>
<name sortKey="Wong, G" uniqKey="Wong G">G Wong</name>
</author>
<author>
<name sortKey="Shi, W" uniqKey="Shi W">W Shi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cavanagh, D" uniqKey="Cavanagh D">D Cavanagh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ismail, Mm" uniqKey="Ismail M">MM Ismail</name>
</author>
<author>
<name sortKey="Tang, Ay" uniqKey="Tang A">AY Tang</name>
</author>
<author>
<name sortKey="Saif, Ym" uniqKey="Saif Y">YM Saif</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhou, P" uniqKey="Zhou P">P Zhou</name>
</author>
<author>
<name sortKey="Fan, H" uniqKey="Fan H">H Fan</name>
</author>
<author>
<name sortKey="Lan, T" uniqKey="Lan T">T Lan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Peiris, Js" uniqKey="Peiris J">JS Peiris</name>
</author>
<author>
<name sortKey="Guan, Y" uniqKey="Guan Y">Y Guan</name>
</author>
<author>
<name sortKey="Yuen, Ky" uniqKey="Yuen K">KY Yuen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chan Yeung, M" uniqKey="Chan Yeung M">M Chan-Yeung</name>
</author>
<author>
<name sortKey="Xu, Rh" uniqKey="Xu R">RH Xu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zaki, Am" uniqKey="Zaki A">AM Zaki</name>
</author>
<author>
<name sortKey="Van Boheemen, S" uniqKey="Van Boheemen S">S van Boheemen</name>
</author>
<author>
<name sortKey="Bestebroer, Tm" uniqKey="Bestebroer T">TM Bestebroer</name>
</author>
<author>
<name sortKey="Osterhaus, Ad" uniqKey="Osterhaus A">AD Osterhaus</name>
</author>
<author>
<name sortKey="Fouchier, Ra" uniqKey="Fouchier R">RA Fouchier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, J" uniqKey="Lee J">J Lee</name>
</author>
<author>
<name sortKey="Chowell, G" uniqKey="Chowell G">G Chowell</name>
</author>
<author>
<name sortKey="Jung, E" uniqKey="Jung E">E Jung</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, Jy" uniqKey="Lee J">JY Lee</name>
</author>
<author>
<name sortKey="Kim, Yj" uniqKey="Kim Y">YJ Kim</name>
</author>
<author>
<name sortKey="Chung, Eh" uniqKey="Chung E">EH Chung</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tan, W" uniqKey="Tan W">W Tan</name>
</author>
<author>
<name sortKey="Zhao, X" uniqKey="Zhao X">X Zhao</name>
</author>
<author>
<name sortKey="Ma, X" uniqKey="Ma X">X Ma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhu, N" uniqKey="Zhu N">N Zhu</name>
</author>
<author>
<name sortKey="Zhang, D" uniqKey="Zhang D">D Zhang</name>
</author>
<author>
<name sortKey="Wang, W" uniqKey="Wang W">W Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chan, Jfw" uniqKey="Chan J">JFW Chan</name>
</author>
<author>
<name sortKey="Yuan, S" uniqKey="Yuan S">S Yuan</name>
</author>
<author>
<name sortKey="Kok, Kh" uniqKey="Kok K">KH Kok</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, C" uniqKey="Huang C">C Huang</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y Wang</name>
</author>
<author>
<name sortKey="Li, X" uniqKey="Li X">X Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Niu, P" uniqKey="Niu P">P Niu</name>
</author>
<author>
<name sortKey="Shen, J" uniqKey="Shen J">J Shen</name>
</author>
<author>
<name sortKey="Zhu, N" uniqKey="Zhu N">N Zhu</name>
</author>
<author>
<name sortKey="Lu, R" uniqKey="Lu R">R Lu</name>
</author>
<author>
<name sortKey="Tan, W" uniqKey="Tan W">W Tan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, H" uniqKey="Li H">H Li</name>
</author>
<author>
<name sortKey="Durbin, R" uniqKey="Durbin R">R Durbin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhao, Y" uniqKey="Zhao Y">Y Zhao</name>
</author>
<author>
<name sortKey="Tang, H" uniqKey="Tang H">H Tang</name>
</author>
<author>
<name sortKey="Ye, Y" uniqKey="Ye Y">Y Ye</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nurk, S" uniqKey="Nurk S">S Nurk</name>
</author>
<author>
<name sortKey="Bankevich, A" uniqKey="Bankevich A">A Bankevich</name>
</author>
<author>
<name sortKey="Antipov, D" uniqKey="Antipov D">D Antipov</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pan, M" uniqKey="Pan M">M Pan</name>
</author>
<author>
<name sortKey="Gao, R" uniqKey="Gao R">R Gao</name>
</author>
<author>
<name sortKey="Lv, Q" uniqKey="Lv Q">Q Lv</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Marchler Bauer, A" uniqKey="Marchler Bauer A">A Marchler-Bauer</name>
</author>
<author>
<name sortKey="Bo, Y" uniqKey="Bo Y">Y Bo</name>
</author>
<author>
<name sortKey="Han, L" uniqKey="Han L">L Han</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lole, Ks" uniqKey="Lole K">KS Lole</name>
</author>
<author>
<name sortKey="Bollinger, Rc" uniqKey="Bollinger R">RC Bollinger</name>
</author>
<author>
<name sortKey="Paranjape, Rs" uniqKey="Paranjape R">RS Paranjape</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nakamura, T" uniqKey="Nakamura T">T Nakamura</name>
</author>
<author>
<name sortKey="Yamada, Kd" uniqKey="Yamada K">KD Yamada</name>
</author>
<author>
<name sortKey="Tomii, K" uniqKey="Tomii K">K Tomii</name>
</author>
<author>
<name sortKey="Katoh, K" uniqKey="Katoh K">K Katoh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stamatakis, A" uniqKey="Stamatakis A">A Stamatakis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hu, D" uniqKey="Hu D">D Hu</name>
</author>
<author>
<name sortKey="Zhu, C" uniqKey="Zhu C">C Zhu</name>
</author>
<author>
<name sortKey="Ai, L" uniqKey="Ai L">L Ai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, F" uniqKey="Li F">F Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lu, G" uniqKey="Lu G">G Lu</name>
</author>
<author>
<name sortKey="Wang, Q" uniqKey="Wang Q">Q Wang</name>
</author>
<author>
<name sortKey="Gao, Gf" uniqKey="Gao G">GF Gao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Q" uniqKey="Wang Q">Q Wang</name>
</author>
<author>
<name sortKey="Wong, G" uniqKey="Wong G">G Wong</name>
</author>
<author>
<name sortKey="Lu, G" uniqKey="Lu G">G Lu</name>
</author>
<author>
<name sortKey="Yan, J" uniqKey="Yan J">J Yan</name>
</author>
<author>
<name sortKey="Gao, Gf" uniqKey="Gao G">GF Gao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="He, Y" uniqKey="He Y">Y He</name>
</author>
<author>
<name sortKey="Zhou, Y" uniqKey="Zhou Y">Y Zhou</name>
</author>
<author>
<name sortKey="Liu, S" uniqKey="Liu S">S Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, F" uniqKey="Li F">F Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, F" uniqKey="Li F">F Li</name>
</author>
<author>
<name sortKey="Li, W" uniqKey="Li W">W Li</name>
</author>
<author>
<name sortKey="Farzan, M" uniqKey="Farzan M">M Farzan</name>
</author>
<author>
<name sortKey="Harrison, Sc" uniqKey="Harrison S">SC Harrison</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lu, G" uniqKey="Lu G">G Lu</name>
</author>
<author>
<name sortKey="Hu, Y" uniqKey="Hu Y">Y Hu</name>
</author>
<author>
<name sortKey="Wang, Q" uniqKey="Wang Q">Q Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, N" uniqKey="Wang N">N Wang</name>
</author>
<author>
<name sortKey="Shi, X" uniqKey="Shi X">X Shi</name>
</author>
<author>
<name sortKey="Jiang, L" uniqKey="Jiang L">L Jiang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Q" uniqKey="Wang Q">Q Wang</name>
</author>
<author>
<name sortKey="Qi, J" uniqKey="Qi J">J Qi</name>
</author>
<author>
<name sortKey="Yuan, Y" uniqKey="Yuan Y">Y Yuan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Waterhouse, A" uniqKey="Waterhouse A">A Waterhouse</name>
</author>
<author>
<name sortKey="Bertoni, M" uniqKey="Bertoni M">M Bertoni</name>
</author>
<author>
<name sortKey="Bienert, S" uniqKey="Bienert S">S Bienert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Prabakaran, P" uniqKey="Prabakaran P">P Prabakaran</name>
</author>
<author>
<name sortKey="Gan, J" uniqKey="Gan J">J Gan</name>
</author>
<author>
<name sortKey="Feng, Y" uniqKey="Feng Y">Y Feng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guan, Y" uniqKey="Guan Y">Y Guan</name>
</author>
<author>
<name sortKey="Zheng, Bj" uniqKey="Zheng B">BJ Zheng</name>
</author>
<author>
<name sortKey="He, Yq" uniqKey="He Y">YQ He</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Alagaili, An" uniqKey="Alagaili A">AN Alagaili</name>
</author>
<author>
<name sortKey="Briese, T" uniqKey="Briese T">T Briese</name>
</author>
<author>
<name sortKey="Mishra, N" uniqKey="Mishra N">N Mishra</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhou, P" uniqKey="Zhou P">P Zhou</name>
</author>
<author>
<name sortKey="Yang, X L" uniqKey="Yang X">X-L Yang</name>
</author>
<author>
<name sortKey="Wang, X G" uniqKey="Wang X">X-G Wang</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Lancet</journal-id>
<journal-id journal-id-type="iso-abbrev">Lancet</journal-id>
<journal-title-group>
<journal-title>Lancet (London, England)</journal-title>
</journal-title-group>
<issn pub-type="ppub">0140-6736</issn>
<issn pub-type="epub">1474-547X</issn>
<publisher>
<publisher-name>Elsevier Ltd.</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">32007145</article-id>
<article-id pub-id-type="pmc">7159086</article-id>
<article-id pub-id-type="publisher-id">S0140-6736(20)30251-8</article-id>
<article-id pub-id-type="doi">10.1016/S0140-6736(20)30251-8</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" id="au10">
<name>
<surname>Lu</surname>
<given-names>Roujian</given-names>
</name>
<degrees>Prof</degrees>
<degrees>MSc</degrees>
<xref rid="aff1" ref-type="aff">a</xref>
<xref rid="fn1" ref-type="fn">*</xref>
</contrib>
<contrib contrib-type="author" id="au20">
<name>
<surname>Zhao</surname>
<given-names>Xiang</given-names>
</name>
<degrees>MD</degrees>
<xref rid="aff1" ref-type="aff">a</xref>
<xref rid="fn1" ref-type="fn">*</xref>
</contrib>
<contrib contrib-type="author" id="au30">
<name>
<surname>Li</surname>
<given-names>Juan</given-names>
</name>
<degrees>PhD</degrees>
<xref rid="aff2" ref-type="aff">b</xref>
<xref rid="fn1" ref-type="fn">*</xref>
</contrib>
<contrib contrib-type="author" id="au40">
<name>
<surname>Niu</surname>
<given-names>Peihua</given-names>
</name>
<degrees>PhD</degrees>
<xref rid="aff1" ref-type="aff">a</xref>
<xref rid="fn1" ref-type="fn">*</xref>
</contrib>
<contrib contrib-type="author" id="au50">
<name>
<surname>Yang</surname>
<given-names>Bo</given-names>
</name>
<degrees>MSc</degrees>
<xref rid="aff3" ref-type="aff">c</xref>
<xref rid="fn1" ref-type="fn">*</xref>
</contrib>
<contrib contrib-type="author" id="au60">
<name>
<surname>Wu</surname>
<given-names>Honglong</given-names>
</name>
<degrees>MSc</degrees>
<xref rid="aff4" ref-type="aff">d</xref>
<xref rid="fn1" ref-type="fn">*</xref>
</contrib>
<contrib contrib-type="author" id="au70">
<name>
<surname>Wang</surname>
<given-names>Wenling</given-names>
</name>
<degrees>Prof</degrees>
<degrees>PhD</degrees>
<xref rid="aff1" ref-type="aff">a</xref>
</contrib>
<contrib contrib-type="author" id="au80">
<name>
<surname>Song</surname>
<given-names>Hao</given-names>
</name>
<degrees>PhD</degrees>
<xref rid="aff5" ref-type="aff">e</xref>
</contrib>
<contrib contrib-type="author" id="au90">
<name>
<surname>Huang</surname>
<given-names>Baoying</given-names>
</name>
<degrees>PhD</degrees>
<xref rid="aff1" ref-type="aff">a</xref>
</contrib>
<contrib contrib-type="author" id="au100">
<name>
<surname>Zhu</surname>
<given-names>Na</given-names>
</name>
<degrees>PhD</degrees>
<xref rid="aff1" ref-type="aff">a</xref>
</contrib>
<contrib contrib-type="author" id="au110">
<name>
<surname>Bi</surname>
<given-names>Yuhai</given-names>
</name>
<degrees>Prof</degrees>
<degrees>PhD</degrees>
<xref rid="aff6" ref-type="aff">f</xref>
<xref rid="aff7" ref-type="aff">g</xref>
</contrib>
<contrib contrib-type="author" id="au120">
<name>
<surname>Ma</surname>
<given-names>Xuejun</given-names>
</name>
<degrees>Prof</degrees>
<degrees>PhD</degrees>
<xref rid="aff1" ref-type="aff">a</xref>
</contrib>
<contrib contrib-type="author" id="au130">
<name>
<surname>Zhan</surname>
<given-names>Faxian</given-names>
</name>
<degrees>Prof</degrees>
<degrees>PhD</degrees>
<xref rid="aff3" ref-type="aff">c</xref>
</contrib>
<contrib contrib-type="author" id="au140">
<name>
<surname>Wang</surname>
<given-names>Liang</given-names>
</name>
<degrees>PhD</degrees>
<xref rid="aff6" ref-type="aff">f</xref>
<xref rid="aff7" ref-type="aff">g</xref>
</contrib>
<contrib contrib-type="author" id="au150">
<name>
<surname>Hu</surname>
<given-names>Tao</given-names>
</name>
<degrees>MSc</degrees>
<xref rid="aff2" ref-type="aff">b</xref>
</contrib>
<contrib contrib-type="author" id="au160">
<name>
<surname>Zhou</surname>
<given-names>Hong</given-names>
</name>
<degrees>PhD</degrees>
<xref rid="aff2" ref-type="aff">b</xref>
</contrib>
<contrib contrib-type="author" id="au170">
<name>
<surname>Hu</surname>
<given-names>Zhenhong</given-names>
</name>
<degrees>Prof</degrees>
<degrees>MD</degrees>
<xref rid="aff8" ref-type="aff">h</xref>
</contrib>
<contrib contrib-type="author" id="au180">
<name>
<surname>Zhou</surname>
<given-names>Weimin</given-names>
</name>
<degrees>Prof</degrees>
<degrees>MD</degrees>
<xref rid="aff1" ref-type="aff">a</xref>
</contrib>
<contrib contrib-type="author" id="au190">
<name>
<surname>Zhao</surname>
<given-names>Li</given-names>
</name>
<degrees>PhD</degrees>
<xref rid="aff1" ref-type="aff">a</xref>
</contrib>
<contrib contrib-type="author" id="au200">
<name>
<surname>Chen</surname>
<given-names>Jing</given-names>
</name>
<degrees>MSc</degrees>
<xref rid="aff9" ref-type="aff">i</xref>
</contrib>
<contrib contrib-type="author" id="au210">
<name>
<surname>Meng</surname>
<given-names>Yao</given-names>
</name>
<degrees>PhD</degrees>
<xref rid="aff1" ref-type="aff">a</xref>
</contrib>
<contrib contrib-type="author" id="au220">
<name>
<surname>Wang</surname>
<given-names>Ji</given-names>
</name>
<degrees>PhD</degrees>
<xref rid="aff1" ref-type="aff">a</xref>
</contrib>
<contrib contrib-type="author" id="au230">
<name>
<surname>Lin</surname>
<given-names>Yang</given-names>
</name>
<degrees>BS</degrees>
<xref rid="aff4" ref-type="aff">d</xref>
</contrib>
<contrib contrib-type="author" id="au240">
<name>
<surname>Yuan</surname>
<given-names>Jianying</given-names>
</name>
<degrees>MSc</degrees>
<xref rid="aff4" ref-type="aff">d</xref>
</contrib>
<contrib contrib-type="author" id="au250">
<name>
<surname>Xie</surname>
<given-names>Zhihao</given-names>
</name>
<degrees>BS</degrees>
<xref rid="aff4" ref-type="aff">d</xref>
</contrib>
<contrib contrib-type="author" id="au260">
<name>
<surname>Ma</surname>
<given-names>Jinmin</given-names>
</name>
<degrees>PhD</degrees>
<xref rid="aff4" ref-type="aff">d</xref>
</contrib>
<contrib contrib-type="author" id="au270">
<name>
<surname>Liu</surname>
<given-names>William J</given-names>
</name>
<degrees>Prof</degrees>
<degrees>PhD</degrees>
<xref rid="aff1" ref-type="aff">a</xref>
</contrib>
<contrib contrib-type="author" id="au280">
<name>
<surname>Wang</surname>
<given-names>Dayan</given-names>
</name>
<degrees>Prof</degrees>
<degrees>PhD</degrees>
<xref rid="aff1" ref-type="aff">a</xref>
</contrib>
<contrib contrib-type="author" id="au290">
<name>
<surname>Xu</surname>
<given-names>Wenbo</given-names>
</name>
<degrees>Prof</degrees>
<degrees>MD</degrees>
<xref rid="aff1" ref-type="aff">a</xref>
</contrib>
<contrib contrib-type="author" id="au300">
<name>
<surname>Holmes</surname>
<given-names>Edward C</given-names>
</name>
<degrees>Prof</degrees>
<degrees>PhD</degrees>
<xref rid="aff10" ref-type="aff">j</xref>
</contrib>
<contrib contrib-type="author" id="au310">
<name>
<surname>Gao</surname>
<given-names>George F</given-names>
</name>
<degrees>Prof</degrees>
<degrees>DPhil</degrees>
<xref rid="aff1" ref-type="aff">a</xref>
<xref rid="aff6" ref-type="aff">f</xref>
<xref rid="aff7" ref-type="aff">g</xref>
</contrib>
<contrib contrib-type="author" id="au320">
<name>
<surname>Wu</surname>
<given-names>Guizhen</given-names>
</name>
<degrees>Prof</degrees>
<degrees>MD</degrees>
<xref rid="aff1" ref-type="aff">a</xref>
<xref rid="fn2" ref-type="fn"></xref>
</contrib>
<contrib contrib-type="author" id="au330">
<name>
<surname>Chen</surname>
<given-names>Weijun</given-names>
</name>
<degrees>Prof</degrees>
<degrees>PhD</degrees>
<xref rid="aff4" ref-type="aff">d</xref>
<xref rid="fn2" ref-type="fn"></xref>
</contrib>
<contrib contrib-type="author" id="au340">
<name>
<surname>Shi</surname>
<given-names>Weifeng</given-names>
</name>
<degrees>Prof</degrees>
<degrees>PhD</degrees>
<email>wfshi@sdfmu.edu.cn</email>
<xref rid="aff2" ref-type="aff">b</xref>
<xref rid="aff11" ref-type="aff">k</xref>
<xref rid="cor2" ref-type="corresp">**</xref>
<xref rid="fn2" ref-type="fn"></xref>
</contrib>
<contrib contrib-type="author" id="au350">
<name>
<surname>Tan</surname>
<given-names>Wenjie</given-names>
</name>
<degrees>Prof</degrees>
<degrees>MD</degrees>
<email>tanwj@ivdc.chinacdc.cn</email>
<xref rid="aff1" ref-type="aff">a</xref>
<xref rid="aff8" ref-type="aff">h</xref>
<xref rid="aff12" ref-type="aff">l</xref>
<xref rid="cor1" ref-type="corresp">*</xref>
<xref rid="fn2" ref-type="fn"></xref>
</contrib>
</contrib-group>
<aff id="aff1">
<label>a</label>
NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China</aff>
<aff id="aff2">
<label>b</label>
Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, China</aff>
<aff id="aff3">
<label>c</label>
Division for Viral Disease Detection, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China</aff>
<aff id="aff4">
<label>d</label>
BGI PathoGenesis Pharmaceutical Technology, Shenzhen, China</aff>
<aff id="aff5">
<label>e</label>
Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China</aff>
<aff id="aff6">
<label>f</label>
Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China</aff>
<aff id="aff7">
<label>g</label>
Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, China</aff>
<aff id="aff8">
<label>h</label>
Central Theater, People's Liberation Army General Hospital, Wuhan, China</aff>
<aff id="aff9">
<label>i</label>
Key Laboratory of Laboratory Medicine, Ministry of Education, and Zhejiang Provincial Key Laboratory of Medical Genetics, Institute of Medical Virology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China</aff>
<aff id="aff10">
<label>j</label>
Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, University of Sydney, Sydney, NSW, Australia</aff>
<aff id="aff11">
<label>k</label>
The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital), Jinan, China</aff>
<aff id="aff12">
<label>l</label>
Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China</aff>
<author-notes>
<corresp id="cor1">
<label>*</label>
Correspondence to: Prof Wenjie Tan, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
<email>tanwj@ivdc.chinacdc.cn</email>
</corresp>
<corresp id="cor2">
<label>**</label>
Prof Weifeng Shi, Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian 271000, China
<email>wfshi@sdfmu.edu.cn</email>
</corresp>
<fn id="fn1">
<label>*</label>
<p id="cenpara20">Contributed equally</p>
</fn>
<fn id="fn2">
<label></label>
<p id="cenpara30">Contributed equally</p>
</fn>
</author-notes>
<pub-date pub-type="pmc-release">
<day>30</day>
<month>1</month>
<year>2020</year>
</pub-date>
<pmc-comment> PMC Release delay is 0 months and 0 days and was based on .</pmc-comment>
<pub-date pub-type="ppub" iso-8601-date="2020-02-28">
<season>22-28 February</season>
<year>2020</year>
</pub-date>
<pub-date pub-type="epub">
<day>30</day>
<month>1</month>
<year>2020</year>
</pub-date>
<volume>395</volume>
<issue>10224</issue>
<fpage>565</fpage>
<lpage>574</lpage>
<permissions>
<copyright-statement>© 2020 Elsevier Ltd. All rights reserved.</copyright-statement>
<copyright-year>2020</copyright-year>
<copyright-holder>Elsevier Ltd</copyright-holder>
<license>
<license-p>Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.</license-p>
</license>
</permissions>
<abstract id="ceab10">
<title>Summary</title>
<sec>
<title>Background</title>
<p>In late December, 2019, patients presenting with viral pneumonia due to an unidentified microbial agent were reported in Wuhan, China. A novel coronavirus was subsequently identified as the causative pathogen, provisionally named 2019 novel coronavirus (2019-nCoV). As of Jan 26, 2020, more than 2000 cases of 2019-nCoV infection have been confirmed, most of which involved people living in or visiting Wuhan, and human-to-human transmission has been confirmed.</p>
</sec>
<sec>
<title>Methods</title>
<p>We did next-generation sequencing of samples from bronchoalveolar lavage fluid and cultured isolates from nine inpatients, eight of whom had visited the Huanan seafood market in Wuhan. Complete and partial 2019-nCoV genome sequences were obtained from these individuals. Viral contigs were connected using Sanger sequencing to obtain the full-length genomes, with the terminal regions determined by rapid amplification of cDNA ends. Phylogenetic analysis of these 2019-nCoV genomes and those of other coronaviruses was used to determine the evolutionary history of the virus and help infer its likely origin. Homology modelling was done to explore the likely receptor-binding properties of the virus.</p>
</sec>
<sec>
<title>Findings</title>
<p>The ten genome sequences of 2019-nCoV obtained from the nine patients were extremely similar, exhibiting more than 99·98% sequence identity. Notably, 2019-nCoV was closely related (with 88% identity) to two bat-derived severe acute respiratory syndrome (SARS)-like coronaviruses, bat-SL-CoVZC45 and bat-SL-CoVZXC21, collected in 2018 in Zhoushan, eastern China, but were more distant from SARS-CoV (about 79%) and MERS-CoV (about 50%). Phylogenetic analysis revealed that 2019-nCoV fell within the subgenus Sarbecovirus of the genus Betacoronavirus, with a relatively long branch length to its closest relatives bat-SL-CoVZC45 and bat-SL-CoVZXC21, and was genetically distinct from SARS-CoV. Notably, homology modelling revealed that 2019-nCoV had a similar receptor-binding domain structure to that of SARS-CoV, despite amino acid variation at some key residues.</p>
</sec>
<sec>
<title>Interpretation</title>
<p>2019-nCoV is sufficiently divergent from SARS-CoV to be considered a new human-infecting betacoronavirus. Although our phylogenetic analysis suggests that bats might be the original host of this virus, an animal sold at the seafood market in Wuhan might represent an intermediate host facilitating the emergence of the virus in humans. Importantly, structural analysis suggests that 2019-nCoV might be able to bind to the angiotensin-converting enzyme 2 receptor in humans. The future evolution, adaptation, and spread of this virus warrant urgent investigation.</p>
</sec>
<sec>
<title>Funding</title>
<p>National Key Research and Development Program of China, National Major Project for Control and Prevention of Infectious Disease in China, Chinese Academy of Sciences, Shandong First Medical University.</p>
</sec>
</abstract>
</article-meta>
</front>
<body>
<sec id="cesec10">
<title>Introduction</title>
<p id="para10">Viruses of the family Coronaviridae possess a single-strand, positive-sense RNA genome ranging from 26 to 32 kilobases in length.
<xref rid="bib1" ref-type="bibr">
<sup>1</sup>
</xref>
Coronaviruses have been identified in several avian hosts,
<xref rid="bib2" ref-type="bibr">2</xref>
,
<xref rid="bib3" ref-type="bibr">3</xref>
as well as in various mammals, including camels, bats, masked palm civets, mice, dogs, and cats. Novel mammalian coronaviruses are now regularly identified.
<xref rid="bib1" ref-type="bibr">
<sup>1</sup>
</xref>
For example, an HKU2-related coronavirus of bat origin was responsible for a fatal acute diarrhoea syndrome in pigs in 2018.
<xref rid="bib4" ref-type="bibr">
<sup>4</sup>
</xref>
</p>
<p id="para20">Among the several coronaviruses that are pathogenic to humans, most are associated with mild clinical symptoms,
<xref rid="bib1" ref-type="bibr">
<sup>1</sup>
</xref>
with two notable exceptions: severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV), a novel betacoronavirus that emerged in Guangdong, southern China, in November, 2002,
<xref rid="bib5" ref-type="bibr">
<sup>5</sup>
</xref>
and resulted in more than 8000 human infections and 774 deaths in 37 countries during 2002–03;
<xref rid="bib6" ref-type="bibr">
<sup>6</sup>
</xref>
and Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV), which was first detected in Saudi Arabia in 2012
<xref rid="bib7" ref-type="bibr">
<sup>7</sup>
</xref>
and was responsible for 2494 laboratory-confirmed cases of infection and 858 fatalities since September, 2012, including 38 deaths following a single introduction into South Korea.
<xref rid="bib8" ref-type="bibr">8</xref>
,
<xref rid="bib9" ref-type="bibr">9</xref>
</p>
<p id="para30">
<boxed-text id="cetextbox10">
<caption>
<title>Research in context</title>
</caption>
<p id="para40">
<bold>Evidence before this study</bold>
</p>
<p id="para50">The causal agent of an outbreak of severe pneumonia in Wuhan, China, is a novel coronavirus, provisionally named 2019 novel coronavirus (2019-nCoV). The first cases were reported in December, 2019.</p>
<p id="para60">
<bold>Added value of this study</bold>
</p>
<p id="para70">We have described the genomic characteristics of 2019-nCoV and similarities and differences to other coronaviruses, including the virus that caused the severe acute respiratory syndrome epidemic of 2002–03. Genome sequences of 2019-nCoV sampled from nine patients who were among the early cases of this severe infection are almost genetically identical, which suggests very recent emergence of this virus in humans and that the outbreak was detected relatively rapidly. 2019-nCoV is most closely related to other betacoronaviruses of bat origin, indicating that these animals are the likely reservoir hosts for this emerging viral pathogen.</p>
<p id="para80">
<bold>Implications of all the available evidence</bold>
</p>
<p id="para90">By documenting the presence of 2019-nCoV in a sample of patients, our study extends previous evidence that this virus has led to the novel pneumonia that has caused severe disease in Wuhan and other geographical localities. Currently available data suggest that 2019-nCoV infected the human population from a bat reservoir, although it remains unclear if a currently unknown animal species acted as an intermediate host between bats and humans.</p>
</boxed-text>
</p>
<p id="para100">In late December, 2019, several patients with viral pneumonia were found to be epidemiologically associated with the Huanan seafood market in Wuhan, in the Hubei province of China, where a number of non-aquatic animals such as birds and rabbits were also on sale before the outbreak. A novel, human-infecting coronavirus,
<xref rid="bib10" ref-type="bibr">10</xref>
,
<xref rid="bib11" ref-type="bibr">11</xref>
provisionally named 2019 novel coronavirus (2019-nCoV), was identified with use of next-generation sequencing. As of Jan 28, 2020, China has reported more than 5900 confirmed and more than 9000 suspected cases of 2019-nCoV infection across 33 Chinese provinces or municipalities, with 106 fatalities. In addition, 2019-nCoV has now been reported in Thailand, Japan, South Korea, Malaysia, Singapore, and the USA. Infections in medical workers and family clusters were also reported and human-to-human transmission has been confirmed.
<xref rid="bib12" ref-type="bibr">
<sup>12</sup>
</xref>
Most of the infected patients had a high fever and some had dyspnoea, with chest radiographs revealing invasive lesions in both lungs.
<xref rid="bib12" ref-type="bibr">12</xref>
,
<xref rid="bib13" ref-type="bibr">13</xref>
</p>
<p id="para110">We report the epidemiological data of nine inpatients, from at least three hospitals in Wuhan, who were diagnosed with viral pneumonia of unidentified cause. Using next-generation sequencing of bronchoalveolar lavage fluid samples and cultured isolates from these patients, 2019-nCoV was found. We describe the genomic characterisation of ten genomes of this novel virus, providing important information on the origins and cell receptor binding of the virus.</p>
</sec>
<sec id="cesec20">
<title>Methods</title>
<sec id="cesec30">
<title>Patients and samples</title>
<p id="para120">Nine patients with viral pneumonia and negative for common respiratory pathogens, who presented to at least three hospitals in Wuhan, were included in this study. Eight of the patients had visited the Huanan seafood market before the onset of illness, and one patient (WH04) did not visit the market but stayed in a hotel near the market between Dec 23 and Dec 27, 2019 (
<xref rid="tbl1" ref-type="table">table</xref>
). Five of the patients (WH19001, WH19002, WH19004, WH19008, and YS8011) had samples collected by the Chinese Center for Disease Control and Prevention (CDC) which were tested for 18 viruses and four bacteria using the RespiFinderSmart22 Kit (PathoFinder, Maastricht, Netherlands) on the LightCycler 480 Real-Time PCR system (Roche, Rotkreuz, Switzerland). Presence of SARS-CoV and MERS-CoV was tested using a previously reported method.
<xref rid="bib14" ref-type="bibr">
<sup>14</sup>
</xref>
All five CDC samples were negative for all common respiratory pathogens screened for. Four of the patients (WH01, WH02, WH03, and WH04) had samples collected by BGI (Beijing, China), and were tested for five viruses and one bacterium using the RespiPathogen 6 Kit (Jiangsu Macro & Micro Test, Nantong, China) on the Applied Biosystems ABI 7500 Real-Time PCR system (ThermoFisher Scientific, Foster City, CA, USA). All four samples were negative for the targeted respiratory pathogens.
<table-wrap position="float" id="tbl1">
<label>Table</label>
<caption>
<p>Information about samples taken from nine patients infected with 2019-nCoV</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th></th>
<th colspan="3" align="left">
<bold>Patient information</bold>
<hr></hr>
</th>
<th colspan="3" align="left">
<bold>Sample information</bold>
<hr></hr>
</th>
<th align="left">
<bold>Genome sequence obtained</bold>
</th>
</tr>
<tr>
<th></th>
<th align="left">Exposure to Huanan seafood market</th>
<th align="left">Date of symptom onset</th>
<th align="left">Admission date</th>
<th align="left">Sample type</th>
<th align="left">Collection date</th>
<th align="left">Ct value</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td align="left">Samples WH19001 and WH19005</td>
<td align="left">Yes</td>
<td align="left">Dec 23, 2019</td>
<td align="left">Dec 29, 2019</td>
<td align="left">BALF and cultured virus</td>
<td align="left">Dec 30, 2019</td>
<td align="left">30·23</td>
<td align="left">Complete</td>
</tr>
<tr>
<td align="left">Sample WH19002</td>
<td align="left">Yes</td>
<td align="left">Dec 22, 2019</td>
<td align="left">NA</td>
<td align="left">BALF</td>
<td align="left">Dec 30, 2019</td>
<td align="left">30·50</td>
<td align="left">Partial (27 130 nucleotides)</td>
</tr>
<tr>
<td align="left">Sample WH19004</td>
<td align="left">Yes</td>
<td align="left">NA</td>
<td align="left">NA</td>
<td align="left">BALF</td>
<td align="left">Jan 1, 2020</td>
<td align="left">32·14</td>
<td align="left">Complete</td>
</tr>
<tr>
<td align="left">Sample WH19008</td>
<td align="left">Yes</td>
<td align="left">NA</td>
<td align="left">Dec 29, 2019</td>
<td align="left">BALF</td>
<td align="left">Dec 30, 2019</td>
<td align="left">26·35</td>
<td align="left">Complete</td>
</tr>
<tr>
<td align="left">Sample YS8011</td>
<td align="left">Yes</td>
<td align="left">NA</td>
<td align="left">NA</td>
<td align="left">Throat swab</td>
<td align="left">Jan 7, 2020</td>
<td align="left">22·85</td>
<td align="left">Complete</td>
</tr>
<tr>
<td align="left">Sample WH01</td>
<td align="left">Yes</td>
<td align="left">NA</td>
<td align="left">NA</td>
<td align="left">BALF</td>
<td align="left">Dec 26, 2019</td>
<td align="left">32·60</td>
<td align="left">Complete</td>
</tr>
<tr>
<td align="left">Sample WH02</td>
<td align="left">Yes</td>
<td align="left">NA</td>
<td align="left">NA</td>
<td align="left">BALF</td>
<td align="left">Dec 31, 2019</td>
<td align="left">34·23</td>
<td align="left">Partial (19 503 nucleotides)</td>
</tr>
<tr>
<td align="left">Sample WH03</td>
<td align="left">Yes</td>
<td align="left">Dec 26, 2019</td>
<td align="left">NA</td>
<td align="left">BALF</td>
<td align="left">Jan 1, 2020</td>
<td align="left">25·38</td>
<td align="left">Complete</td>
</tr>
<tr>
<td align="left">Sample WH04</td>
<td align="left">No
<xref rid="tbl1fn1" ref-type="table-fn">*</xref>
</td>
<td align="left">Dec 27, 2019</td>
<td align="left">NA</td>
<td align="left">BALF</td>
<td align="left">Jan 5, 2020</td>
<td align="left">25·23</td>
<td align="left">Complete</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>Ct=threshold cycle. BALF=bronchoalveolar lavage fluid. NA=not available. 2019-nCoV=2019 novel coronavirus.</p>
</fn>
</table-wrap-foot>
<table-wrap-foot>
<fn id="tbl1fn1">
<label>*</label>
<p id="cenpara10">Patient stayed in a hotel near Huanan seafood market from Dec 23 to Dec 27, 2019, and reported fever on Dec 27, 2019.</p>
</fn>
</table-wrap-foot>
</table-wrap>
</p>
</sec>
<sec id="cesec40">
<title>Virus isolation</title>
<p id="para130">Special-pathogen-free human airway epithelial (HAE) cells were used for virus isolation. Briefly, bronchoalveolar lavage fluids or throat swabs from the patients were inoculated into the HAE cells through the apical surfaces. HAE cells were maintained in an air–liquid interface incubated at 37°C. The cells were monitored daily for cytopathic effects by light microscopy and the cell supernatants were collected for use in quantitative RT-PCR assays. After three passages, apical samples were collected for sequencing.</p>
</sec>
<sec id="cesec50">
<title>BGI sequencing strategy</title>
<p id="para140">All collected samples were sent to BGI for sequencing. 140 μL bronchoalveolar lavage fluid samples (WH01 to WH04) were reserved for RNA extraction using the QIAamp Viral RNA Mini Kit (52904; Qiagen, Heiden, Germany), according to the manufacturer's recommendations. A probe-captured technique was used to remove human nucleic acid. The remaining RNA was reverse-transcribed into cDNA, followed by the second-strand synthesis. Using the synthetic double-stranded DNA, a DNA library was constructed through DNA-fragmentation, end-repair, adaptor-ligation, and PCR amplification. The constructed library was qualified with an Invitrogen Qubit 2.0 Fluorometer (ThermoFisher, Foster City, CA, USA), and the qualified double-stranded DNA library was transformed into a single-stranded circular DNA library through DNA-denaturation and circularisation. DNA nanoballs were generated from single-stranded circular DNA by rolling circle amplification, then qualified with Qubit 2.0 and loaded onto the flow cell and sequenced with PE100 on the DNBSEQ-T7 platform (MGI, Shenzhen, China).</p>
<p id="para150">After removing adapter, low-quality, and low-complexity reads, high-quality genome sequencing data were generated. Sequence reads were first filtered against the human reference genome (hg19) using Burrows-Wheeler Alignment.
<xref rid="bib15" ref-type="bibr">
<sup>15</sup>
</xref>
The remaining data were then aligned to the local nucleotide database (using Burrows-Wheeler Alignment) and non-redundant protein database (using RapSearch),
<xref rid="bib16" ref-type="bibr">
<sup>16</sup>
</xref>
downloaded from the US National Center for Biotechnology Information
<ext-link ext-link-type="uri" xlink:href="https://www.ncbi.nlm.nih.gov/" id="interrefs10">website</ext-link>
, which contain only coronaviruses that have been published. Finally, the mapped reads were assembled with SPAdes
<xref rid="bib17" ref-type="bibr">
<sup>17</sup>
</xref>
to obtain a high-quality coronavirus genome sequence.</p>
<p id="para160">Primers were designed with use of OLIGO Primer Analysis Software version 6.44 on the basis of the assembled partial genome, and were verified by Primer-Blast (for more details on primer sequencs used please contact the corresponding author). PCR was set up as follows: 4·5 μL of 10X buffer, 4 μL of dNTP mix (2·5 μmol/L), 1 μL of each primer (10 μmol/L), and 0·75 units of HS Ex Taq (Takara Biomedical Technology, Beijing, China), in a total volume of 30 μL. The cDNAs reverse transcribed from clinical samples were used as templates, and random primers were used. The following program was run on the thermocycler: 95°C for 5 min; 40 cycles of 95°C for 30 s, 55°C for 30 s, and 72°C for 1 min as determined by product size; 72°C for 7 min; and a 4°C hold. Finally, the PCR products were separated by agarose gel electrophoresis, and products of the expected size were sequenced from both ends on the Applied Biosystems 3730 DNA Analyzer platform (Applied Biosystems, Life Technologies, Foster City, CA, USA; for more details on expected size please contact the corresponding author).</p>
</sec>
<sec id="cesec60">
<title>Chinese CDC sequencing strategy</title>
<p id="para170">The whole-genome sequences of 2019-nCoV from six samples (WH19001, WH19005, WH19002, WH19004, WH19008, and YS8011) were generated by a combination Sanger, Illumina, and Oxford nanopore sequencing. First, viral RNAs were extracted directly from clinical samples with the QIAamp Viral RNA Mini Kit, and then used to synthesise cDNA with the SuperScript III Reverse Transcriptase (ThermoFisher, Waltham, MA, USA) and N6 random primers, followed by second-strand synthesis with DNA Polymerase I, Large (Klenow) Fragment (ThermoFisher). Viral cDNA libraries were prepared with use of the Nextera XT Library Prep Kit (Illumina, San Diego, CA, USA), then purified with Agencourt AMPure XP beads (Beckman Coulter, Brea, CA, USA), followed by quantification with an Invitrogen Qubit 2.0 Fluorometer. The resulting DNA libraries were sequenced on either the MiSeq or iSeq platforms (Illumina) using a 300-cycle reagent kit. About 1·2–5 GB of data were obtained for each sample.</p>
<p id="para180">The raw fastQ files for each virus sample were filtered using previously described criteria,
<xref rid="bib18" ref-type="bibr">
<sup>18</sup>
</xref>
then subjected to de novo assembly with the CLCBio software version 11.0.1. Mapped assemblies were also done using the bat-derived SARS-like coronavirus isolate bat-SL-CoVZC45 (accession number MG772933.1) as a reference. Variant calling, genome alignments, and sequence illustrations were generated with CLCBio software, and the assembled genome sequences were confirmed by Sanger sequencing.</p>
<p id="para190">Rapid amplification of cDNA ends (RACE) was done to obtain the sequences of the 5′ and 3′ termini, using the Invitrogen 5′ RACE System and 3′ RACE System (Invitrogen, Carlsbad, CA, USA), according to the manufacturer's instructions. Gene-specific primers (
<xref rid="sec1" ref-type="sec">appendix p 1</xref>
) for 5′ and 3′ RACE PCR amplification were designed to obtain a fragment of approximately 400–500 bp for the two regions. Purified PCR products were cloned into the pMD18-T Simple Vector (TaKaRa, Takara Biotechnology, Dalian, China) and chemically competent
<italic>Escherichia coli</italic>
(DH5α cells; TaKaRa), according to the manufacturer's instructions. PCR products were sequenced with use of M13 forward and reverse primers.</p>
</sec>
<sec id="cesec70">
<title>Virus genome analysis and annotation</title>
<p id="para200">Reference virus genomes were obtained from
<ext-link ext-link-type="uri" xlink:href="https://www.ncbi.nlm.nih.gov/genbank" id="interrefs20">GenBank</ext-link>
using Blastn with 2019-nCoV as a query. The open reading frames of the verified genome sequences were predicted using Geneious (version 11.1.5) and annotated using the Conserved Domain Database.
<xref rid="bib19" ref-type="bibr">
<sup>19</sup>
</xref>
Pairwise sequence identities were also calculated using Geneious. Potential genetic recombination was investigated using SimPlot software (version 3.5.1)
<xref rid="bib20" ref-type="bibr">
<sup>20</sup>
</xref>
and phylogenetic analysis.</p>
</sec>
<sec id="cesec80">
<title>Phylogenetic analysis</title>
<p id="para210">Sequence alignment of 2019-nCoV with reference sequences was done with Mafft software (version 7.450).
<xref rid="bib21" ref-type="bibr">
<sup>21</sup>
</xref>
Phylogenetic analyses of the complete genome and major coding regions were done with RAxML software (version 8.2.9)
<xref rid="bib22" ref-type="bibr">
<sup>22</sup>
</xref>
with 1000 bootstrap replicates, employing the general time reversible nucleotide substitution model.</p>
</sec>
<sec id="cesec90">
<title>Development of molecular diagnostics for 2019-nCoV</title>
<p id="para220">On the basis of the genome sequences obtained, a real-time PCR detection assay was developed. PCR primers and probes were designed using Applied Biosystems Primer Express Software (ThermoFisher Scientific, Foster City, CA, USA) on the basis of our sequenced virus genomes. The specific primers and probe set (labelled with the reporter 6-carboxyfluorescein [FAM] and the quencher Black Hole Quencher 1 [BHQ1]) for
<italic>orf1a</italic>
were as follows: forward primer 5′-AGAAGATTGGTTAGATGATGATAGT-3′; reverse primer 5′-TTCCATCTCTAATTGAGGTTGAACC-3′; and probe 5′-FAM-TCCTCACTGCCGTCTTGTTGACCA-BHQ1-3′. The human
<italic>GAPDH</italic>
gene was used as an internal control (forward primer 5′-TCAAGAAGGTGGTGAAGCAGG-3′; reverse primer 5′-CAGCGTCAAAGGTGGAGGAGT-3′; probe 5′-VIC-CCTCAAGGGCATCCTGGGCTACACT-BHQ1-3′). Primers and probes were synthesised by BGI (Beijing, China). RT-PCR was done with an Applied Biosystems 7300 Real-Time PCR System (ThermoScientific), with 30 μL reaction volumes consisting of 14 μL of diluted RNA, 15 μL of 2X Taqman One-Step RT-PCR Master Mix Reagents (4309169; Applied Biosystems, ThermoFisher), 0·5 μL of 40X MultiScribe and RNase inhibitor mixture, 0·75 μL forward primer (10 μmol/L), 0·75 μL reverse primer (10 μmol/L), and 0·375 μL probe (10 μmol/L). Thermal cycling parameters were 30 min at 42°C, followed by 10 min at 95°C, and a subsequent 40 cycles of amplification (95°C for 15 s and 58°C for 45 s). Fluorescence was recorded during the 58°C phase.</p>
</sec>
<sec id="cesec100">
<title>Role of the funding source</title>
<p id="para230">The funder of the study had no role in data collection, data analysis, data interpretation, or writing of report. GFG and WS had access to all the data in the study, and GFG, WS, WT, WC, and GW were responsible for the decision to submit for publication.</p>
</sec>
</sec>
<sec id="cesec110">
<title>Results</title>
<p id="para240">From the nine patients' samples analysed, eight complete and two partial genome sequences of 2019-nCoV were obtained. These data have been deposited in the China
<ext-link ext-link-type="uri" xlink:href="http://nmdc.cn/" id="interrefs30">National Microbiological Data Center</ext-link>
(accession number NMDC10013002 and genome accession numbers NMDC60013002-01 to NMDC60013002-10) and the data from BGI have been deposited in the
<ext-link ext-link-type="uri" xlink:href="https://db.cngb.org/datamart/disease/DATAdis19/" id="interrefs40">China National GeneBank</ext-link>
(accession numbers CNA0007332–35).</p>
<p id="para250">Based on these genomes, we developed a real-time PCR assay and tested the original clinical samples from the BGI (WH01, WH02, WH03, and WH04) again to determine their threshold cycle (Ct) values (
<xref rid="tbl1" ref-type="table">table</xref>
). The remaining samples were tested by a different real-time PCR assay developed by the Chinese CDC, with Ct values ranging from 22·85 to 32·41 (
<xref rid="tbl1" ref-type="table">table</xref>
). These results confirmed the presence of 2019-nCoV in the patients.</p>
<p id="para260">Bronchoalveolar lavage fluid samples or cultured viruses of nine patients were used for next-generation sequencing. After removing host (human) reads, de novo assembly was done and the contigs obtained used as queries to search the non-redundant protein database. Some contigs identified in all the samples were closely related to the bat SARS-like betacoronavirus bat-SL-CoVZC45 betacoronavirus.
<xref rid="bib23" ref-type="bibr">
<sup>23</sup>
</xref>
Bat-SL-CoVZC45 was then used as the reference genome and reads from each pool were mapped to it, generating consensus sequences corresponding to all the pools. These consensus sequences were then used as new reference genomes. Eight complete genomes and two partial genomes (from samples WH19002 and WH02;
<xref rid="tbl1" ref-type="table">table</xref>
) were obtained. The de novo assembly of the clean reads from all the pools did not identify any other long contigs that corresponded to other viruses at high abundance.</p>
<p id="para270">The eight complete genomes were nearly identical across the whole genome, with sequence identity above 99·98%, indicative of a very recent emergence into the human population (
<xref rid="fig1" ref-type="fig">figure 1A</xref>
). The largest nucleotide difference was four mutations. Notably, the sequence identity between the two virus genomes from the same patient (WH19001, from bronchoalveolar lavage fluid, and WH19005, from cell culture) was more than 99·99%, with 100% identity at the amino acid level. In addition, the partial genomes from samples WH02 and WH19002 also had nearly 100% identity to the complete genomes across the aligned gene regions.
<fig id="fig1">
<label>Figure 1</label>
<caption>
<p>Sequence comparison and genomic organisation of 2019-nCoV</p>
<p>(A) Sequence alignment of eight full-length genomes of 2019-nCoV, 29 829 base pairs in length, with a few nucleotides truncated at both ends of the genome. (B) Coding regions of 2019-nCoV, bat-SL-CoVZC45, bat-SL-CoVZXC21, SARS-CoV, and MERS-CoV. Only open reading frames of more than 100 nucleotides are shown. 2019-nCoV=2019 novel coronavirus. SARS-CoV=severe acute respiratory syndrome coronavirus. MERS-CoV=Middle East respiratory syndrome coronavirus.</p>
</caption>
<graphic xlink:href="gr1_lrg"></graphic>
</fig>
</p>
<p id="para280">A Blastn search of the complete genomes of 2019-nCoV revealed that the most closely related viruses available on GenBank were bat-SL-CoVZC45 (sequence identity 87·99%; query coverage 99%) and another SARS-like betacoronavirus of bat origin, bat-SL-CoVZXC21 (accession number MG772934;
<xref rid="bib23" ref-type="bibr">
<sup>23</sup>
</xref>
87·23%; query coverage 98%). In five gene regions (E, M, 7, N, and 14), the sequence identities were greater than 90%, with the highest being 98·7% in the E gene (
<xref rid="fig2" ref-type="fig">figure 2A</xref>
). The S gene of 2019-nCoV exhibited the lowest sequence identity with bat-SL-CoVZC45 and bat-SL-CoVZXC21, at only around 75%. In addition, the sequence identity in 1b (about 86%) was lower than that in 1a (about 90%;
<xref rid="fig2" ref-type="fig">figure 2A</xref>
). Most of the encoded proteins exhibited high sequence identity between 2019-nCoV and the related bat-derived coronaviruses (
<xref rid="fig2" ref-type="fig">figure 2a</xref>
). The notable exception was the spike protein, with only around 80% sequence identity, and protein 13, with 73·2% sequence identity. Notably, the 2019-nCoV strains were less genetically similar to SARS-CoV (about 79%) and MERS-CoV (about 50%). The similarity between 2019-nCoV and related viruses was visualised using SimPlot software, with the 2019-nCoV consensus sequence employed as the query (
<xref rid="fig2" ref-type="fig">figure 2B</xref>
).
<fig id="fig2">
<label>Figure 2</label>
<caption>
<p>Sequence identity between the consensus of 2019-nCoV and representative betacoronavirus genomes</p>
<p>(A) Sequence identities for 2019-nCoV compared with SARS-CoV GZ02 (accession number AY390556) and the bat SARS-like coronaviruses bat-SL-CoVZC45 (MG772933) and bat-SL-CoVZXC21 (MG772934). (B) Similarity between 2019-nCoV and related viruses. 2019-nCoV=2019 novel coronavirus. SARS-CoV=severe acute respiratory syndrome coronavirus.</p>
</caption>
<graphic xlink:href="gr2_lrg"></graphic>
</fig>
</p>
<p id="para290">Comparison of the predicted coding regions of 2019-nCoV showed that they possessed a similar genomic organisation to bat-SL-CoVZC45, bat-SL-CoVZXC21, and SARS-CoV (
<xref rid="fig1" ref-type="fig">figure 1B</xref>
). At least 12 coding regions were predicted, including 1ab, S, 3, E, M, 7, 8, 9, 10b, N, 13, and 14 (
<xref rid="fig1" ref-type="fig">figure 1B</xref>
). The lengths of most of the proteins encoded by 2019-nCoV, bat-SL-CoVZC45, and bat-SL-CoVZXC21 were similar, with only a few minor insertions or deletions. A notable difference was a longer spike protein encoded by 2019-nCoV compared with the bat SARS-like coronaviruses, SARS-CoV, and MERS-CoV (
<xref rid="fig1" ref-type="fig">figure 1B</xref>
).</p>
<p id="para300">Phylogenetic analysis of 2019-nCoV and its closely related reference genomes, as well as representative betacoronaviruses, revealed that the five subgenera formed five well supported branches (
<xref rid="fig3" ref-type="fig">figure 3</xref>
). The subgenus Sarbecovirus could be classified into three well supported clades: two SARS-CoV-related strains from
<italic>Rhinolophus</italic>
sp from Bulgaria (accession number GU190215) and Kenya (KY352407) formed clade 1; the ten 2019-nCoV from Wuhan and the two bat-derived SARS-like strains from Zhoushan in eastern China (bat-SL-CoVZC45 and bat-SL-CoVZXC21) formed clade 2, which was notable for the long branch separating the human and bat viruses; and SARS-CoV strains from humans and many genetically similar SARS-like coronaviruses from bats collected from southwestern China formed clade 3, with bat-derived coronaviruses also falling in the basal positions (
<xref rid="fig3" ref-type="fig">figure 3</xref>
). In addition, 2019-nCoV was distinct from SARS-CoV in a phylogeny of the complete RNA-dependent RNA polymerase (
<italic>RdRp</italic>
) gene (
<xref rid="sec1" ref-type="sec">appendix p 2</xref>
). This evidence indicates that 2019-nCoV is a novel betacoronavirus from the subgenus Sarbecovirus.
<fig id="fig3">
<label>Figure 3</label>
<caption>
<p>Phylogenetic analysis of full-length genomes of 2019-nCoV and representative viruses of the genus Betacoronavirus</p>
<p>2019-nCoV=2019 novel coronavirus. MERS-CoV=Middle East respiratory syndrome coronavirus. SARS-CoV=severe acute respiratory syndrome coronavirus.</p>
</caption>
<graphic xlink:href="gr3_lrg"></graphic>
</fig>
</p>
<p id="para310">As the sequence similarity plot revealed changes in genetic distances among viruses across the 2019-nCoV genome, we did additional phylogenetic analyses of the major encoding regions of representative members of the subgenus Sarbecovirus. Consistent with the genome phylogeny, 2019-nCoV, bat-SL-CoVZC45, and bat-SL-CoVZXC21 clustered together in trees of the 1a and spike genes (
<xref rid="sec1" ref-type="sec">appendix p 3</xref>
). By contrast, 2019-nCoV did not cluster with bat-SL-CoVZC45 and bat-SL-CoVZXC21 in the 1b tree, but instead formed a distinct clade with SARS-CoV, bat-SL-CoVZC45, and bat-SL-CoVZXC21 (
<xref rid="sec1" ref-type="sec">appendix p 3</xref>
), indicative of potential recombination events in 1b, although these probably occurred in the bat coronaviruses rather than 2019-nCoV. Phylogenetic analysis of the 2019-nCoV genome excluding 1b revealed similar evolutionary relationships as the full-length viral genome (
<xref rid="sec1" ref-type="sec">appendix p 3</xref>
).</p>
<p id="para320">The envelope spike (S) protein mediates receptor binding and membrane fusion
<xref rid="bib24" ref-type="bibr">
<sup>24</sup>
</xref>
and is crucial for determining host tropism and transmission capacity.
<xref rid="bib25" ref-type="bibr">25</xref>
,
<xref rid="bib26" ref-type="bibr">26</xref>
Generally, the spike protein of coronaviruses is functionally divided into the S1 domain (especially positions 318–510 of SARS-CoV), responsible for receptor binding, and the S2 domain, responsible for cell membrane fusion.
<xref rid="bib27" ref-type="bibr">
<sup>27</sup>
</xref>
The 2019-nCoV S2 protein showed around 93% sequence identity with bat-SL-CoVZC45 and bat-SL-CoVZXC21—much higher than that of the S1 domain, which had only around 68% identity with these bat-derived viruses. Both the N-terminal domain and the C-terminal domain of the S1 domain can bind to host receptors.
<xref rid="bib28" ref-type="bibr">
<sup>28</sup>
</xref>
We inspected amino acid variation in the spike protein among the Sarbecovirus coronaviruses (
<xref rid="fig4" ref-type="fig">figure 4</xref>
). Although 2019-nCoV and SARS-CoV fell within different clades (
<xref rid="fig3" ref-type="fig">figure 3</xref>
), they still possessed around 50 conserved amino acids in S1, whereas most of the bat-derived viruses displayed mutational differences (
<xref rid="fig4" ref-type="fig">figure 4</xref>
). Most of these positions in the C-terminal domain (
<xref rid="fig4" ref-type="fig">figure 4</xref>
). In addition, a number of deletion events, including positions 455–457, 463–464, and 485–497, were found in the bat-derived strains (
<xref rid="fig4" ref-type="fig">figure 4</xref>
).
<fig id="fig4">
<label>Figure 4</label>
<caption>
<p>Specific amino acid variations among the spike proteins of the subgenus sarbecovirus</p>
<p>Viruses are ordered by the tree topology (as shown in
<xref rid="fig3" ref-type="fig">figure 3</xref>
) from top to bottom. One-letter codes are used for amino acids. CoV=coronavirus. 2019-nCoV=2019 novel coronavirus. SARS=severe acute respiratory syndrome. *Bat-derived SARS-like viruses that can grow in human cell lines or in mice. †Bat-derived SARS-like viruses without experimental data available.</p>
</caption>
<graphic xlink:href="gr4_lrg"></graphic>
</fig>
</p>
<p id="para330">The receptor-binding domain of betacoronaviruses, which directly engages the receptor, is commonly located in the C-terminal domain of S1, as in SARS-CoV
<xref rid="bib29" ref-type="bibr">
<sup>29</sup>
</xref>
for lineage B, and MERS-CoV
<xref rid="bib30" ref-type="bibr">30</xref>
,
<xref rid="bib31" ref-type="bibr">31</xref>
and BatCoV HKU4,
<xref rid="bib32" ref-type="bibr">
<sup>32</sup>
</xref>
for lineage C (
<xref rid="fig5" ref-type="fig">figure 5</xref>
). Through phylogenetic analysis of the receptor-binding domain of four different lineages of betacoronaviruses (
<xref rid="sec1" ref-type="sec">appendix p 4</xref>
), we found that, although 2019-nCoV was closer to bat-SL-CoVZC45 and bat-SL-CoVZXC21 at the whole-genome level, the receptor-binding domain of 2019-nCoV fell within lineage B and was closer to that of SARS-CoV (
<xref rid="fig5" ref-type="fig">figure 5A</xref>
). The three-dimensional structure of 2019-nCoV receptor-binding domain was modelled using the Swiss-Model program
<xref rid="bib33" ref-type="bibr">
<sup>33</sup>
</xref>
with the SARS-CoV receptor-binding domain structure (Protein Data Bank ID 2DD8)
<xref rid="bib34" ref-type="bibr">
<sup>34</sup>
</xref>
as a template. This analysis suggested that, like other betacoronaviruses, the receptor-binding domain was composed of a core and an external subdomain (
<xref rid="fig5" ref-type="fig">figure 5B–D</xref>
). Notably, the external subdomain of the 2019-nCoV receptor-binding domain was more similar to that of SARS-CoV. This result suggests that 2019-nCoV might also use angiotensin-converting enzyme 2 (ACE2) as a cell receptor. However, we also observed that several key residues responsible for the binding of the SARS-CoV receptor-binding domain to the ACE2 receptor were variable in the 2019-nCoV receptor-binding domain (including Asn439, Asn501, Gln493, Gly485 and Phe486; 2019-nCoV numbering).
<fig id="fig5">
<label>Figure 5</label>
<caption>
<p>Phylogenetic analysis and homology modelling of the receptor-binding domain of the 2019-nCoV, SARS-CoV, and MERS-CoV</p>
<p>(A) Phylogenetic analysis of the receptor-binding domain from various betacoronaviruses. The star highlights 2019-nCoV and the question marks means that the receptor used by the viruses remains unknown. Structural comparison of the receptor-binding domain of SARS-CoV (B), 2019-nCoV (C), and MERS-CoV (D) binding to their own receptors. Core subdomains are magenta, and the external subdomains of SARS-CoV, 2019-nCoV, and MERS CoV are orange, dark blue, and green, respectively. Variable residues between SARS-CoV and 2019-nCoV in the receptor-binding site are highlighted as sticks. CoV=coronavirus. 2019-nCoV=2019 novel coronavirus. SARS-CoV=severe acute respiratory syndrome coronavirus. MERS=Middle East respiratory syndrome coronavirus.</p>
</caption>
<graphic xlink:href="gr5_lrg"></graphic>
</fig>
</p>
</sec>
<sec id="cesec120">
<title>Discussion</title>
<p id="para340">From genomic surveillance of clinical samples from patients with viral pneumonia in Wuhan, China, a novel coronavirus (termed 2019-nCoV) has been identified.
<xref rid="bib10" ref-type="bibr">10</xref>
,
<xref rid="bib11" ref-type="bibr">11</xref>
Our phylogenetic analysis of 2019-nCoV, sequenced from nine patients' samples, showed that the virus belongs to the subgenus Sarbecovirus. 2019-nCoV was more similar to two bat-derived coronavirus strains, bat-SL-CoVZC45 and bat-SL-CoVZXC21, than to known human-infecting coronaviruses, including the virus that caused the SARS outbreak of 2003.</p>
<p id="para350">Epidemiologically, eight of the nine patients in our study had a history of exposure to the Huanan seafood market in Wuhan, suggesting that they might have been in close contact with the infection source at the market. However, one patient had never visited the market, although he had stayed in a hotel near the market before the onset of their illness. This finding suggests either possible droplet transmission or that the patient was infected by a currently unknown source. Evidence of clusters of infected family members and medical workers has now confirmed the presence of human-to-human transmission.
<xref rid="bib12" ref-type="bibr">
<sup>12</sup>
</xref>
Clearly, this infection is a major public health concern, particularly as this outbreak coincides with the peak of the Chinese Spring Festival travel rush, during which hundreds of millions of people will travel through China.</p>
<p id="para360">As a typical RNA virus, the average evolutionary rate for coronaviruses is roughly 10
<sup>−4</sup>
nucleotide substitutions per site per year,
<xref rid="bib1" ref-type="bibr">
<sup>1</sup>
</xref>
with mutations arising during every replication cycle. It is, therefore, striking that the sequences of 2019-nCoV from different patients described here were almost identical, with greater than 99·9% sequence identity. This finding suggests that 2019-nCoV originated from one source within a very short period and was detected relatively rapidly. However, as the virus transmits to more individuals, constant surveillance of mutations arising is needed.</p>
<p id="para370">Phylogenetic analysis showed that bat-derived coronaviruses fell within all five subgenera of the genus Betacoronavirus. Moreover, bat-derived coronaviruses fell in basal positions in the subgenus Sarbecovirus, with 2019-nCoV most closely related to bat-SL-CoVZC45 and bat-SL-CoVZXC21, which were also sampled from bats.
<xref rid="bib23" ref-type="bibr">
<sup>23</sup>
</xref>
These data are consistent with a bat reservoir for coronaviruses in general and for 2019-nCoV in particular. However, despite the importance of bats, several facts suggest that another animal is acting as an intermediate host between bats and humans. First, the outbreak was first reported in late December, 2019, when most bat species in Wuhan are hibernating. Second, no bats were sold or found at the Huanan seafood market, whereas various non-aquatic animals (including mammals) were available for purchase. Third, the sequence identity between 2019-nCoV and its close relatives bat-SL-CoVZC45 and bat-SL-CoVZXC21 was less than 90%, which is reflected in the relatively long branch between them. Hence, bat-SL-CoVZC45 and bat-SL-CoVZXC21 are not direct ancestors of 2019-nCoV. Fourth, in both SARS-CoV and MERS-CoV, bats acted as the natural reservoir, with another animal (masked palm civet for SARS-CoV
<xref rid="bib35" ref-type="bibr">
<sup>35</sup>
</xref>
and dromedary camels for MERS-CoV)
<xref rid="bib36" ref-type="bibr">
<sup>36</sup>
</xref>
acting as an intermediate host, with humans as terminal hosts. Therefore, on the basis of current data, it seems likely that the 2019-nCoV causing the Wuhan outbreak might also be initially hosted by bats, and might have been transmitted to humans via currently unknown wild animal(s) sold at the Huanan seafood market.</p>
<p id="para380">Previous studies have uncovered several receptors that different coronaviruses bind to, such as ACE2 for SARS-CoV
<xref rid="bib29" ref-type="bibr">
<sup>29</sup>
</xref>
and CD26 for MERS-CoV.
<xref rid="bib30" ref-type="bibr">
<sup>30</sup>
</xref>
Our molecular modelling showed structural similarity between the receptor-binding domains of SARS-CoV and 2019-nCoV. Therefore, we suggest that 2019-nCoV might use ACE2 as the receptor, despite the presence of amino acid mutations in the 2019-nCoV receptor-binding domain. Although a previous study using HeLa cells expressing ACE2 proteins showed that 2019-nCoV could employ the ACE2 receptor,
<xref rid="bib37" ref-type="bibr">
<sup>37</sup>
</xref>
whether these mutations affect ACE2 binding or change receptor tropism requires further study.</p>
<p id="para390">Recombination has been seen frequently in coronaviruses.
<xref rid="bib1" ref-type="bibr">
<sup>1</sup>
</xref>
As expected, we detected recombination in the Sarbecoviruses analysed here. Our results suggest that recombination events are complex and are more likely occurring in bat coronaviruses than in 2019-nCoV. Hence, despite its occurrence, recombination is probably not the reason for emergence of this virus, although this inference might change if more closely related animal viruses are identified.</p>
<p id="para400">In conclusion, we have described the genomic structure of a seventh human coronavirus that can cause severe pneumonia and have shed light on its origin and receptor-binding properties. More generally, the disease outbreak linked to 2019-nCoV again highlights the hidden virus reservoir in wild animals and their potential to occasionally spill over into human populations.</p>
</sec>
<sec sec-type="data-availability" id="cesec130">
<title>Data sharing</title>
<p>Data are available on various websites and have been made publicly available (more information can be found in the first paragraph of the Results section).</p>
</sec>
</body>
<back>
<ref-list id="bibl10">
<title>References</title>
<ref id="bib1">
<label>1</label>
<element-citation publication-type="journal" id="sbref10">
<person-group person-group-type="author">
<name>
<surname>Su</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Wong</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>W</given-names>
</name>
</person-group>
<article-title>Epidemiology, genetic recombination, and pathogenesis of coronaviruses</article-title>
<source>Trends Microbiol</source>
<volume>24</volume>
<year>2016</year>
<fpage>490</fpage>
<lpage>502</lpage>
<pub-id pub-id-type="pmid">27012512</pub-id>
</element-citation>
</ref>
<ref id="bib2">
<label>2</label>
<element-citation publication-type="journal" id="sbref20">
<person-group person-group-type="author">
<name>
<surname>Cavanagh</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Coronavirus avian infectious bronchitis virus</article-title>
<source>Vet Res</source>
<volume>38</volume>
<year>2007</year>
<fpage>281</fpage>
<lpage>297</lpage>
<pub-id pub-id-type="pmid">17296157</pub-id>
</element-citation>
</ref>
<ref id="bib3">
<label>3</label>
<element-citation publication-type="journal" id="sbref30">
<person-group person-group-type="author">
<name>
<surname>Ismail</surname>
<given-names>MM</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>AY</given-names>
</name>
<name>
<surname>Saif</surname>
<given-names>YM</given-names>
</name>
</person-group>
<article-title>Pathogenicity of turkey coronavirus in turkeys and chickens</article-title>
<source>Avian Dis</source>
<volume>47</volume>
<year>2003</year>
<fpage>515</fpage>
<lpage>522</lpage>
<pub-id pub-id-type="pmid">14562877</pub-id>
</element-citation>
</ref>
<ref id="bib4">
<label>4</label>
<element-citation publication-type="journal" id="sbref40">
<person-group person-group-type="author">
<name>
<surname>Zhou</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Fan</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Lan</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin</article-title>
<source>Nature</source>
<volume>556</volume>
<year>2018</year>
<fpage>255</fpage>
<lpage>258</lpage>
<pub-id pub-id-type="pmid">29618817</pub-id>
</element-citation>
</ref>
<ref id="bib5">
<label>5</label>
<element-citation publication-type="journal" id="sbref50">
<person-group person-group-type="author">
<name>
<surname>Peiris</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Guan</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Yuen</surname>
<given-names>KY</given-names>
</name>
</person-group>
<article-title>Severe acute respiratory syndrome</article-title>
<source>Nat Med</source>
<volume>10</volume>
<issue>suppl 12</issue>
<year>2004</year>
<fpage>S88</fpage>
<lpage>S97</lpage>
<pub-id pub-id-type="pmid">15577937</pub-id>
</element-citation>
</ref>
<ref id="bib6">
<label>6</label>
<element-citation publication-type="journal" id="sbref60">
<person-group person-group-type="author">
<name>
<surname>Chan-Yeung</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>RH</given-names>
</name>
</person-group>
<article-title>SARS: epidemiology</article-title>
<source>Respirology</source>
<volume>8</volume>
<issue>suppl</issue>
<year>2003</year>
<fpage>S9</fpage>
<lpage>S14</lpage>
<pub-id pub-id-type="pmid">15018127</pub-id>
</element-citation>
</ref>
<ref id="bib7">
<label>7</label>
<element-citation publication-type="journal" id="sbref70">
<person-group person-group-type="author">
<name>
<surname>Zaki</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>van Boheemen</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Bestebroer</surname>
<given-names>TM</given-names>
</name>
<name>
<surname>Osterhaus</surname>
<given-names>AD</given-names>
</name>
<name>
<surname>Fouchier</surname>
<given-names>RA</given-names>
</name>
</person-group>
<article-title>Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia</article-title>
<source>N Engl J Med</source>
<volume>367</volume>
<year>2012</year>
<fpage>1814</fpage>
<lpage>1820</lpage>
<pub-id pub-id-type="pmid">23075143</pub-id>
</element-citation>
</ref>
<ref id="bib8">
<label>8</label>
<element-citation publication-type="journal" id="sbref80">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Chowell</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Jung</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>A dynamic compartmental model for the Middle East respiratory syndrome outbreak in the Republic of Korea: a retrospective analysis on control interventions and superspreading events</article-title>
<source>J Theor Biol</source>
<volume>408</volume>
<year>2016</year>
<fpage>118</fpage>
<lpage>126</lpage>
<pub-id pub-id-type="pmid">27521523</pub-id>
</element-citation>
</ref>
<ref id="bib9">
<label>9</label>
<element-citation publication-type="journal" id="sbref90">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>JY</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>YJ</given-names>
</name>
<name>
<surname>Chung</surname>
<given-names>EH</given-names>
</name>
</person-group>
<article-title>The clinical and virological features of the first imported case causing MERS-CoV outbreak in South Korea, 2015</article-title>
<source>BMC Infect Dis</source>
<volume>17</volume>
<year>2017</year>
<fpage>498</fpage>
<pub-id pub-id-type="pmid">28709419</pub-id>
</element-citation>
</ref>
<ref id="bib10">
<label>10</label>
<element-citation publication-type="journal" id="sbref100">
<person-group person-group-type="author">
<name>
<surname>Tan</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>X</given-names>
</name>
</person-group>
<article-title>A novel coronavirus genome identified in a cluster of pneumonia cases—Wuhan, China 2019–2020</article-title>
<source>China CDC Weekly</source>
<volume>2</volume>
<year>2020</year>
<fpage>61</fpage>
<lpage>62</lpage>
</element-citation>
</ref>
<ref id="bib11">
<label>11</label>
<element-citation publication-type="journal" id="sbref110">
<person-group person-group-type="author">
<name>
<surname>Zhu</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>W</given-names>
</name>
</person-group>
<article-title>A novel coronavirus from patients with pneumonia in China, 2019</article-title>
<source>N Engl J Med</source>
<year>2020</year>
<comment>published online Jan 24.</comment>
<pub-id pub-id-type="doi">10.1056/NEJMoa2001017</pub-id>
</element-citation>
</ref>
<ref id="bib12">
<label>12</label>
<element-citation publication-type="journal" id="sbref120">
<person-group person-group-type="author">
<name>
<surname>Chan</surname>
<given-names>JFW</given-names>
</name>
<name>
<surname>Yuan</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kok</surname>
<given-names>KH</given-names>
</name>
</person-group>
<article-title>A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster</article-title>
<source>Lancet</source>
<year>2020</year>
<comment>published online Jan 24</comment>
<pub-id pub-id-type="doi">10.1016/S0140-6736(20)30154-9</pub-id>
</element-citation>
</ref>
<ref id="bib13">
<label>13</label>
<element-citation publication-type="journal" id="sbref130">
<person-group person-group-type="author">
<name>
<surname>Huang</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>X</given-names>
</name>
</person-group>
<article-title>Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China</article-title>
<source>Lancet</source>
<year>2020</year>
<comment>published online Jan 24</comment>
<pub-id pub-id-type="doi">10.1016/S0140-6736(20)30183-5</pub-id>
</element-citation>
</ref>
<ref id="bib14">
<label>14</label>
<element-citation publication-type="journal" id="sbref140">
<person-group person-group-type="author">
<name>
<surname>Niu</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Shen</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Tan</surname>
<given-names>W</given-names>
</name>
</person-group>
<article-title>Two-tube multiplex real-time reverse transcription PCR to detect six human coronaviruses</article-title>
<source>Virol Sin</source>
<volume>31</volume>
<year>2016</year>
<fpage>85</fpage>
<lpage>88</lpage>
<pub-id pub-id-type="pmid">26826078</pub-id>
</element-citation>
</ref>
<ref id="bib15">
<label>15</label>
<element-citation publication-type="journal" id="sbref150">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Durbin</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Fast and accurate short read alignment with Burrows-Wheeler transform</article-title>
<source>Bioinformatics</source>
<volume>25</volume>
<year>2009</year>
<fpage>1754</fpage>
<lpage>1760</lpage>
<pub-id pub-id-type="pmid">19451168</pub-id>
</element-citation>
</ref>
<ref id="bib16">
<label>16</label>
<element-citation publication-type="journal" id="sbref160">
<person-group person-group-type="author">
<name>
<surname>Zhao</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Ye</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>RAPSearch2: a fast and memory-efficient protein similarity search tool for next-generation sequencing data</article-title>
<source>Bioinformatics</source>
<volume>28</volume>
<year>2012</year>
<fpage>125</fpage>
<lpage>126</lpage>
<pub-id pub-id-type="pmid">22039206</pub-id>
</element-citation>
</ref>
<ref id="bib17">
<label>17</label>
<element-citation publication-type="book" id="sbref170">
<person-group person-group-type="author">
<name>
<surname>Nurk</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Bankevich</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Antipov</surname>
<given-names>D</given-names>
</name>
</person-group>
<chapter-title>Assembling genomes and mini-metagenomes from highly chimeric reads</chapter-title>
<person-group person-group-type="editor">
<name>
<surname>Deng</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>X</given-names>
</name>
</person-group>
<source>Research in computational molecular biology (RECOMB 2013): lecture notes in computer science</source>
<volume>vol 7821</volume>
<year>2013</year>
<publisher-name>Springer</publisher-name>
<publisher-loc>Berlin</publisher-loc>
<fpage>158</fpage>
<lpage>170</lpage>
</element-citation>
</ref>
<ref id="bib18">
<label>18</label>
<element-citation publication-type="journal" id="sbref180">
<person-group person-group-type="author">
<name>
<surname>Pan</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Lv</surname>
<given-names>Q</given-names>
</name>
</person-group>
<article-title>Human infection with a novel, highly pathogenic avian influenza A (H5N6) virus: virological and clinical findings</article-title>
<source>J Infect</source>
<volume>72</volume>
<year>2016</year>
<fpage>52</fpage>
<lpage>59</lpage>
<pub-id pub-id-type="pmid">26143617</pub-id>
</element-citation>
</ref>
<ref id="bib19">
<label>19</label>
<element-citation publication-type="journal" id="sbref190">
<person-group person-group-type="author">
<name>
<surname>Marchler-Bauer</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Bo</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Han</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>CDD/SPARCLE: functional classification of proteins via subfamily domain architectures</article-title>
<source>Nucleic Acids Res</source>
<volume>45</volume>
<year>2017</year>
<fpage>D200</fpage>
<lpage>D203</lpage>
<pub-id pub-id-type="pmid">27899674</pub-id>
</element-citation>
</ref>
<ref id="bib20">
<label>20</label>
<element-citation publication-type="journal" id="sbref200">
<person-group person-group-type="author">
<name>
<surname>Lole</surname>
<given-names>KS</given-names>
</name>
<name>
<surname>Bollinger</surname>
<given-names>RC</given-names>
</name>
<name>
<surname>Paranjape</surname>
<given-names>RS</given-names>
</name>
</person-group>
<article-title>Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination</article-title>
<source>J Virol</source>
<volume>73</volume>
<year>1999</year>
<fpage>152</fpage>
<lpage>160</lpage>
<pub-id pub-id-type="pmid">9847317</pub-id>
</element-citation>
</ref>
<ref id="bib21">
<label>21</label>
<element-citation publication-type="journal" id="sbref210">
<person-group person-group-type="author">
<name>
<surname>Nakamura</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Yamada</surname>
<given-names>KD</given-names>
</name>
<name>
<surname>Tomii</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Katoh</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Parallelization of MAFFT for large-scale multiple sequence alignments</article-title>
<source>Bioinformatics</source>
<volume>34</volume>
<year>2018</year>
<fpage>2490</fpage>
<lpage>2492</lpage>
<pub-id pub-id-type="pmid">29506019</pub-id>
</element-citation>
</ref>
<ref id="bib22">
<label>22</label>
<element-citation publication-type="journal" id="sbref220">
<person-group person-group-type="author">
<name>
<surname>Stamatakis</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies</article-title>
<source>Bioinformatics</source>
<volume>30</volume>
<year>2014</year>
<fpage>1312</fpage>
<lpage>1313</lpage>
<pub-id pub-id-type="pmid">24451623</pub-id>
</element-citation>
</ref>
<ref id="bib23">
<label>23</label>
<element-citation publication-type="journal" id="sbref230">
<person-group person-group-type="author">
<name>
<surname>Hu</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Ai</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Genomic characterization and infectivity of a novel SARS-like coronavirus in Chinese bats</article-title>
<source>Emerg Microbes Infect</source>
<volume>7</volume>
<year>2018</year>
<fpage>154</fpage>
<pub-id pub-id-type="pmid">30209269</pub-id>
</element-citation>
</ref>
<ref id="bib24">
<label>24</label>
<element-citation publication-type="journal" id="sbref240">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>Structure, function, and evolution of coronavirus spike proteins</article-title>
<source>Annu Rev Virol</source>
<volume>3</volume>
<year>2016</year>
<fpage>237</fpage>
<lpage>261</lpage>
<pub-id pub-id-type="pmid">27578435</pub-id>
</element-citation>
</ref>
<ref id="bib25">
<label>25</label>
<element-citation publication-type="journal" id="sbref250">
<person-group person-group-type="author">
<name>
<surname>Lu</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>GF</given-names>
</name>
</person-group>
<article-title>Bat-to-human: spike features determining ‘host jump’ of coronaviruses SARS-CoV, MERS-CoV, and beyond</article-title>
<source>Trends Microbiol</source>
<volume>23</volume>
<year>2015</year>
<fpage>468</fpage>
<lpage>478</lpage>
<pub-id pub-id-type="pmid">26206723</pub-id>
</element-citation>
</ref>
<ref id="bib26">
<label>26</label>
<element-citation publication-type="journal" id="sbref260">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Wong</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Yan</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>GF</given-names>
</name>
</person-group>
<article-title>MERS-CoV spike protein: targets for vaccines and therapeutics</article-title>
<source>Antiviral Res</source>
<volume>133</volume>
<year>2016</year>
<fpage>165</fpage>
<lpage>177</lpage>
<pub-id pub-id-type="pmid">27468951</pub-id>
</element-citation>
</ref>
<ref id="bib27">
<label>27</label>
<element-citation publication-type="journal" id="sbref270">
<person-group person-group-type="author">
<name>
<surname>He</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Receptor-binding domain of SARS-CoV spike protein induces highly potent neutralizing antibodies: implication for developing subunit vaccine</article-title>
<source>Biochem Biophys Res Commun</source>
<volume>324</volume>
<year>2004</year>
<fpage>773</fpage>
<lpage>781</lpage>
<pub-id pub-id-type="pmid">15474494</pub-id>
</element-citation>
</ref>
<ref id="bib28">
<label>28</label>
<element-citation publication-type="journal" id="sbref280">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>Evidence for a common evolutionary origin of coronavirus spike protein receptor-binding subunits</article-title>
<source>J Virol</source>
<volume>86</volume>
<year>2012</year>
<fpage>2856</fpage>
<lpage>2858</lpage>
<pub-id pub-id-type="pmid">22205743</pub-id>
</element-citation>
</ref>
<ref id="bib29">
<label>29</label>
<element-citation publication-type="journal" id="sbref290">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Farzan</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Harrison</surname>
<given-names>SC</given-names>
</name>
</person-group>
<article-title>Structure of SARS coronavirus spike receptor-binding domain complexed with receptor</article-title>
<source>Science</source>
<volume>309</volume>
<year>2005</year>
<fpage>1864</fpage>
<lpage>1868</lpage>
<pub-id pub-id-type="pmid">16166518</pub-id>
</element-citation>
</ref>
<ref id="bib30">
<label>30</label>
<element-citation publication-type="journal" id="sbref300">
<person-group person-group-type="author">
<name>
<surname>Lu</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Q</given-names>
</name>
</person-group>
<article-title>Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26</article-title>
<source>Nature</source>
<volume>500</volume>
<year>2013</year>
<fpage>227</fpage>
<lpage>231</lpage>
<pub-id pub-id-type="pmid">23831647</pub-id>
</element-citation>
</ref>
<ref id="bib31">
<label>31</label>
<element-citation publication-type="journal" id="sbref310">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4</article-title>
<source>Cell Res</source>
<volume>23</volume>
<year>2013</year>
<fpage>986</fpage>
<lpage>993</lpage>
<pub-id pub-id-type="pmid">23835475</pub-id>
</element-citation>
</ref>
<ref id="bib32">
<label>32</label>
<element-citation publication-type="journal" id="sbref320">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Qi</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Yuan</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Bat origins of MERS-CoV supported by bat coronavirus HKU4 usage of human receptor CD26</article-title>
<source>Cell Host Microbe</source>
<volume>16</volume>
<year>2014</year>
<fpage>328</fpage>
<lpage>337</lpage>
<pub-id pub-id-type="pmid">25211075</pub-id>
</element-citation>
</ref>
<ref id="bib33">
<label>33</label>
<element-citation publication-type="journal" id="sbref330">
<person-group person-group-type="author">
<name>
<surname>Waterhouse</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Bertoni</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Bienert</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>SWISS-MODEL: homology modelling of protein structures and complexes</article-title>
<source>Nucleic Acids Res</source>
<volume>46</volume>
<year>2018</year>
<fpage>W296</fpage>
<lpage>W303</lpage>
<pub-id pub-id-type="pmid">29788355</pub-id>
</element-citation>
</ref>
<ref id="bib34">
<label>34</label>
<element-citation publication-type="journal" id="sbref340">
<person-group person-group-type="author">
<name>
<surname>Prabakaran</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Gan</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Feng</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Structure of severe acute respiratory syndrome coronavirus receptor-binding domain complexed with neutralizing antibody</article-title>
<source>J Biol Chem</source>
<volume>281</volume>
<year>2006</year>
<fpage>15829</fpage>
<lpage>15836</lpage>
<pub-id pub-id-type="pmid">16597622</pub-id>
</element-citation>
</ref>
<ref id="bib35">
<label>35</label>
<element-citation publication-type="journal" id="sbref350">
<person-group person-group-type="author">
<name>
<surname>Guan</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Zheng</surname>
<given-names>BJ</given-names>
</name>
<name>
<surname>He</surname>
<given-names>YQ</given-names>
</name>
</person-group>
<article-title>Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China</article-title>
<source>Science</source>
<volume>302</volume>
<year>2003</year>
<fpage>276</fpage>
<lpage>278</lpage>
<pub-id pub-id-type="pmid">12958366</pub-id>
</element-citation>
</ref>
<ref id="bib36">
<label>36</label>
<element-citation publication-type="journal" id="sbref360">
<person-group person-group-type="author">
<name>
<surname>Alagaili</surname>
<given-names>AN</given-names>
</name>
<name>
<surname>Briese</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Mishra</surname>
<given-names>N</given-names>
</name>
</person-group>
<article-title>Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia</article-title>
<source>mBio</source>
<volume>5</volume>
<year>2014</year>
<fpage>e00884</fpage>
<lpage>e00914</lpage>
<pub-id pub-id-type="pmid">24570370</pub-id>
</element-citation>
</ref>
<ref id="bib37">
<label>37</label>
<element-citation publication-type="journal" id="sbref370">
<person-group person-group-type="author">
<name>
<surname>Zhou</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>X-L</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>X-G</given-names>
</name>
</person-group>
<article-title>Discovery of a novel coronavirus associated with the recent pneumonia outbreak in humans and its potential bat origin</article-title>
<source>bioRxiv</source>
<year>2020</year>
<comment>published online Jan 23.</comment>
<pub-id pub-id-type="doi">10.1101/2020.01.22.914952</pub-id>
</element-citation>
</ref>
</ref-list>
<sec id="sec1" sec-type="supplementary-material">
<title>Supplementary Material</title>
<p id="para480">
<supplementary-material content-type="local-data" id="ecomp10">
<caption>
<title>Supplementary appendix</title>
</caption>
<media xlink:href="mmc1.pdf"></media>
</supplementary-material>
</p>
</sec>
<ack id="ceack10">
<sec>
<title>Acknowledgments</title>
<p>This work was supported by the
<funding-source id="GS1">National Key Research and Development Programme of China</funding-source>
(2016YFD0500301, 2020YFC0840800, 2020YFC0840900), the
<funding-source id="GS2">National Major Project for Control and Prevention of Infectious Disease in China</funding-source>
(2017ZX10104001, 2018ZX10101002, 2018ZX10101004, and 2018ZX10732-401), the
<funding-source id="GS3">State Key Research Development Program of China</funding-source>
(2019YFC1200501), the
<funding-source id="GS4">Strategic Priority Research Programme of the Chinese Academy of Sciences</funding-source>
(XDB29010102), and the
<funding-source id="GS5">Academic Promotion Programme of Shandong First Medical University</funding-source>
(2019QL006 and 2019PT008). WS was supported by the
<funding-source id="GS6">Taishan Scholars Programme of Shandong Province</funding-source>
(ts201511056).</p>
</sec>
</ack>
<ack>
<title>Contributors</title>
<p>GFG, WT, WS, WC, WX, and GW designed the study. RL, XZ, PN, HW, WW, BH, NZ, XM, WZ, LZ, JC, YM, JW, YL, JY, ZX, JM, WJL, and DW did the experiments. BY, FZ, and ZH provided samples. WS, WC, WT, JL, HS, YB, LW, TH, and HZ analysed data. WS, WT, and JL wrote the report. ECH and GFG revised the report.</p>
</ack>
<ack>
<title>Declaration of interests</title>
<p>We declare no competing interests.</p>
</ack>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F11 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000F11 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:7159086
   |texte=   Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:32007145" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021