Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Middle East Respiratory Syndrome Coronavirus Causes Multiple Organ Damage and Lethal Disease in Mice Transgenic for Human Dipeptidyl Peptidase 4

Identifieur interne : 000E24 ( Pmc/Corpus ); précédent : 000E23; suivant : 000E25

Middle East Respiratory Syndrome Coronavirus Causes Multiple Organ Damage and Lethal Disease in Mice Transgenic for Human Dipeptidyl Peptidase 4

Auteurs : Kun Li ; Christine Wohlford-Lenane ; Stanley Perlman ; Jincun Zhao ; Alexander K. Jewell ; Leah R. Reznikov ; Katherine N. Gibson-Corley ; David K. Meyerholz ; Paul B. Mccray

Source :

RBID : PMC:4747621

Abstract

Abstract

Middle East respiratory syndrome coronavirus (MERS-CoV) causes life-threatening disease. Dipeptidyl peptidase 4 (DPP4) is the receptor for cell binding and entry. There is a need for small-animal models of MERS, but mice are not susceptible to MERS because murine dpp4 does not serve as a receptor. We developed transgenic mice expressing human DPP4 (hDPP4) under the control of the surfactant protein C promoter or cytokeratin 18 promoter that are susceptible to infection with MERS-CoV. Notably, mice expressing hDPP4 with the cytokeratin 18 promoter developed progressive, uniformly fatal disease following intranasal inoculation. High virus titers were present in lung and brain tissues 2 and 6 days after infection, respectively. MERS-CoV–infected lungs revealed mononuclear cell infiltration, alveolar edema, and microvascular thrombosis, with airways generally unaffected. Brain disease was observed, with the greatest involvement noted in the thalamus and brain stem. Animals immunized with a vaccine candidate were uniformly protected from lethal infection. These new mouse models of MERS-CoV should be useful for investigation of early disease mechanisms and therapeutic interventions.


Url:
DOI: 10.1093/infdis/jiv499
PubMed: 26486634
PubMed Central: 4747621

Links to Exploration step

PMC:4747621

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Middle East Respiratory Syndrome Coronavirus Causes Multiple Organ Damage and Lethal Disease in Mice Transgenic for Human Dipeptidyl Peptidase 4</title>
<author>
<name sortKey="Li, Kun" sort="Li, Kun" uniqKey="Li K" first="Kun" last="Li">Kun Li</name>
<affiliation>
<nlm:aff id="af1">
<addr-line>Department of Pediatrics</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wohlford Lenane, Christine" sort="Wohlford Lenane, Christine" uniqKey="Wohlford Lenane C" first="Christine" last="Wohlford-Lenane">Christine Wohlford-Lenane</name>
<affiliation>
<nlm:aff id="af1">
<addr-line>Department of Pediatrics</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Perlman, Stanley" sort="Perlman, Stanley" uniqKey="Perlman S" first="Stanley" last="Perlman">Stanley Perlman</name>
<affiliation>
<nlm:aff id="af1">
<addr-line>Department of Pediatrics</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af2">
<addr-line>Department of Microbiology</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af5">
<addr-line>Interdisciplinary Program in Immunology</addr-line>
,
<institution>University of Iowa</institution>
,
<addr-line>Iowa City</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Jincun" sort="Zhao, Jincun" uniqKey="Zhao J" first="Jincun" last="Zhao">Jincun Zhao</name>
<affiliation>
<nlm:aff id="af2">
<addr-line>Department of Microbiology</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Jewell, Alexander K" sort="Jewell, Alexander K" uniqKey="Jewell A" first="Alexander K." last="Jewell">Alexander K. Jewell</name>
<affiliation>
<nlm:aff id="af1">
<addr-line>Department of Pediatrics</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Reznikov, Leah R" sort="Reznikov, Leah R" uniqKey="Reznikov L" first="Leah R." last="Reznikov">Leah R. Reznikov</name>
<affiliation>
<nlm:aff id="af3">
<addr-line>Department of Internal Medicine</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Gibson Corley, Katherine N" sort="Gibson Corley, Katherine N" uniqKey="Gibson Corley K" first="Katherine N." last="Gibson-Corley">Katherine N. Gibson-Corley</name>
<affiliation>
<nlm:aff id="af4">
<addr-line>Department of Pathology</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Meyerholz, David K" sort="Meyerholz, David K" uniqKey="Meyerholz D" first="David K." last="Meyerholz">David K. Meyerholz</name>
<affiliation>
<nlm:aff id="af4">
<addr-line>Department of Pathology</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mccray, Paul B" sort="Mccray, Paul B" uniqKey="Mccray P" first="Paul B." last="Mccray">Paul B. Mccray</name>
<affiliation>
<nlm:aff id="af1">
<addr-line>Department of Pediatrics</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af2">
<addr-line>Department of Microbiology</addr-line>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">26486634</idno>
<idno type="pmc">4747621</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4747621</idno>
<idno type="RBID">PMC:4747621</idno>
<idno type="doi">10.1093/infdis/jiv499</idno>
<date when="2015">2015</date>
<idno type="wicri:Area/Pmc/Corpus">000E24</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000E24</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Middle East Respiratory Syndrome Coronavirus Causes Multiple Organ Damage and Lethal Disease in Mice Transgenic for Human Dipeptidyl Peptidase 4</title>
<author>
<name sortKey="Li, Kun" sort="Li, Kun" uniqKey="Li K" first="Kun" last="Li">Kun Li</name>
<affiliation>
<nlm:aff id="af1">
<addr-line>Department of Pediatrics</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wohlford Lenane, Christine" sort="Wohlford Lenane, Christine" uniqKey="Wohlford Lenane C" first="Christine" last="Wohlford-Lenane">Christine Wohlford-Lenane</name>
<affiliation>
<nlm:aff id="af1">
<addr-line>Department of Pediatrics</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Perlman, Stanley" sort="Perlman, Stanley" uniqKey="Perlman S" first="Stanley" last="Perlman">Stanley Perlman</name>
<affiliation>
<nlm:aff id="af1">
<addr-line>Department of Pediatrics</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af2">
<addr-line>Department of Microbiology</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af5">
<addr-line>Interdisciplinary Program in Immunology</addr-line>
,
<institution>University of Iowa</institution>
,
<addr-line>Iowa City</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Jincun" sort="Zhao, Jincun" uniqKey="Zhao J" first="Jincun" last="Zhao">Jincun Zhao</name>
<affiliation>
<nlm:aff id="af2">
<addr-line>Department of Microbiology</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Jewell, Alexander K" sort="Jewell, Alexander K" uniqKey="Jewell A" first="Alexander K." last="Jewell">Alexander K. Jewell</name>
<affiliation>
<nlm:aff id="af1">
<addr-line>Department of Pediatrics</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Reznikov, Leah R" sort="Reznikov, Leah R" uniqKey="Reznikov L" first="Leah R." last="Reznikov">Leah R. Reznikov</name>
<affiliation>
<nlm:aff id="af3">
<addr-line>Department of Internal Medicine</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Gibson Corley, Katherine N" sort="Gibson Corley, Katherine N" uniqKey="Gibson Corley K" first="Katherine N." last="Gibson-Corley">Katherine N. Gibson-Corley</name>
<affiliation>
<nlm:aff id="af4">
<addr-line>Department of Pathology</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Meyerholz, David K" sort="Meyerholz, David K" uniqKey="Meyerholz D" first="David K." last="Meyerholz">David K. Meyerholz</name>
<affiliation>
<nlm:aff id="af4">
<addr-line>Department of Pathology</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mccray, Paul B" sort="Mccray, Paul B" uniqKey="Mccray P" first="Paul B." last="Mccray">Paul B. Mccray</name>
<affiliation>
<nlm:aff id="af1">
<addr-line>Department of Pediatrics</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af2">
<addr-line>Department of Microbiology</addr-line>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Journal of Infectious Diseases</title>
<idno type="ISSN">0022-1899</idno>
<idno type="eISSN">1537-6613</idno>
<imprint>
<date when="2015">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<title>Abstract</title>
<p>Middle East respiratory syndrome coronavirus (MERS-CoV) causes life-threatening disease. Dipeptidyl peptidase 4 (DPP4) is the receptor for cell binding and entry. There is a need for small-animal models of MERS, but mice are not susceptible to MERS because murine dpp4 does not serve as a receptor. We developed transgenic mice expressing human DPP4 (hDPP4) under the control of the surfactant protein C promoter or cytokeratin 18 promoter that are susceptible to infection with MERS-CoV. Notably, mice expressing hDPP4 with the cytokeratin 18 promoter developed progressive, uniformly fatal disease following intranasal inoculation. High virus titers were present in lung and brain tissues 2 and 6 days after infection, respectively. MERS-CoV–infected lungs revealed mononuclear cell infiltration, alveolar edema, and microvascular thrombosis, with airways generally unaffected. Brain disease was observed, with the greatest involvement noted in the thalamus and brain stem. Animals immunized with a vaccine candidate were uniformly protected from lethal infection. These new mouse models of MERS-CoV should be useful for investigation of early disease mechanisms and therapeutic interventions.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Zaki, Am" uniqKey="Zaki A">AM Zaki</name>
</author>
<author>
<name sortKey="Van Boheemen, S" uniqKey="Van Boheemen S">S van Boheemen</name>
</author>
<author>
<name sortKey="Bestebroer, Tm" uniqKey="Bestebroer T">TM Bestebroer</name>
</author>
<author>
<name sortKey="Osterhaus, Ad" uniqKey="Osterhaus A">AD Osterhaus</name>
</author>
<author>
<name sortKey="Fouchier, Ra" uniqKey="Fouchier R">RA Fouchier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Raj, Vs" uniqKey="Raj V">VS Raj</name>
</author>
<author>
<name sortKey="Mou, H" uniqKey="Mou H">H Mou</name>
</author>
<author>
<name sortKey="Smits, Sl" uniqKey="Smits S">SL Smits</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zumla, Ai" uniqKey="Zumla A">AI Zumla</name>
</author>
<author>
<name sortKey="Hui, Ds" uniqKey="Hui D">DS Hui</name>
</author>
<author>
<name sortKey="Perlman, S" uniqKey="Perlman S">S Perlman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Saad, M" uniqKey="Saad M">M Saad</name>
</author>
<author>
<name sortKey="Omrani, As" uniqKey="Omrani A">AS Omrani</name>
</author>
<author>
<name sortKey="Baig, K" uniqKey="Baig K">K Baig</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Arabi, Ym" uniqKey="Arabi Y">YM Arabi</name>
</author>
<author>
<name sortKey="Arifi, Aa" uniqKey="Arifi A">AA Arifi</name>
</author>
<author>
<name sortKey="Balkhy, Hh" uniqKey="Balkhy H">HH Balkhy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kapoor, M" uniqKey="Kapoor M">M Kapoor</name>
</author>
<author>
<name sortKey="Pringle, K" uniqKey="Pringle K">K Pringle</name>
</author>
<author>
<name sortKey="Kumar, A" uniqKey="Kumar A">A Kumar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Al Hameed, F" uniqKey="Al Hameed F">F Al-Hameed</name>
</author>
<author>
<name sortKey="Wahla, As" uniqKey="Wahla A">AS Wahla</name>
</author>
<author>
<name sortKey="Siddiqui, S" uniqKey="Siddiqui S">S Siddiqui</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Azhar, Ei" uniqKey="Azhar E">EI Azhar</name>
</author>
<author>
<name sortKey="El Kafrawy, Sa" uniqKey="El Kafrawy S">SA El-Kafrawy</name>
</author>
<author>
<name sortKey="Farraj, Sa" uniqKey="Farraj S">SA Farraj</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Corman, Vm" uniqKey="Corman V">VM Corman</name>
</author>
<author>
<name sortKey="Ithete, Nl" uniqKey="Ithete N">NL Ithete</name>
</author>
<author>
<name sortKey="Richards, Lr" uniqKey="Richards L">LR Richards</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Assiri, A" uniqKey="Assiri A">A Assiri</name>
</author>
<author>
<name sortKey="Mcgeer, A" uniqKey="Mcgeer A">A McGeer</name>
</author>
<author>
<name sortKey="Perl, Tm" uniqKey="Perl T">TM Perl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hui, Ds" uniqKey="Hui D">DS Hui</name>
</author>
<author>
<name sortKey="Perlman, S" uniqKey="Perlman S">S Perlman</name>
</author>
<author>
<name sortKey="Zumla, A" uniqKey="Zumla A">A Zumla</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sutton, Tc" uniqKey="Sutton T">TC Sutton</name>
</author>
<author>
<name sortKey="Subbarao, K" uniqKey="Subbarao K">K Subbarao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Falzarano, D" uniqKey="Falzarano D">D Falzarano</name>
</author>
<author>
<name sortKey="De Wit, E" uniqKey="De Wit E">E de Wit</name>
</author>
<author>
<name sortKey="Feldmann, F" uniqKey="Feldmann F">F Feldmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Johnson, Rf" uniqKey="Johnson R">RF Johnson</name>
</author>
<author>
<name sortKey="Via, Le" uniqKey="Via L">LE Via</name>
</author>
<author>
<name sortKey="Kumar, Mr" uniqKey="Kumar M">MR Kumar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Doremalen, N" uniqKey="Van Doremalen N">N van Doremalen</name>
</author>
<author>
<name sortKey="Miazgowicz, Kl" uniqKey="Miazgowicz K">KL Miazgowicz</name>
</author>
<author>
<name sortKey="Milne Price, S" uniqKey="Milne Price S">S Milne-Price</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barlan, A" uniqKey="Barlan A">A Barlan</name>
</author>
<author>
<name sortKey="Zhao, J" uniqKey="Zhao J">J Zhao</name>
</author>
<author>
<name sortKey="Sarkar, Mk" uniqKey="Sarkar M">MK Sarkar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhao, J" uniqKey="Zhao J">J Zhao</name>
</author>
<author>
<name sortKey="Li, K" uniqKey="Li K">K Li</name>
</author>
<author>
<name sortKey="Wohlford Lenane, C" uniqKey="Wohlford Lenane C">C Wohlford-Lenane</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Agrawal, As" uniqKey="Agrawal A">AS Agrawal</name>
</author>
<author>
<name sortKey="Garron, T" uniqKey="Garron T">T Garron</name>
</author>
<author>
<name sortKey="Tao, X" uniqKey="Tao X">X Tao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chow, Yh" uniqKey="Chow Y">YH Chow</name>
</author>
<author>
<name sortKey="Plumb, J" uniqKey="Plumb J">J Plumb</name>
</author>
<author>
<name sortKey="Wen, Y" uniqKey="Wen Y">Y Wen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chow, Yh" uniqKey="Chow Y">YH Chow</name>
</author>
<author>
<name sortKey="O Brodovich, H" uniqKey="O Brodovich H">H O'Brodovich</name>
</author>
<author>
<name sortKey="Plumb, J" uniqKey="Plumb J">J Plumb</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mccray, Pb" uniqKey="Mccray P">PB McCray</name>
</author>
<author>
<name sortKey="Pewe, L" uniqKey="Pewe L">L Pewe</name>
</author>
<author>
<name sortKey="Wohlford Lenane, C" uniqKey="Wohlford Lenane C">C Wohlford-Lenane</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reznikov, Lr" uniqKey="Reznikov L">LR Reznikov</name>
</author>
<author>
<name sortKey="Dong, Q" uniqKey="Dong Q">Q Dong</name>
</author>
<author>
<name sortKey="Chen, Jh" uniqKey="Chen J">JH Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lambeir, Am" uniqKey="Lambeir A">AM Lambeir</name>
</author>
<author>
<name sortKey="Durinx, C" uniqKey="Durinx C">C Durinx</name>
</author>
<author>
<name sortKey="Scharpe, S" uniqKey="Scharpe S">S Scharpe</name>
</author>
<author>
<name sortKey="De Meester, I" uniqKey="De Meester I">I De Meester</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chan, Rw" uniqKey="Chan R">RW Chan</name>
</author>
<author>
<name sortKey="Chan, Mc" uniqKey="Chan M">MC Chan</name>
</author>
<author>
<name sortKey="Agnihothram, S" uniqKey="Agnihothram S">S Agnihothram</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Glasser, Sw" uniqKey="Glasser S">SW Glasser</name>
</author>
<author>
<name sortKey="Korfhagen, Tr" uniqKey="Korfhagen T">TR Korfhagen</name>
</author>
<author>
<name sortKey="Wert, Se" uniqKey="Wert S">SE Wert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Arabi, Ym" uniqKey="Arabi Y">YM Arabi</name>
</author>
<author>
<name sortKey="Harthi, A" uniqKey="Harthi A">A Harthi</name>
</author>
<author>
<name sortKey="Hussein, J" uniqKey="Hussein J">J Hussein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barnes, K" uniqKey="Barnes K">K Barnes</name>
</author>
<author>
<name sortKey="Kenny, Aj" uniqKey="Kenny A">AJ Kenny</name>
</author>
<author>
<name sortKey="Turner, Aj" uniqKey="Turner A">AJ Turner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schnabel, R" uniqKey="Schnabel R">R Schnabel</name>
</author>
<author>
<name sortKey="Bernstein, Hg" uniqKey="Bernstein H">HG Bernstein</name>
</author>
<author>
<name sortKey="Luppa, H" uniqKey="Luppa H">H Luppa</name>
</author>
<author>
<name sortKey="Lojda, Z" uniqKey="Lojda Z">Z Lojda</name>
</author>
<author>
<name sortKey="Barth, A" uniqKey="Barth A">A Barth</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bourne, A" uniqKey="Bourne A">A Bourne</name>
</author>
<author>
<name sortKey="Barnes, K" uniqKey="Barnes K">K Barnes</name>
</author>
<author>
<name sortKey="Taylor, Ba" uniqKey="Taylor B">BA Taylor</name>
</author>
<author>
<name sortKey="Turner, Aj" uniqKey="Turner A">AJ Turner</name>
</author>
<author>
<name sortKey="Kenny, Aj" uniqKey="Kenny A">AJ Kenny</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mitro, A" uniqKey="Mitro A">A Mitro</name>
</author>
<author>
<name sortKey="Lojda, Z" uniqKey="Lojda Z">Z Lojda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mentzel, S" uniqKey="Mentzel S">S Mentzel</name>
</author>
<author>
<name sortKey="Dijkman, Hb" uniqKey="Dijkman H">HB Dijkman</name>
</author>
<author>
<name sortKey="Van Son, Jp" uniqKey="Van Son J">JP Van Son</name>
</author>
<author>
<name sortKey="Koene, Ra" uniqKey="Koene R">RA Koene</name>
</author>
<author>
<name sortKey="Assmann, Kj" uniqKey="Assmann K">KJ Assmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Busek, P" uniqKey="Busek P">P Busek</name>
</author>
<author>
<name sortKey="Stremenova, J" uniqKey="Stremenova J">J Stremenova</name>
</author>
<author>
<name sortKey="Sedo, A" uniqKey="Sedo A">A Sedo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Busek, P" uniqKey="Busek P">P Busek</name>
</author>
<author>
<name sortKey="Stremenova, J" uniqKey="Stremenova J">J Stremenova</name>
</author>
<author>
<name sortKey="Krepela, E" uniqKey="Krepela E">E Krepela</name>
</author>
<author>
<name sortKey="Sedo, A" uniqKey="Sedo A">A Sedo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stremenova, J" uniqKey="Stremenova J">J Stremenova</name>
</author>
<author>
<name sortKey="Krepela, E" uniqKey="Krepela E">E Krepela</name>
</author>
<author>
<name sortKey="Mares, V" uniqKey="Mares V">V Mares</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Selinger, C" uniqKey="Selinger C">C Selinger</name>
</author>
<author>
<name sortKey="Tisoncik Go, J" uniqKey="Tisoncik Go J">J Tisoncik-Go</name>
</author>
<author>
<name sortKey="Menachery, Vd" uniqKey="Menachery V">VD Menachery</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Scheuplein, Va" uniqKey="Scheuplein V">VA Scheuplein</name>
</author>
<author>
<name sortKey="Seifried, J" uniqKey="Seifried J">J Seifried</name>
</author>
<author>
<name sortKey="Malczyk, Ah" uniqKey="Malczyk A">AH Malczyk</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhou, J" uniqKey="Zhou J">J Zhou</name>
</author>
<author>
<name sortKey="Chu, H" uniqKey="Chu H">H Chu</name>
</author>
<author>
<name sortKey="Li, C" uniqKey="Li C">C Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chu, H" uniqKey="Chu H">H Chu</name>
</author>
<author>
<name sortKey="Zhou, J" uniqKey="Zhou J">J Zhou</name>
</author>
<author>
<name sortKey="Wong, Bh" uniqKey="Wong B">BH Wong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Coleman, Cm" uniqKey="Coleman C">CM Coleman</name>
</author>
<author>
<name sortKey="Matthews, Kl" uniqKey="Matthews K">KL Matthews</name>
</author>
<author>
<name sortKey="Goicochea, L" uniqKey="Goicochea L">L Goicochea</name>
</author>
<author>
<name sortKey="Frieman, Mb" uniqKey="Frieman M">MB Frieman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Wit, E" uniqKey="De Wit E">E de Wit</name>
</author>
<author>
<name sortKey="Prescott, J" uniqKey="Prescott J">J Prescott</name>
</author>
<author>
<name sortKey="Baseler, L" uniqKey="Baseler L">L Baseler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Raj, Vs" uniqKey="Raj V">VS Raj</name>
</author>
<author>
<name sortKey="Smits, Sl" uniqKey="Smits S">SL Smits</name>
</author>
<author>
<name sortKey="Provacia, Lb" uniqKey="Provacia L">LB Provacia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Wit, E" uniqKey="De Wit E">E de Wit</name>
</author>
<author>
<name sortKey="Rasmussen, Al" uniqKey="Rasmussen A">AL Rasmussen</name>
</author>
<author>
<name sortKey="Falzarano, D" uniqKey="Falzarano D">D Falzarano</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Munster, Vj" uniqKey="Munster V">VJ Munster</name>
</author>
<author>
<name sortKey="De Wit, E" uniqKey="De Wit E">E de Wit</name>
</author>
<author>
<name sortKey="Feldmann, H" uniqKey="Feldmann H">H Feldmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Haagmans, Bl" uniqKey="Haagmans B">BL Haagmans</name>
</author>
<author>
<name sortKey="Van Den Brand, Jm" uniqKey="Van Den Brand J">JM van den Brand</name>
</author>
<author>
<name sortKey="Provacia, Lb" uniqKey="Provacia L">LB Provacia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Adney, Dr" uniqKey="Adney D">DR Adney</name>
</author>
<author>
<name sortKey="Van Doremalen, N" uniqKey="Van Doremalen N">N van Doremalen</name>
</author>
<author>
<name sortKey="Brown, Vr" uniqKey="Brown V">VR Brown</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jewell, Na" uniqKey="Jewell N">NA Jewell</name>
</author>
<author>
<name sortKey="Cline, T" uniqKey="Cline T">T Cline</name>
</author>
<author>
<name sortKey="Mertz, Se" uniqKey="Mertz S">SE Mertz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Louveau, A" uniqKey="Louveau A">A Louveau</name>
</author>
<author>
<name sortKey="Smirnov, I" uniqKey="Smirnov I">I Smirnov</name>
</author>
<author>
<name sortKey="Keyes, Tj" uniqKey="Keyes T">TJ Keyes</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">J Infect Dis</journal-id>
<journal-id journal-id-type="iso-abbrev">J. Infect. Dis</journal-id>
<journal-id journal-id-type="publisher-id">jid</journal-id>
<journal-id journal-id-type="hwp">jinfdis</journal-id>
<journal-title-group>
<journal-title>The Journal of Infectious Diseases</journal-title>
</journal-title-group>
<issn pub-type="ppub">0022-1899</issn>
<issn pub-type="epub">1537-6613</issn>
<publisher>
<publisher-name>Oxford University Press</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">26486634</article-id>
<article-id pub-id-type="pmc">4747621</article-id>
<article-id pub-id-type="doi">10.1093/infdis/jiv499</article-id>
<article-id pub-id-type="publisher-id">jiv499</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Major Articles and Brief Reports</subject>
<subj-group subj-group-type="category-toc-heading">
<subject>Viruses</subject>
</subj-group>
</subj-group>
</article-categories>
<title-group>
<article-title>Middle East Respiratory Syndrome Coronavirus Causes Multiple Organ Damage and Lethal Disease in Mice Transgenic for Human Dipeptidyl Peptidase 4</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Li</surname>
<given-names>Kun</given-names>
</name>
<xref ref-type="aff" rid="af1">1</xref>
<pmc-comment>paul-mccray@uiowa.edu</pmc-comment>
<xref ref-type="corresp" rid="d641e146"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Wohlford-Lenane</surname>
<given-names>Christine</given-names>
</name>
<xref ref-type="aff" rid="af1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Perlman</surname>
<given-names>Stanley</given-names>
</name>
<xref ref-type="aff" rid="af1">1</xref>
<xref ref-type="aff" rid="af2">2</xref>
<xref ref-type="aff" rid="af5">5</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Zhao</surname>
<given-names>Jincun</given-names>
</name>
<xref ref-type="aff" rid="af2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Jewell</surname>
<given-names>Alexander K.</given-names>
</name>
<xref ref-type="aff" rid="af1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Reznikov</surname>
<given-names>Leah R.</given-names>
</name>
<xref ref-type="aff" rid="af3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Gibson-Corley</surname>
<given-names>Katherine N.</given-names>
</name>
<xref ref-type="aff" rid="af4">4</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Meyerholz</surname>
<given-names>David K.</given-names>
</name>
<xref ref-type="aff" rid="af4">4</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>McCray</surname>
<given-names>Paul B.</given-names>
<suffix>Jr</suffix>
</name>
<xref ref-type="aff" rid="af1">1</xref>
<xref ref-type="aff" rid="af2">2</xref>
</contrib>
</contrib-group>
<aff id="af1">
<label>1</label>
<addr-line>Department of Pediatrics</addr-line>
</aff>
<aff id="af2">
<label>2</label>
<addr-line>Department of Microbiology</addr-line>
</aff>
<aff id="af3">
<label>3</label>
<addr-line>Department of Internal Medicine</addr-line>
</aff>
<aff id="af4">
<label>4</label>
<addr-line>Department of Pathology</addr-line>
</aff>
<aff id="af5">
<label>5</label>
<addr-line>Interdisciplinary Program in Immunology</addr-line>
,
<institution>University of Iowa</institution>
,
<addr-line>Iowa City</addr-line>
</aff>
<author-notes>
<corresp id="d641e146">Correspondence: P. B. McCray, Department of Pediatrics, 6320 PBDB, University of Iowa, Iowa City, IA 52242 (
<email>paul-mccray@uiowa.edu</email>
).</corresp>
</author-notes>
<pub-date pub-type="ppub">
<day>01</day>
<month>3</month>
<year>2016</year>
</pub-date>
<pub-date pub-type="epub" iso-8601-date="2015-10-20">
<day>20</day>
<month>10</month>
<year>2015</year>
</pub-date>
<volume>213</volume>
<issue>5</issue>
<fpage>712</fpage>
<lpage>722</lpage>
<history>
<date date-type="received">
<day>25</day>
<month>6</month>
<year>2015</year>
</date>
<date date-type="accepted">
<day>8</day>
<month>10</month>
<year>2015</year>
</date>
</history>
<permissions>
<copyright-statement>© The Author 2015. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail
<email>journals.permissions@oup.com</email>
.</copyright-statement>
<copyright-year>2015</copyright-year>
<license>
<license-p>This article is made available via the PMC Open Access Subset for unrestricted re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the COVID-19 pandemic or until permissions are revoked in writing. Upon expiration of these permissions, PMC is granted a perpetual license to make this article available via PMC and Europe PMC, consistent with existing copyright protections.</license-p>
</license>
</permissions>
<self-uri xlink:href="jiv499.pdf"></self-uri>
<abstract>
<title>Abstract</title>
<p>Middle East respiratory syndrome coronavirus (MERS-CoV) causes life-threatening disease. Dipeptidyl peptidase 4 (DPP4) is the receptor for cell binding and entry. There is a need for small-animal models of MERS, but mice are not susceptible to MERS because murine dpp4 does not serve as a receptor. We developed transgenic mice expressing human DPP4 (hDPP4) under the control of the surfactant protein C promoter or cytokeratin 18 promoter that are susceptible to infection with MERS-CoV. Notably, mice expressing hDPP4 with the cytokeratin 18 promoter developed progressive, uniformly fatal disease following intranasal inoculation. High virus titers were present in lung and brain tissues 2 and 6 days after infection, respectively. MERS-CoV–infected lungs revealed mononuclear cell infiltration, alveolar edema, and microvascular thrombosis, with airways generally unaffected. Brain disease was observed, with the greatest involvement noted in the thalamus and brain stem. Animals immunized with a vaccine candidate were uniformly protected from lethal infection. These new mouse models of MERS-CoV should be useful for investigation of early disease mechanisms and therapeutic interventions.</p>
</abstract>
<kwd-group>
<kwd>transgenic mice</kwd>
<kwd>MERS</kwd>
<kwd>DPP4/CD26</kwd>
</kwd-group>
<funding-group>
<award-group>
<funding-source>
<named-content content-type="funder-name">National Institutes of Health </named-content>
<named-content content-type="funder-identifier">http://dx.doi.org/10.13039/100000002</named-content>
</funding-source>
</award-group>
<award-group>
<funding-source>
<named-content content-type="funder-name">NIH</named-content>
</funding-source>
<award-id>PO1 AI060699</award-id>
</award-group>
<award-group>
<funding-source>
<named-content content-type="funder-name">Cell Morphology Core and Pathology Core</named-content>
</funding-source>
</award-group>
<award-group>
<funding-source>
<named-content content-type="funder-name">Center for Gene Therapy for Cystic Fibrosis</named-content>
</funding-source>
</award-group>
<award-group>
<funding-source>
<named-content content-type="funder-name">NIH</named-content>
</funding-source>
<award-id>P30 DK-54759</award-id>
</award-group>
<award-group>
<funding-source>
<named-content content-type="funder-name">Cystic Fibrosis Foundation </named-content>
<named-content content-type="funder-identifier">http://dx.doi.org/10.13039/100000897</named-content>
</funding-source>
</award-group>
<award-group>
<funding-source>
<named-content content-type="funder-name">College of Medicine</named-content>
</funding-source>
</award-group>
<award-group>
<funding-source>
<named-content content-type="funder-name">Center for Gene Therapy for Cystic Fibrosis</named-content>
</funding-source>
</award-group>
<award-group>
<funding-source>
<named-content content-type="funder-name">Roy J. Carver Charitable Trust </named-content>
<named-content content-type="funder-identifier">http://dx.doi.org/10.13039/100001024</named-content>
</funding-source>
</award-group>
</funding-group>
</article-meta>
</front>
<body>
<p>Middle East respiratory syndrome (MERS) first emerged on the Saudi Arabian peninsula, in 2012. A new coronavirus, MERS coronavirus (MERS-CoV), was identified as the causative agent [
<xref rid="JIV499C1" ref-type="bibr">1</xref>
], and dipeptidyl peptidase 4 (DPP4; CD26) was identified as its receptor [
<xref rid="JIV499C2" ref-type="bibr">2</xref>
]. The disease spectrum ranges from asymptomatic cases to acute respiratory distress syndrome, circulatory collapse, multiorgan failure, and death [
<xref rid="JIV499C3" ref-type="bibr">3</xref>
]. As of 5 October 2015, the World Health Organization has been notified of 1589 laboratory-confirmed cases of MERS-CoV infection in >24 countries, resulting in at least 567 related deaths. The greatest mortality occurs in elderly individuals and those with comorbidities [
<xref rid="JIV499C4" ref-type="bibr">4–7</xref>
].</p>
<p>Epidemiologic studies indicate that MERS-CoV can spread to humans from infected dromedary camels [
<xref rid="JIV499C8" ref-type="bibr">8</xref>
]. A closely related virus is resident in wild bats, suggesting that they serve as natural reservoirs for MERS-CoV–like viruses [
<xref rid="JIV499C9" ref-type="bibr">9</xref>
]. Although human to human or zoonotic spread of MERS has not reached epidemic or pandemic levels, its potential to spread between persons was demonstrated in healthcare settings in the Middle East [
<xref rid="JIV499C10" ref-type="bibr">10</xref>
] and by the recent outbreak in South Korea caused by a single infected individual [
<xref rid="JIV499C11" ref-type="bibr">11</xref>
].</p>
<p>MERS-CoV can infect rabbits and camels and some species of nonhuman primates (rhesus macaques and common marmosets [
<xref rid="JIV499C12" ref-type="bibr">12</xref>
]). Marmosets are thought to develop a severe progressive lung disease [
<xref rid="JIV499C13" ref-type="bibr">13</xref>
], although this has recently been questioned [
<xref rid="JIV499C14" ref-type="bibr">14</xref>
]. The other animals develop a milder, self-limited respiratory illness.</p>
<p>Because large-animal and primate studies are resource intensive, a small-animal model is desirable. The MERS-CoV spike (S) glycoprotein does not bind the murine dpp4 protein efficiently, therefore preventing infection [
<xref rid="JIV499C15" ref-type="bibr">15</xref>
,
<xref rid="JIV499C16" ref-type="bibr">16</xref>
]. We reported that mice sensitized to MERS-CoV by adenoviral transduction of
<italic>hDPP4</italic>
to pulmonary epithelia confers productive virus replication, allowing rapid screening of phenotypes in genetically modified mouse strains [
<xref rid="JIV499C17" ref-type="bibr">17</xref>
].</p>
<p>A transgenic mouse model would help investigate MERS pathogenesis and aid development of vaccine and antiviral therapies, in part because reagents to study the immune response are widely available. Recently, Agrawal et al described mice expressing a
<italic>hDPP4</italic>
transgene with the ubiquitous CAGGS promoter (cytomegalovirus immediate-early enhancer and chicken β-actin promoter) [
<xref rid="JIV499C18" ref-type="bibr">18</xref>
]. When exposed to MERS-CoV (10
<sup>6</sup>
50% tissue culture infective doses administered intranasally) these mice exhibited progressive weight loss and died with evidence of high virus titers and inflammatory responses in lung and brain tissues. They detected virus antigen in the heart, spleen, and intestine, indicating spread beyond the lungs and brain. To develop new MERS models, we generated mice expressing hDPP4 in epithelial cells, using 2 different cell type–specific promoters. We show that transgenic expression of hDPP4 in epithelia facilitates MERS-CoV replication in lung tissue. Depending on the promoter selected, the disease outcome ranged from mild and self-limited to lethal with lung and brain tissue involvement.</p>
<sec sec-type="methods" id="s2">
<title>METHODS</title>
<sec id="s2a">
<title>Generation of Human DPP4 Transgenic Mice</title>
<p>All studies were approved by the Animal Care and Use Committee of the University of Iowa. We used 2 different promoters (cytokeratin 18 or surfactant protein C) to direct hDPP4 expression in epithelia (Figure
<xref ref-type="fig" rid="JIV499F1">1</xref>
<italic>A</italic>
and
<xref ref-type="supplementary-material" rid="sup1">Supplementary Figure 1
<italic>A</italic>
</xref>
). A FLAG epitope–tagged hDPP4 complementary DNA (Origene) was cloned into the pK18mTElacZ-K18i6×7pA vector to create pK18-
<italic>hDPP4</italic>
[
<xref rid="JIV499C19" ref-type="bibr">19–21</xref>
]. The human surfactant protein C (SPC) promoter, a gift from Dr Teodora Georgieva (BIO5 Institute, Tucson, Arizona), was used to generate the pSPC
<italic>-hDPP4</italic>
vector
<italic>.</italic>
Purified DNA fragments from the pK18-
<italic>hDPP4</italic>
and pSPC
<italic>-hDPP4</italic>
vectors were injected into pronuclei of fertilized B6SJL (C57BL/6J X SJL/J) mouse eggs to generate transgenic embryos. Mice transgenic for
<italic>hDPP4</italic>
expression were detected by polymerase chain reaction (PCR), using the following primers: forward, CCA AAG ACT GTA CGG GTT CC; and reverse, CCA AAG CTG AAT TGT CTT CCA G
<bold>.</bold>
</p>
<fig id="JIV499F1" orientation="portrait" position="float">
<label>Figure 1.</label>
<caption>
<p>Generation and characterization of K18-
<italic>hDPP4</italic>
mice.
<italic>A</italic>
, The hDPP4 coding sequence was cloned into a plasmid containing the 5′ and 3′ genomic regions of human cytokeratin 18 (K18). The K18 5′ genomic region consists of a 2.5-kb upstream genomic sequence, promoter, and first intron of the human K18 gene while the K18 3′ region consists of exon 6, intron 6, exon 7, and approximately 300 base pairs of 3′ untranslated region of the human K18 gene, including the K18 polyA signal. Immediately upstream of the hDPP4 start codon is a translational enhancer (TE) sequence from alfalfa mosaic virus.
<italic>B</italic>
, Four K18-
<italic>hDPP4</italic>
transgenic founder lines were generated and intranasally inoculated with 1 × 10
<sup>5</sup>
plaque-forming units (PFU) of Middle East respiratory syndrome coronavirus. Lung titers of founder mice were determined by plaque assay 3 days after infection. Data are mean ± standard deviation [SD] for 6–10 mice/line.
<italic>C</italic>
, Quantitative measurement of human DPP4 concentrations in tissues of nontransgenic or K18-
<italic>hDPP4</italic>
founder line 3 by enzyme-linked immunosorbent assay. Data are mean ± SD for 3 mice. Abbreviation: LOD, limit of detection.</p>
</caption>
<graphic xlink:href="jiv49901"></graphic>
</fig>
</sec>
<sec id="s2b">
<title>Infection of Transgenic Mice With MERS-CoV</title>
<p>The MERS-CoV (EMC2012 strain, passage 8) was provided by Drs Bart Haagmans and Ron Fouchier (Erasmus Medical Center). Virus was propagated and titered by plaque assay on Vero-81 cells. Mice expressing hDPP4 were anesthetized with ketamine/xylazine and infected intranasally with MERS-CoV in 50 µL of Dulbecco's modified Eagle's medium (DMEM). Mice were examined daily and temperatures and weights recorded. Non-transgenic littermates served as controls. MERS-CoV work was conducted in a Biosafety Level 3 (BSL3) Laboratory.</p>
</sec>
<sec id="s2c">
<title>Virus Titers</title>
<p>Tissues were removed aseptically, disassociated with a manual homogenizer in 1X PBS, briefly centrifuged, and supernatants removed. Samples were titered on Vero-81 cells as reported elsewhere [
<xref rid="JIV499C17" ref-type="bibr">17</xref>
].</p>
</sec>
<sec id="s2d">
<title>DPP4 Protein Abundance</title>
<p>DPP4 protein abundance was measured by enzyme-linked immunosorbent assay (ELISA; human DPP4 DuoSet [catalog no. DY1180], R&D Systems, Minneapolis, Minnesota) following the manufacturer's protocol.</p>
</sec>
<sec id="s2e">
<title>Extraction of Total RNA and Real-Time Quantitative PCR (qPCR)</title>
<p>Details are available in the
<xref ref-type="supplementary-material" rid="sup1">Supplementary Materials</xref>
.</p>
</sec>
<sec id="s2f">
<title>Histologic and Immunohistochemical Analyses</title>
<p>Details are available in the
<xref ref-type="supplementary-material" rid="sup1">Supplementary Materials</xref>
.</p>
</sec>
<sec id="s2g">
<title>MERS-CoV Infection of Human Cell Lines and Primary Porcine Astrocytes</title>
<p>The human neuroblastoma cell line SK-N-SH was grown in Roswell Park Memorial Institute 1640 medium with 10% fetal bovine serum (FBS). The glioma cell line U138MG and murine astrocytoma cell line DBT were cultured in DMEM with 10% FBS. Primary porcine glial cells were cultured as previously described [
<xref rid="JIV499C22" ref-type="bibr">22</xref>
]. Dissociated cells were allowed to attach to collagen-coated plates and cultured for 2–3 weeks. Cells were infected with MERS-CoV at multiplicity of infection (MOI) of 1. At time 0 and 2 days after infection, supernatants were harvested for titers and cells processed for immunostaining.</p>
</sec>
<sec id="s2h">
<title>Inhibition of MERS-CoV Infection by Passive and Active Immunization</title>
<p>Venezuelan equine encephalitis replicon particles (VRPs) expressing the MERS-CoV S glycoprotein or green fluorescent protein (GFP) were constructed as previously described [
<xref rid="JIV499C17" ref-type="bibr">17</xref>
]. cytokeratin 18 (K18)–
<italic>hDPP4</italic>
transgenic mice were immunized in the foot pad with 1 × 10
<sup>5</sup>
infectious units (IU) of VRP-S or VRP-GFP in 20 µL of PBS and boosted with the same doses 4 weeks later. Two weeks after the second immunization, mice received 1 × 10
<sup>5</sup>
plaque-forming units (PFU) of MERS-CoV. For passive immunization, nontransgenic mice received 1 × 10
<sup>5</sup>
IU of VRP-S or VRP-GFP and then were boosted with the same dose 4 weeks later. Two weeks later, serum was harvested and 300 µL of serum transferred into K18-
<italic>hDPP4</italic>
mice intraperitoneally 1 day before MERS-CoV infection.</p>
</sec>
<sec id="s2i">
<title>Statistical Analysis</title>
<p>The Student
<italic>t</italic>
test or analysis of variance with the Dunn multiple comparison test were used to analyze differences in mean values between groups unless otherwise specified. Results are expressed as mean ± standard error or standard deviation, as indicated.
<italic>P</italic>
values of ≤.05 were considered statistically significant.</p>
</sec>
</sec>
<sec sec-type="results" id="s3">
<title>RESULTS</title>
<sec id="s3a">
<title>Characterization of hDPP4 Transgenic Mice</title>
<p>DPP4 is broadly expressed in human tissues and cells [
<xref rid="JIV499C23" ref-type="bibr">23</xref>
]. In primary cell culture and organ culture models, MERS-CoV predominantly infects nonciliated epithelial cell types of the respiratory tract [
<xref rid="JIV499C2" ref-type="bibr">2</xref>
,
<xref rid="JIV499C24" ref-type="bibr">24</xref>
]. To direct MERS-CoV receptor expression to pulmonary epithelia, we used the SPC promoter (
<xref ref-type="supplementary-material" rid="sup1">Supplementary Figure 1
<italic>A</italic>
</xref>
) or the K18 promoter (Figure
<xref ref-type="fig" rid="JIV499F1">1</xref>
<italic>A</italic>
) as described in Methods. The SPC promoter drives expression in bronchiolar and alveolar epithelia [
<xref rid="JIV499C25" ref-type="bibr">25</xref>
]. In contrast, the
<italic>K18</italic>
promoter confers transgene expression in airway and alveolar epithelial cells, as well as epithelia of the liver, kidney, and gastrointestinal tract, and some cells of the nervous system [
<xref rid="JIV499C19" ref-type="bibr">19</xref>
]. We generated 8 SPC
<italic>-hDPP4</italic>
founder lines and 4 K18-
<italic>hDPP4</italic>
founder lines.</p>
<p>We first screened F2 mice from each founder line for evidence of a pulmonary infection following intranasal inoculation with 1 × 10
<sup>5</sup>
PFU of MERS-CoV. We identified 3 SPC-
<italic>hDPP4</italic>
lines (
<xref ref-type="supplementary-material" rid="sup1">Supplementary Figure 1
<italic>B</italic>
</xref>
) and 2 K18-
<italic>hDPP4</italic>
lines (Figure
<xref ref-type="fig" rid="JIV499F1">1</xref>
<italic>B</italic>
) with productive MERS-CoV infections, based on titers 3 days after infection. The titers achieved in the K18-
<italic>hDPP4</italic>
lines exceeded those in the SPC-
<italic>hDPP4</italic>
lines. We selected founder line 3 from both the SPC-
<italic>hDPP4</italic>
and K18-
<italic>hDPP4</italic>
lines for additional studies, as these showed the highest virus titers 3 days after infection. Intranasal infection of transgenic mice and their nontransgenic littermates from SPC-
<italic>hDPP4</italic>
line 3 with MERS-CoV caused no mortality or changes in body temperature, but mice failed to gain weight as compared to nontransgenic littermates (
<xref ref-type="supplementary-material" rid="sup1">Supplementary Figure 1
<italic>C</italic>
</xref>
<xref ref-type="supplementary-material" rid="sup1">Supplementary Data</xref>
). Virus was cleared by 14 days after infection.</p>
</sec>
<sec id="s3b">
<title>MERS-CoV–Infected K18-
<italic>hDPP4</italic>
Mice Develop Lethal Disease</title>
<p>We detected DPP4 protein expression in brain, heart, lung, kidney, spleen, intestine, and liver of K18-
<italic>hDPP4</italic>
mice (Figure
<xref ref-type="fig" rid="JIV499F1">1</xref>
<italic>C</italic>
). In contrast to the SPC-
<italic>hDPP4</italic>
transgenic mice, K18-
<italic>hDPP4</italic>
mice inoculated intranasally with MERS-CoV uniformly exhibited weight loss and hypothermia, and they died at 6–7 days after infection (Figure
<xref ref-type="fig" rid="JIV499F2">2</xref>
<italic>A</italic>
<italic>C</italic>
). MERS-CoV titers were highest in lung tissue 2 days after infection (6 × 10
<sup>7</sup>
PFU/g of tissue) and then declined at 4 and 6 days after infection. In contrast, virus titers in brain were undetectable at 2 days after infection and then increased to 10
<sup>5</sup>
and 10
<sup>8</sup>
PFU/g of tissue 4 and 6 days after infection, respectively (Figure
<xref ref-type="fig" rid="JIV499F2">2</xref>
<italic>D</italic>
). Although the K18 promoter is active in the epithelia of multiple organs, no virus was titered from the kidney (Figure
<xref ref-type="fig" rid="JIV499F2">2</xref>
<italic>D</italic>
). We quantified virus RNA distribution in tissues and blood by PCR 2 and 4 days after infection (Figure
<xref ref-type="fig" rid="JIV499F2">2</xref>
<italic>E</italic>
). Virus RNA was abundant in lung 2 and 4 days after infection. RNA was detected in brain tissue 4 days after infection. Lower levels of viral RNA were also detected in spleen 2 days after infection and in kidney and heart 4 days after infection. </p>
<fig id="JIV499F2" orientation="portrait" position="float">
<label>Figure 2.</label>
<caption>
<p>Middle East respiratory syndrome coronavirus (MERS-CoV) infection causes lethal disease in human cytokeratin 18–
<italic>hDPP4</italic>
mice.
<italic>A–C</italic>
, Animals were inoculated intranasally with 1 × 10
<sup>5</sup>
plaque-forming units (PFU) of MERS-CoV and survival (
<italic>A</italic>
), weight (
<italic>B</italic>
), and temperature (
<italic>C</italic>
) monitored daily. Data are for 4 nontransgenic mice and 14 K18-
<italic>hDPP4</italic>
mice.
<italic>D</italic>
, MERS-CoV titers in indicated tissues at days 2, 4, and 6 after infection. Data are for 3–4 mice.
<italic>E</italic>
, The copy numbers of viral RNA in indicated tissues at days 2 and 4 after infection were analyzed by quantitative real-time polymerase chain reaction targeting regions within open reading frame 1a. Data are for 4 mice. All results are expressed as mean ± SD.</p>
</caption>
<graphic xlink:href="jiv49902"></graphic>
</fig>
<p>We also asked whether MERS-CoV–infected mice could spread the virus to other animals. MERS-CoV was not transmitted from infected K18-
<italic>hDPP4</italic>
mice (n = 2) to uninfected K18-
<italic>hDPP4</italic>
mice (n = 3) housed in the same cages (data not shown). No virus RNA was detected in the brain, lung, or blood of these healthy cohoused mice (data not shown). This was not surprising, however, since mice do not cough or sneeze.</p>
</sec>
<sec id="s3c">
<title>Histopathologic Evaluation of K18-
<italic>hDPP4</italic>
Lung Tissue Infected With MERS-CoV</title>
<p>MERS-CoV infection in lung was evaluated and scored 2, 4, and 6 days after infection (Table
<xref rid="JIV499TB1" ref-type="table">1</xref>
). MERS-CoV infection produced patchy consolidation (Figure
<xref ref-type="fig" rid="JIV499F3">3</xref>
<italic>A</italic>
) variably composed of cellular inflammation, vascular congestion, and atelectasis. The airways were generally intact, with only scattered, uncommon sloughed cells (Figure
<xref ref-type="fig" rid="JIV499F3">3</xref>
<italic>B</italic>
). In some lungs, lymphatic vessels were filled with degenerative cells and cellular debris (Figure
<xref ref-type="fig" rid="JIV499F3">3</xref>
<italic>C</italic>
). Thrombi (Figure
<xref ref-type="fig" rid="JIV499F3">3</xref>
<italic>D</italic>
) were also observed, with nearby vascular congestion and lesser hemorrhage and necrosis. Alveolar edema was detected in some lung fields (Figure
<xref ref-type="fig" rid="JIV499F3">3</xref>
<italic>E</italic>
). We investigated virus antigen expression in the lungs 2, 4, and 6 days after infection (
<xref ref-type="supplementary-material" rid="sup1">Supplementary Figure 2</xref>
). MERS-CoV nucleocapsid (N) protein was most abundant in the lung parenchyma in alveolar type I and II cells and in macrophages. </p>
<table-wrap id="JIV499TB1" orientation="portrait" position="float">
<label>Table 1.</label>
<caption>
<p>Histopathologic Scores of Lung Lesions in Middle East Respiratory Syndrome Coronavirus (MERS-CoV)–Infected Mice</p>
</caption>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" span="1"></col>
<col align="char" char="±" span="1"></col>
<col align="char" char="±" span="1"></col>
<col align="char" char="." span="1"></col>
<col align="char" char="±" span="1"></col>
<col align="char" char="." span="1"></col>
<col align="char" char="±" span="1"></col>
<col align="char" char="." span="1"></col>
</colgroup>
<thead>
<tr>
<th align="left" colspan="1" rowspan="3">Variable</th>
<th align="center" colspan="1" rowspan="3">Uninfected Control Mice,
<break></break>
Score, Mean±SEM (n = 4)</th>
<th align="center" colspan="6" rowspan="1">MERS-CoV–Infected Mice
<hr></hr>
</th>
</tr>
<tr>
<th align="center" colspan="2" rowspan="1">Day 2 (n = 3)
<hr></hr>
</th>
<th align="center" colspan="2" rowspan="1">Day 4 (n = 3)
<hr></hr>
</th>
<th align="center" colspan="2" rowspan="1">Day 6 (n = 9)
<hr></hr>
</th>
</tr>
<tr>
<th align="left" colspan="1" rowspan="1">Score, Mean ± SEM</th>
<th align="center" colspan="1" rowspan="1">
<italic>P</italic>
Value
<sup>a</sup>
</th>
<th align="center" colspan="1" rowspan="1">Score, Mean ± SEM</th>
<th align="center" colspan="1" rowspan="1">
<italic>P</italic>
Value
<sup>a</sup>
</th>
<th align="center" colspan="1" rowspan="1">Score, Mean ± SEM</th>
<th align="center" colspan="1" rowspan="1">
<italic>P</italic>
Value
<sup>a</sup>
</th>
</tr>
</thead>
<tbody>
<tr>
<td colspan="1" rowspan="1">Edema</td>
<td colspan="1" rowspan="1">1 ± 0.0</td>
<td colspan="1" rowspan="1">1 ± 0.0</td>
<td colspan="1" rowspan="1">.999</td>
<td colspan="1" rowspan="1">1.7 ± 0.3</td>
<td colspan="1" rowspan="1">.235</td>
<td colspan="1" rowspan="1">1.6 ± 0.2</td>
<td colspan="1" rowspan="1">.187</td>
</tr>
<tr>
<td colspan="1" rowspan="1">Consolidation</td>
<td colspan="1" rowspan="1">1.5 ± 0.3</td>
<td colspan="1" rowspan="1">2.3 ± 0.3</td>
<td colspan="1" rowspan="1">.999</td>
<td colspan="1" rowspan="1">3.0 ± 0.6</td>
<td colspan="1" rowspan="1">.142</td>
<td colspan="1" rowspan="1">3.3 ± 0.2</td>
<td colspan="1" rowspan="1">.004</td>
</tr>
<tr>
<td colspan="1" rowspan="1">Cell debris lymphatics</td>
<td colspan="1" rowspan="1">1 ± 0.0</td>
<td colspan="1" rowspan="1">1 ± 0.0</td>
<td colspan="1" rowspan="1">.999</td>
<td colspan="1" rowspan="1">1 ± 0.0</td>
<td colspan="1" rowspan="1">.999</td>
<td colspan="1" rowspan="1">2.1 ± 0.2</td>
<td colspan="1" rowspan="1">.014</td>
</tr>
<tr>
<td colspan="1" rowspan="1">Thrombi</td>
<td colspan="1" rowspan="1">1 ± 0.0</td>
<td colspan="1" rowspan="1">1 ± 0.0</td>
<td colspan="1" rowspan="1">.999</td>
<td colspan="1" rowspan="1">2.3 ± 0.3</td>
<td colspan="1" rowspan="1">.027</td>
<td colspan="1" rowspan="1">1.9 ± 0.2</td>
<td colspan="1" rowspan="1">.058</td>
</tr>
<tr>
<td colspan="1" rowspan="1">Composite score</td>
<td colspan="1" rowspan="1">1.1 ± 0.1</td>
<td colspan="1" rowspan="1">1.3 ± 0.1</td>
<td colspan="1" rowspan="1">.999</td>
<td colspan="1" rowspan="1">2.0 ± 0.1</td>
<td colspan="1" rowspan="1">.117</td>
<td colspan="1" rowspan="1">2.2 ± 0.1</td>
<td colspan="1" rowspan="1">.002</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="tblfn1">
<p>See “Methods“ section for scoring parameters.</p>
</fn>
<fn id="tblfn2">
<p>Abbreviation: SEM, standard error of the mean.</p>
</fn>
<fn id="tblfn3">
<p>
<sup>a</sup>
By the Dunn multiple comparison test, compared with control on day 6.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<fig id="JIV499F3" orientation="portrait" position="float">
<label>Figure 3.</label>
<caption>
<p>
<italic>A</italic>
, Lungs from control or Middle East respiratory syndrome coronavirus (MERS-CoV)–infected mice. MERS-CoV infection from days 2, 4, and 6 after infection consistently caused multifocal to patchy consolidation in lung with perivascular and peribronchiolar inflammation (arrows). Section were stained with hematoxylin-eosin (top panels, original magnification ×40; bottom panels, original magnification ×200).
<italic>B</italic>
, Airways were generally intact, with uncommon scattered sloughed cells (day 6). Note the very rare multinucleate cells (arrow and inset).
<italic>C</italic>
, Late in the course of infection (day 6), degenerating cells and cellular debris (arrow and inset) could be seen filling several lymphatics.
<italic>D</italic>
, Vascular thrombi (asterisks) were seen in most cases on days 4 and 6 after infection, with adjacent congestion and lesser amounts of necrosis and hemorrhage.
<italic>E</italic>
, Edema, characterized by eosinophilic fluid material in airspaces (asterisks), was progressively detected in some cases on days 4 and 6. Section were stained with hematoxylin-eosin (original magnification ×200 [
<italic>A</italic>
] and ×400 [
<italic>B-E</italic>
]).</p>
</caption>
<graphic xlink:href="jiv49903"></graphic>
</fig>
</sec>
<sec id="s3d">
<title>Nervous System Disease in MERS-CoV–Infected K18-
<italic>hDPP4</italic>
Mice</title>
<p>MERS-CoV was detected at high levels in infected K18
<italic>-hDPP4</italic>
mice. Transgenic hDPP4 expression in brain was corroborated by ELISA (Figure
<xref ref-type="fig" rid="JIV499F1">1</xref>
<italic>C</italic>
). We evaluated pathologic changes in the brains of MERS-CoV–infected mice 2, 4, and 6 days after infection (Table
<xref rid="JIV499TB2" ref-type="table">2</xref>
). Compared with controls (Figure
<xref ref-type="fig" rid="JIV499F4">4</xref>
<italic>A</italic>
), MERS-CoV–infected mice exhibited perivascular cuffing (Figure
<xref ref-type="fig" rid="JIV499F4">4</xref>
<italic>B</italic>
and
<xref ref-type="fig" rid="JIV499F4">4</xref>
<italic>E</italic>
), cellular degeneration, and debris (Figure
<xref ref-type="fig" rid="JIV499F4">4</xref>
<italic>C</italic>
and
<xref ref-type="fig" rid="JIV499F4">4</xref>
<italic>D</italic>
) that were absent on day 2, with progressive changes from days 4 to 6 (Table
<xref rid="JIV499TB2" ref-type="table">2</xref>
). Degenerating and dying neurons sometimes had basophilic cytoplasmic inclusions that were quite prominent (Figure
<xref ref-type="fig" rid="JIV499F4">4</xref>
<italic>C</italic>
and
<xref ref-type="fig" rid="JIV499F4">4</xref>
<italic>F</italic>
) and immunostained for viral antigen (Figure
<xref ref-type="fig" rid="JIV499F4">4</xref>
<italic>F</italic>
). MERS-CoV–induced neuronal lesions were most severe in the thalamus and brain stem (Table
<xref rid="JIV499TB2" ref-type="table">2</xref>
). More-detailed virus antigen staining in brain tissue 2, 4, 6 days after infection is shown in
<xref ref-type="supplementary-material" rid="sup1">Supplementary Figure 3</xref>
. N protein staining was rare 2 and 4 days after infection and principally seen in solitary neurons. In contrast, by 6 days after infection, many neurons were infected. Virus antigen 6 days after infection was preferentially located in the midbrain, thalamus, deep cerebral cortex, and CA2 region of the hippocampus but was uncommon in the cerebellum. </p>
<table-wrap id="JIV499TB2" orientation="portrait" position="float">
<label>Table 2.</label>
<caption>
<p>Histopathologic Cores in Anatomic Regions of Brain From Middle East Respiratory Syndrome Coronavirus (MERS-CoV)–Infected Mice</p>
</caption>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" span="1"></col>
<col align="char" char="±" span="1"></col>
<col align="char" char="." span="1"></col>
<col align="char" char="±" span="1"></col>
<col align="center" span="1"></col>
<col align="char" char="." span="1"></col>
<col align="char" char="±" span="1"></col>
<col align="char" char="." span="1"></col>
<col align="char" char="." span="1"></col>
<col align="char" char="±" span="1"></col>
<col align="char" char="." span="1"></col>
<col align="char" char="." span="1"></col>
</colgroup>
<thead>
<tr>
<th align="left" colspan="1" rowspan="3">Variable</th>
<th align="center" colspan="2" rowspan="2">Uninfected Control Mice
<hr></hr>
</th>
<th align="center" colspan="9" rowspan="1">MERS-CoV–Infected Mice
<hr></hr>
</th>
</tr>
<tr>
<th align="center" colspan="3" rowspan="1">Day 2
<hr></hr>
</th>
<th align="center" colspan="3" rowspan="1">Day 4
<hr></hr>
</th>
<th align="center" colspan="3" rowspan="1">Day 6
<hr></hr>
</th>
</tr>
<tr>
<th align="left" colspan="1" rowspan="1">Score, Mean ± SEM</th>
<th align="center" colspan="1" rowspan="1">No.</th>
<th align="center" colspan="1" rowspan="1">Score, Mean ± SEM</th>
<th align="center" colspan="1" rowspan="1">No.</th>
<th align="center" colspan="1" rowspan="1">
<italic>P</italic>
Value
<sup>a</sup>
</th>
<th align="center" colspan="1" rowspan="1">Score, Mean ± SEM</th>
<th align="center" colspan="1" rowspan="1">No.</th>
<th align="center" colspan="1" rowspan="1">
<italic>P</italic>
Value
<sup>a</sup>
</th>
<th align="center" colspan="1" rowspan="1">Score, Mean ± SEM</th>
<th align="center" colspan="1" rowspan="1">No.</th>
<th align="center" colspan="1" rowspan="1">
<italic>P</italic>
Value
<sup>a</sup>
</th>
</tr>
</thead>
<tbody>
<tr>
<td colspan="1" rowspan="1">Brain stem</td>
<td colspan="1" rowspan="1">1 ± 0.0</td>
<td colspan="1" rowspan="1">4</td>
<td colspan="1" rowspan="1">1 ± 0.0</td>
<td colspan="1" rowspan="1">3</td>
<td colspan="1" rowspan="1">.999</td>
<td colspan="1" rowspan="1">2.0 ± 0.0</td>
<td colspan="1" rowspan="1">2</td>
<td colspan="1" rowspan="1">.696</td>
<td colspan="1" rowspan="1">4.0 ± 0.0</td>
<td colspan="1" rowspan="1">7</td>
<td colspan="1" rowspan="1">.003</td>
</tr>
<tr>
<td colspan="1" rowspan="1">Caudate Putamen</td>
<td colspan="1" rowspan="1">1.0 ± 0.0</td>
<td colspan="1" rowspan="1">3</td>
<td colspan="1" rowspan="1">1.0 ± 0.0</td>
<td colspan="1" rowspan="1">3</td>
<td colspan="1" rowspan="1">.999</td>
<td colspan="1" rowspan="1">1.0 ± 0.0</td>
<td colspan="1" rowspan="1">3</td>
<td colspan="1" rowspan="1">.999</td>
<td colspan="1" rowspan="1">2.2 ± 0.3</td>
<td colspan="1" rowspan="1">6</td>
<td colspan="1" rowspan="1">.054</td>
</tr>
<tr>
<td colspan="1" rowspan="1">Cerebellum</td>
<td colspan="1" rowspan="1">1 ± 0.0</td>
<td colspan="1" rowspan="1">4</td>
<td colspan="1" rowspan="1">1 ± 0.0</td>
<td colspan="1" rowspan="1">2</td>
<td colspan="1" rowspan="1">.999</td>
<td colspan="1" rowspan="1">1 ± 0.0</td>
<td colspan="1" rowspan="1">3</td>
<td colspan="1" rowspan="1">.999</td>
<td colspan="1" rowspan="1">1.3 ± 0.3</td>
<td colspan="1" rowspan="1">4</td>
<td colspan="1" rowspan="1">.607</td>
</tr>
<tr>
<td colspan="1" rowspan="1">Cerebrum</td>
<td colspan="1" rowspan="1">1 ± 0.0</td>
<td colspan="1" rowspan="1">4</td>
<td colspan="1" rowspan="1">1 ± 0.0</td>
<td colspan="1" rowspan="1">3</td>
<td colspan="1" rowspan="1">.999</td>
<td colspan="1" rowspan="1">1.0 ± 0.0</td>
<td colspan="1" rowspan="1">3</td>
<td colspan="1" rowspan="1">.999</td>
<td colspan="1" rowspan="1">1.8 ± 0.2</td>
<td colspan="1" rowspan="1">8</td>
<td colspan="1" rowspan="1">.035</td>
</tr>
<tr>
<td colspan="1" rowspan="1">Ependyma</td>
<td colspan="1" rowspan="1">1.0 ± 0.0</td>
<td colspan="1" rowspan="1">4</td>
<td colspan="1" rowspan="1">1.0 ± 0.0</td>
<td colspan="1" rowspan="1">3</td>
<td colspan="1" rowspan="1">.999</td>
<td colspan="1" rowspan="1">1.0 ± 0.0</td>
<td colspan="1" rowspan="1">3</td>
<td colspan="1" rowspan="1">.999</td>
<td colspan="1" rowspan="1">1.3 ± 0.2</td>
<td colspan="1" rowspan="1">7</td>
<td colspan="1" rowspan="1">.510</td>
</tr>
<tr>
<td colspan="1" rowspan="1">Hippocampus</td>
<td colspan="1" rowspan="1">1.0 ± 0.0</td>
<td colspan="1" rowspan="1">2</td>
<td colspan="1" rowspan="1">1.0 ± 0.0</td>
<td colspan="1" rowspan="1">3</td>
<td colspan="1" rowspan="1">.999</td>
<td colspan="1" rowspan="1">1.0 ± 0.0</td>
<td colspan="1" rowspan="1">3</td>
<td colspan="1" rowspan="1">.999</td>
<td colspan="1" rowspan="1">1.4 ± 0.2</td>
<td colspan="1" rowspan="1">9</td>
<td colspan="1" rowspan="1">.581</td>
</tr>
<tr>
<td colspan="1" rowspan="1">Olfactory bulb</td>
<td colspan="1" rowspan="1">1.0 ± 0.0</td>
<td colspan="1" rowspan="1">3</td>
<td colspan="1" rowspan="1">NA</td>
<td colspan="1" rowspan="1"></td>
<td colspan="1" rowspan="1"></td>
<td colspan="1" rowspan="1">2.0 ± 0.0</td>
<td colspan="1" rowspan="1">1</td>
<td colspan="1" rowspan="1"></td>
<td colspan="1" rowspan="1">2.0 ± 0.0</td>
<td colspan="1" rowspan="1">2</td>
<td colspan="1" rowspan="1"></td>
</tr>
<tr>
<td colspan="1" rowspan="1">Thalamus</td>
<td colspan="1" rowspan="1">1.0 ± 0.0</td>
<td colspan="1" rowspan="1">4</td>
<td colspan="1" rowspan="1">1.0 ± 0.0</td>
<td colspan="1" rowspan="1">3</td>
<td colspan="1" rowspan="1">.999</td>
<td colspan="1" rowspan="1">2.3 ± 0.3</td>
<td colspan="1" rowspan="1">3</td>
<td colspan="1" rowspan="1">.365</td>
<td colspan="1" rowspan="1">3.4 ± 0.2</td>
<td colspan="1" rowspan="1">7</td>
<td colspan="1" rowspan="1">.004</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="tblfn4">
<p>See “Methods” section for scoring parameters.</p>
</fn>
<fn id="tblfn5">
<p>Abbreviation: SEM, standard error of the mean.</p>
</fn>
<fn id="tblfn6">
<p>
<sup>a</sup>
By the Dunn multiple comparison test, compared with control on day 6.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<fig id="JIV499F4" orientation="portrait" position="float">
<label>Figure 4.</label>
<caption>
<p>Brain disease in Middle East respiratory syndrome coronavirus (MERS-CoV)–infected human cytokeratin 18 (K18)–
<italic>hDPP4</italic>
and uninfected mice.
<italic>A</italic>
, Normal brain from an uninfected mouse.
<italic>B</italic>
, MERS-CoV caused lymphocytic perivascular cuffing in the infected brain.
<italic>C</italic>
, Infected neuron in hippocampus 6 days after infection. Note the granular degeneration and basophilic cytoplasmic inclusions (arrow and inset).
<italic>D</italic>
, Dying cells undergoing degeneration (arrows and inset; 6 days after infection) are detected in highly infected regions such as the thalamus or brain stem.
<italic>E</italic>
, Meningeal and perivascular cuffing included neutrophilic infiltrates (arrows; 6 days after infection).
<italic>F</italic>
, Several degenerating cells had small to granular basophilic cytoplasmic inclusions (arrows; 6 days after infection) that were stained with anti–MERS-CoV antibody (inset; brown). Note the neuropil rarefaction. Section were stained with hematoxylin-eosin (original magnification ×600).
<italic>G</italic>
<italic>I</italic>
, Outcomes of K18-
<italic>hDPP4</italic>
mice infected with different intranasal inocula of MERS-CoV. K18-
<italic>hDPP4</italic>
mice received 1000, 100, or 10 plaque-forming units (PFU) of MERS-CoV and were monitored for survival (
<italic>G</italic>
) and weight (
<italic>H</italic>
). There were 5 mice/group.
<italic>I</italic>
, Lungs and brains of mice receiving 10 PFU were harvested 10 days after inoculation or when they lost 20% of body weight. A total of 3 of 7 MERS-CoV–infected mice showed high virus titers in the brains.
<italic>J</italic>
, MERS-CoV replicates in cells of the nervous system. Human central nervous system–derived cell lines (U-138 MG an SK-N-SH), primary porcine astrocytes, a murine astrocytoma cell line (DBT), and African green monkey kidney cells (Vero-81) were infected with MERS-CoV at a multiplicity of infection of 1. Titers from these cells immediately after infection (day 0) or 2 days after infection were determined by plaque assay. Data are mean ± SD for 3 replicates/condition. Abbreviation: LOD, limit of detection.</p>
</caption>
<graphic xlink:href="jiv49904"></graphic>
</fig>
<p>Collectively, these results show that both the lungs and brain developed pathological changes after MERS-COV infection. To differentiate the importance of brain versus lung infection, we used low inoculum doses, to optimize the likelihood that only the brain or the lung would be infected. We used intranasal inocula of 1000, 100, and 10 PFU/animal. Compared with mice receiving a larger inoculum, the onset of weight loss was delayed from 3–4 days after infection to 9–10 days after infection (Figure
<xref ref-type="fig" rid="JIV499F4">4</xref>
<italic>G</italic>
<italic>I</italic>
). Despite this delayed onset of disease signs, 4 of 5 mice died after receipt of the 1000 PFU inoculum, 4 of 5 mice died after receipt of a 100 PFU inoculum, and 3 of 5 mice died following receipt of a 10 PFU inoculum. In a second experiment, MERS-CoV was detected in brain tissue of 3 of 7 mice infected with 10 PFU (approximately 4 × 10
<sup>6</sup>
PFU/g of tissue) 9 days after infection. No virus was titered from lung tissue (Figure
<xref ref-type="fig" rid="JIV499F4">4</xref>
<italic>I</italic>
). Thus, mortality correlated with brain infection, suggesting that infection of this organ was most important for the high mortality observed in K18
<italic>-hDPP4</italic>
mice.</p>
</sec>
<sec id="s3e">
<title>MERS-CoV Infection of Cells From the Nervous System</title>
<p>The clinical course of MERS in severely ill patients sometimes includes neurological manifestations [
<xref rid="JIV499C4" ref-type="bibr">4</xref>
,
<xref rid="JIV499C26" ref-type="bibr">26</xref>
], suggesting that MERS-CoV may infect the human central nervous system. Of note, DPP4 is expressed in vascular endothelia and other brain cell types [
<xref rid="JIV499C23" ref-type="bibr">23</xref>
,
<xref rid="JIV499C27" ref-type="bibr">27–34</xref>
]. To determine whether MERS-CoV could infect and complete its replication cycle in central nervous system–derived cells, we infected central nervous system–derived human cell lines or primary astrocytes derived from newborn pig brain tissue. Pig cells were previously shown to be permissive to MERS-CoV infection [
<xref rid="JIV499C2" ref-type="bibr">2</xref>
]. Human cell lines (U-138 MG and SK-N-SH) and primary porcine astrocytes all expressed DPP4 protein (data not shown). SK-N-SH cells, porcine astrocytes, and control Vero-81 cells supported virus replication (Figure
<xref ref-type="fig" rid="JIV499F4">4</xref>
<italic>J</italic>
), and this result was confirmed by immunostaining for MERS-CoV antigen (
<xref ref-type="supplementary-material" rid="sup1">Supplementary Figure 3</xref>
). No human autopsy samples are available to directly assess virus replication in the brain, but these results support the notion that neurological disease is directly virus induced.</p>
</sec>
<sec id="s3f">
<title>Induction of Proinflammatory Cytokines and Chemokines in MERS-CoV–Infected K18-
<italic>hDPP4</italic>
Mice</title>
<p>Based on studies of cells infected in vitro [
<xref rid="JIV499C35" ref-type="bibr">35–38</xref>
], dysregulated cytokine and chemokine production is postulated to contribute to disease severity. We profiled the expression of several cytokine, chemokine, and antiviral gene products in lung and brain tissues 2, 4, and 6 days after infection, using real-time qPCR. As shown in
<xref ref-type="supplementary-material" rid="sup1">Supplementary Figure 4</xref>
, we observed an overall trend that these host defense gene products were first induced in the lung, followed by a later increase in signal in the brain. In the lung, there were significant increases in type I, II, and III interferons by 2 days after infection. The induction of interferon λ in lung was especially remarkable. Upregulation of all classes of interferons occurred later in brain tissue and did not reach the same levels as in lung, with the exception of interferon γ. Several other gene products were increased early in the lung, including ISG15, interleukin 6, interleukin 12p40, interleukin 15, CCL2, CXCL9, and CXCL10. Peak expression of RIG-I, MDA5, PKR, MYD88, tumor necrosis factor α, interleukin 1β, CCL2, CCL5, and CXCL10 was greater in the brain than in the lung at the later time points.</p>
</sec>
<sec id="s3g">
<title>Kidneys From MERS-CoV–Infected Mice</title>
<p>Renal failure is commonly seen in patients with MERS but it is not known whether the kidney is infected by the virus. MERS-CoV–infected mice had scattered-to-patchy evidence of tubular injury, including tubular dilation, cell sloughing/debris, and cellular necrosis (
<xref ref-type="supplementary-material" rid="sup1">Supplementary Figure 5</xref>
). These changes were principally seen late in the course of infection (6 days after infection; 9 of 9 cases) and otherwise only seen rarely/focally at 4 days after infection (3 of 3 cases) and not detected 2 days after infection (0 of 3 cases). Consistent with published results [
<xref rid="JIV499C18" ref-type="bibr">18</xref>
], no virus was detected in the kidneys of MERS-CoV–infected animals 2, 4, or 6 days after infection. These pathologic changes are most consistent with shock or hypoxia.</p>
</sec>
<sec id="s3h">
<title>Active or Passive Immunization of K18-
<italic>hDPP4</italic>
Mice Prevents Clinical Disease</title>
<p>To determine whether K18-
<italic>hDPP4</italic>
mice will be useful for evaluating anti-MERS-CoV vaccines or therapies, we vaccinated K18-
<italic>hDPP4</italic>
mice with VRPs expressing the MERS-CoV surface S glycoprotein (VRP-S) or VRP-GFP prior to MERS-CoV infection. Following a primary and secondary immunization, mice were challenged with 1 × 10
<sup>5</sup>
PFU of MERS-CoV intranasally. As shown in Figure
<xref ref-type="fig" rid="JIV499F5">5</xref>
<italic>A</italic>
and
<xref ref-type="fig" rid="JIV499F5">5</xref>
<italic>B</italic>
, immunized mice were completely protected against lethal infection. Mice immunized with VRP-S showed 100% survival and no weight loss during the 14-day experiment. </p>
<fig id="JIV499F5" orientation="portrait" position="float">
<label>Figure 5.</label>
<caption>
<p>Immunization with Venezuelan equine encephalitis replicon particles (VRPs) expressing Middle East respiratory syndrome coronavirus (MERS-CoV) spike glycoprotein (VRP–MERS-S) or passive immunization protects human cytokeratin 18 (K18)–
<italic>hDPP4</italic>
mice against MERS-CoV infection.
<italic>A</italic>
and
<italic>B</italic>
, K18-
<italic>hDPP4</italic>
mice were immunized with 1 × 10
<sup>5</sup>
infectious units (IU) of VRPs expressing green fluorescent protein (VRP-GFP) or VRP-MERS-S in the footpad and boosted with the same dose 4 weeks later. Mice were infected with 1 × 10
<sup>5</sup>
plaque-forming units of MERS-CoV 2 weeks after the boost.
<italic>C</italic>
and
<italic>D</italic>
, For passive immunization, nontransgenic mice were immunized as described above. Sera were obtained 2 weeks after boosting and transferred into K18-
<italic>hDPP4</italic>
mice intraperitoneally 1 day before infection with MERS-CoV. Survival and weights were recorded for active immunization (
<italic>A</italic>
and
<italic>B</italic>
) and passive immunization (
<italic>C</italic>
and
<italic>D</italic>
). Data are mean ± standard deviation (SD) for 5 mice/group.
<italic>E</italic>
and
<italic>F</italic>
, MERS-CoV titers in lung tissue (
<italic>E</italic>
) and brain tissue (
<italic>F</italic>
) 2, 4, and 6 days after infection in mice with or without passive immunization. Data are mean ± SD for 3 mice/group. Abbreviation: LOD, limit of detection.</p>
</caption>
<graphic xlink:href="jiv49905"></graphic>
</fig>
<p>Next, animals were pretreated with serum from mice immunized with VRP-S or VRP-GFP. Intraperitoneal administration of serum from mice immunized with VRP-S 1 day prior to MERS-CoV infection completely prevented the lethal disease manifestations in K18-
<italic>hDPP4</italic>
mice, including weight loss and clinical disease (Figure
<xref ref-type="fig" rid="JIV499F5">5</xref>
<italic>C</italic>
and
<xref ref-type="fig" rid="JIV499F5">5</xref>
<italic>D</italic>
). Control anti-GFP sera–treated mice all died. We also assessed tissue titers in MERS-CoV–infected mice following passive immunization 2, 4, and 6 days after infection. We observed an accelerated reduction in lung tissue titers in immunized mice, with no virus titered >4 days after infection (Figure
<xref ref-type="fig" rid="JIV499F5">5</xref>
<italic>E</italic>
). Passive immunization completely prevented spread of infection to the brain (Figure
<xref ref-type="fig" rid="JIV499F5">5</xref>
<italic>F</italic>
).</p>
</sec>
</sec>
<sec sec-type="discussion" id="s4">
<title>DISCUSSION</title>
<p>The recent outbreak in South Korea demonstrates that MERS-CoV continues to pose significant risks to human health [
<xref rid="JIV499C11" ref-type="bibr">11</xref>
]. Here we report new mouse models of MERS-CoV infection. Because the restriction in infecting mouse cells with MERS-CoV is at the level of the receptor [
<xref rid="JIV499C15" ref-type="bibr">15</xref>
,
<xref rid="JIV499C16" ref-type="bibr">16</xref>
], we generated mice expressing human DPP4 under control of the SPC or K18 promoters. When challenged with MERS-CoV, a fatal disease course ensued in K18-
<italic>hDPP4</italic>
mice, with inflammatory disease involving lung and brain tissues. In this setting of severe disease, immunization with VRPs expressing the MERS-CoV S glycoprotein conferred protective immunity. SPC-
<italic>hDPP4</italic>
mice exhibited a milder disease phenotype. These transgenic mice provide new models for investigation of MERS-CoV infection and the evaluation of therapeutic interventions.</p>
<p>Several animal species have been tested for their susceptibility to MERS-CoV respiratory infection and disease. Mice [
<xref rid="JIV499C39" ref-type="bibr">39</xref>
], Syrian hamsters [
<xref rid="JIV499C40" ref-type="bibr">40</xref>
], and ferrets [
<xref rid="JIV499C41" ref-type="bibr">41</xref>
] do not support MERS-CoV replication. In contrast, rhesus macaques [
<xref rid="JIV499C42" ref-type="bibr">42</xref>
,
<xref rid="JIV499C43" ref-type="bibr">43</xref>
], marmosets [
<xref rid="JIV499C13" ref-type="bibr">13</xref>
], rabbits [
<xref rid="JIV499C44" ref-type="bibr">44</xref>
], and camels [
<xref rid="JIV499C45" ref-type="bibr">45</xref>
] all allow the virus to complete its replication cycle. While marmosets develop significant lung pathology with associated mortality when given a large inoculum [
<xref rid="JIV499C13" ref-type="bibr">13</xref>
], others report minimal disease in marmosets [
<xref rid="JIV499C14" ref-type="bibr">14</xref>
]. The phenotypes in other mammals studied are mild and do not recapitulate a severe MERS-like disease.</p>
<p>Zhao et al reported the first mouse model of MERS infection [
<xref rid="JIV499C17" ref-type="bibr">17</xref>
]. They sensitized mice to MERS-CoV infection by delivering adenovirus vectors expressing hDPP4 to the lungs of mice. However, only the lung expressed hDPP4, so virus replication in other organs could not be evaluated. Agrawal et al expressed
<italic>hDPP4</italic>
behind a universally expressed promoter [
<xref rid="JIV499C18" ref-type="bibr">18</xref>
]. Here we expanded the available mouse models by stably expressing
<italic>hDPP4</italic>
with the SPC and K18 promoters. Both of these promoters exhibit more-restricted expression than the CAGGs promoter used by Agrawal et al [
<xref rid="JIV499C18" ref-type="bibr">18</xref>
]. The disease phenotype of the K18-
<italic>hDPP4</italic>
mice shares many features with the results reported by Agrawal et al [
<xref rid="JIV499C18" ref-type="bibr">18</xref>
], including fatal disease, with lung and brain involvement. In contrast, the SPC-
<italic>hDPP4</italic>
line demonstrated lower lung tissue viral loads than Ad-
<italic>hDPP4</italic>
–sensitized mice [
<xref rid="JIV499C17" ref-type="bibr">17</xref>
], without spread to other organs or associated mortality. This suggests that, with infection restricted to the lung, mouse innate immunity may successfully overcome virulence factors expressed by MERS-CoV and prevent a lethal outcome. A mouse-adapted MERS-CoV strain may help overcome this limitation.</p>
<p>The K18-
<italic>hDPP4</italic>
transgenic mice developed several disease features of interest. Analysis of the lungs 2, 4, and 6 days after infection revealed ongoing virus replication and significant parenchymal involvement. In addition, the airways exhibited rare sloughed cells, and cell debris was observed within lymphatic vessels. These changes were associated with increases in levels of several innate immune molecules and cytokines, including type I, II, and III interferons; ISG15, interleukin 6, interleukin 12p40, interleukin 15, CCL2, CXCL9, and CXCL10. Interestingly, the level of interferon λ, the predominant mucosal interferon in the lung [
<xref rid="JIV499C46" ref-type="bibr">46</xref>
], was markedly induced in the lung of MERS-CoV–infected mice. These lung disease features provide several quantitative end points for evaluation of the efficacy of antiviral therapies.</p>
<p>We previously used the K18 promoter to generate mice transgenic for human ACE2 as a model for severe acute respiratory syndrome (SARS)–CoV infection [
<xref rid="JIV499C21" ref-type="bibr">21</xref>
]. Following infection with the Urbani strain of SARS-CoV, K18-
<italic>hACE2</italic>
mice developed a lethal disease featuring both lung and brain involvement. SARS-CoV spread from the olfactory bulb to primary, secondary, and more-distal connections very rapidly, resulting in lethality. In the present study, the temporal course of brain tissue infection also suggested retrograde virus spread from olfactory neurons. While susceptibility to brain infection sets a high bar for evaluating new therapies for MERS-CoV infection, we demonstrated the utility of the model for vaccine testing. We acknowledge that high-titer replication and death from central nervous system disease in K18-
<italic>hDPP4</italic>
transgenic mice may complicate the study of some vaccines and other therapeutic interventions, especially for drugs that do not cross the blood-brain barrier.</p>
<p>The K18-
<italic>hDPP4</italic>
mice developed lethal disease, with encephalitis contributing to their demise. Is the brain infection in a mouse model of MERS relevant to the disease in humans? We note that DPP4 is expressed in the brains of humans and other mammals [
<xref rid="JIV499C23" ref-type="bibr">23</xref>
,
<xref rid="JIV499C27" ref-type="bibr">27–34</xref>
]. We found that MERS-CoV infects human nervous system–derived cell lines and primary porcine astrocytes. It is possible that if MERS-CoV gains access to the human central nervous system, through disruption of the blood brain barrier, via lymphatics [
<xref rid="JIV499C47" ref-type="bibr">47</xref>
], or other routes, there are cells expressing DPP4 that could support virus replication. Current knowledge is limited by the absence of any published postmortem data from persons dying from MERS. Interestingly, Arabi et al recently described 3 patients with MERS who had severe neurologic manifestations, including altered consciousness and diffuse brain abnormalities on magnetic resonance imaging involving the white matter and subcortical areas of the frontal, temporal, and parietal lobes, the basal ganglia, and the corpus callosum [
<xref rid="JIV499C26" ref-type="bibr">26</xref>
]. While there are many reasons that severely ill patients with MERS might manifest neurologic signs and symptoms, this report indicates that MERS can be associated with progressive neurological manifestations. Further data are needed to understand whether some patients with MERS have central nervous system involvement with infection.</p>
<p>In summary, these MERS mouse models provide a resource for the investigation of early disease mechanisms and therapeutic interventions and provide an economic alternative to other available models of MERS-CoV infection.</p>
</sec>
<sec sec-type="supplementary-material">
<title>Supplementary Material</title>
<supplementary-material content-type="local-data" id="sup1">
<label>Supplementary Data</label>
<media xlink:href="jiv499_Supplementary_Data.zip">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
</sec>
</body>
<back>
<ack>
<title>Notes</title>
<p>
<bold>
<italic>Acknowledgments.</italic>
</bold>
 We thank Sateesh Krishnamurthy, Jennifer Bartlett, and Patrick Sinn, for careful review of the manuscript; and Jim Hu, for providing the K18 plasmid construct.</p>
<p>
<bold>
<italic>Financial support.</italic>
</bold>
 This work was supported by the National Institutes of Health (NIH; grant PO1 AI060699), the Cell Morphology Core and Pathology Core, supported in part by the Center for Gene Therapy for Cystic Fibrosis, through the NIH (grant P30 DK-54759), and by the Cystic Fibrosis Foundation; the Transgenic Mouse Facility, supported in part by the College of Medicine and by the Center for Gene Therapy for Cystic Fibrosis; and the Roy J. Carver Charitable Trust (to P. B. M.).</p>
<p>
<bold>
<italic>Potential conflicts of interest.</italic>
</bold>
 All authors: No reported conflicts. All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Conflicts that the editors consider relevant to the content of the manuscript have been disclosed.</p>
</ack>
<ref-list>
<title>References</title>
<ref id="JIV499C1">
<label>1</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Zaki</surname>
<given-names>AM</given-names>
</name>
,
<name name-style="western">
<surname>van Boheemen</surname>
<given-names>S</given-names>
</name>
,
<name name-style="western">
<surname>Bestebroer</surname>
<given-names>TM</given-names>
</name>
,
<name name-style="western">
<surname>Osterhaus</surname>
<given-names>AD</given-names>
</name>
,
<name name-style="western">
<surname>Fouchier</surname>
<given-names>RA</given-names>
</name>
</person-group>
<article-title>Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia</article-title>
.
<source>N Engl J Med</source>
<year>2012</year>
;
<volume>367</volume>
:
<fpage>1814</fpage>
<lpage>20</lpage>
.
<pub-id pub-id-type="pmid">23075143</pub-id>
</mixed-citation>
</ref>
<ref id="JIV499C2">
<label>2</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Raj</surname>
<given-names>VS</given-names>
</name>
,
<name name-style="western">
<surname>Mou</surname>
<given-names>H</given-names>
</name>
,
<name name-style="western">
<surname>Smits</surname>
<given-names>SL</given-names>
</name>
<etal>et al</etal>
</person-group>
<article-title>Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC</article-title>
.
<source>Nature</source>
<year>2013</year>
;
<volume>495</volume>
:
<fpage>251</fpage>
<lpage>4</lpage>
.
<pub-id pub-id-type="pmid">23486063</pub-id>
</mixed-citation>
</ref>
<ref id="JIV499C3">
<label>3</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Zumla</surname>
<given-names>AI</given-names>
</name>
,
<name name-style="western">
<surname>Hui</surname>
<given-names>DS</given-names>
</name>
,
<name name-style="western">
<surname>Perlman</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Middle East respiratory syndrome</article-title>
.
<source>Lancet</source>
<year>2015</year>
;
<volume>386</volume>
:
<fpage>995</fpage>
<lpage>1007</lpage>
.
<pub-id pub-id-type="pmid">26049252</pub-id>
</mixed-citation>
</ref>
<ref id="JIV499C4">
<label>4</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Saad</surname>
<given-names>M</given-names>
</name>
,
<name name-style="western">
<surname>Omrani</surname>
<given-names>AS</given-names>
</name>
,
<name name-style="western">
<surname>Baig</surname>
<given-names>K</given-names>
</name>
<etal>et al</etal>
</person-group>
<article-title>Clinical aspects and outcomes of 70 patients with Middle East respiratory syndrome coronavirus infection: a single-center experience in Saudi Arabia</article-title>
.
<source>Int J Infect Dis</source>
<year>2014</year>
;
<volume>29</volume>
:
<fpage>301</fpage>
<lpage>6</lpage>
.
<pub-id pub-id-type="pmid">25303830</pub-id>
</mixed-citation>
</ref>
<ref id="JIV499C5">
<label>5</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Arabi</surname>
<given-names>YM</given-names>
</name>
,
<name name-style="western">
<surname>Arifi</surname>
<given-names>AA</given-names>
</name>
,
<name name-style="western">
<surname>Balkhy</surname>
<given-names>HH</given-names>
</name>
<etal>et al</etal>
</person-group>
<article-title>Clinical course and outcomes of critically ill patients with Middle East respiratory syndrome coronavirus infection</article-title>
.
<source>Ann Intern Med</source>
<year>2014</year>
;
<volume>160</volume>
:
<fpage>389</fpage>
<lpage>97</lpage>
.
<pub-id pub-id-type="pmid">24474051</pub-id>
</mixed-citation>
</ref>
<ref id="JIV499C6">
<label>6</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Kapoor</surname>
<given-names>M</given-names>
</name>
,
<name name-style="western">
<surname>Pringle</surname>
<given-names>K</given-names>
</name>
,
<name name-style="western">
<surname>Kumar</surname>
<given-names>A</given-names>
</name>
<etal>et al</etal>
</person-group>
<article-title>Clinical and laboratory findings of the first imported case of Middle East respiratory syndrome coronavirus to the United States</article-title>
.
<source>Clin Infect Dis</source>
<year>2014</year>
;
<volume>59</volume>
:
<fpage>1511</fpage>
<lpage>8</lpage>
.
<pub-id pub-id-type="pmid">25100864</pub-id>
</mixed-citation>
</ref>
<ref id="JIV499C7">
<label>7</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Al-Hameed</surname>
<given-names>F</given-names>
</name>
,
<name name-style="western">
<surname>Wahla</surname>
<given-names>AS</given-names>
</name>
,
<name name-style="western">
<surname>Siddiqui</surname>
<given-names>S</given-names>
</name>
<etal>et al</etal>
</person-group>
<article-title>Characteristics and outcomes of Middle East respiratory syndrome coronavirus patients admitted to an intensive care unit in Jeddah, Saudi Arabia</article-title>
.
<source>J Intensive Care Med</source>
<year>2015</year>
;
<pub-id pub-id-type="doi">10.1177/0885066615579858</pub-id>
.</mixed-citation>
</ref>
<ref id="JIV499C8">
<label>8</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Azhar</surname>
<given-names>EI</given-names>
</name>
,
<name name-style="western">
<surname>El-Kafrawy</surname>
<given-names>SA</given-names>
</name>
,
<name name-style="western">
<surname>Farraj</surname>
<given-names>SA</given-names>
</name>
<etal>et al</etal>
</person-group>
<article-title>Evidence for camel-to-human transmission of MERS coronavirus</article-title>
.
<source>N Engl J Med</source>
<year>2014</year>
;
<volume>370</volume>
:
<fpage>2499</fpage>
<lpage>505</lpage>
.
<pub-id pub-id-type="pmid">24896817</pub-id>
</mixed-citation>
</ref>
<ref id="JIV499C9">
<label>9</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Corman</surname>
<given-names>VM</given-names>
</name>
,
<name name-style="western">
<surname>Ithete</surname>
<given-names>NL</given-names>
</name>
,
<name name-style="western">
<surname>Richards</surname>
<given-names>LR</given-names>
</name>
<etal>et al</etal>
</person-group>
<article-title>Rooting the phylogenetic tree of middle East respiratory syndrome coronavirus by characterization of a conspecific virus from an African bat</article-title>
.
<source>J Virol</source>
<year>2014</year>
;
<volume>88</volume>
:
<fpage>11297</fpage>
<lpage>303</lpage>
.
<pub-id pub-id-type="pmid">25031349</pub-id>
</mixed-citation>
</ref>
<ref id="JIV499C10">
<label>10</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Assiri</surname>
<given-names>A</given-names>
</name>
,
<name name-style="western">
<surname>McGeer</surname>
<given-names>A</given-names>
</name>
,
<name name-style="western">
<surname>Perl</surname>
<given-names>TM</given-names>
</name>
<etal>et al</etal>
</person-group>
<article-title>Hospital outbreak of Middle East respiratory syndrome coronavirus</article-title>
.
<source>N Engl J Med</source>
<year>2013</year>
;
<volume>369</volume>
:
<fpage>407</fpage>
<lpage>16</lpage>
.
<pub-id pub-id-type="pmid">23782161</pub-id>
</mixed-citation>
</ref>
<ref id="JIV499C11">
<label>11</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Hui</surname>
<given-names>DS</given-names>
</name>
,
<name name-style="western">
<surname>Perlman</surname>
<given-names>S</given-names>
</name>
,
<name name-style="western">
<surname>Zumla</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Spread of MERS to South Korea and China</article-title>
.
<source>Lancet Respir Med</source>
<year>2015</year>
;
<volume>3</volume>
:
<fpage>509</fpage>
<lpage>10</lpage>
.
<pub-id pub-id-type="pmid">26050550</pub-id>
</mixed-citation>
</ref>
<ref id="JIV499C12">
<label>12</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Sutton</surname>
<given-names>TC</given-names>
</name>
,
<name name-style="western">
<surname>Subbarao</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Development of animal models against emerging coronaviruses: From SARS to MERS coronavirus</article-title>
.
<source>Virology</source>
<year>2015</year>
;
<volume>479–480C</volume>
:
<fpage>247</fpage>
<lpage>58</lpage>
.</mixed-citation>
</ref>
<ref id="JIV499C13">
<label>13</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Falzarano</surname>
<given-names>D</given-names>
</name>
,
<name name-style="western">
<surname>de Wit</surname>
<given-names>E</given-names>
</name>
,
<name name-style="western">
<surname>Feldmann</surname>
<given-names>F</given-names>
</name>
<etal>et al</etal>
</person-group>
<article-title>Infection with MERS-CoV causes lethal pneumonia in the common marmoset</article-title>
.
<source>PLoS Pathog</source>
<year>2014</year>
;
<volume>10</volume>
:
<fpage>e1004250</fpage>
.
<pub-id pub-id-type="pmid">25144235</pub-id>
</mixed-citation>
</ref>
<ref id="JIV499C14">
<label>14</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Johnson</surname>
<given-names>RF</given-names>
</name>
,
<name name-style="western">
<surname>Via</surname>
<given-names>LE</given-names>
</name>
,
<name name-style="western">
<surname>Kumar</surname>
<given-names>MR</given-names>
</name>
<etal>et al</etal>
</person-group>
<article-title>Intratracheal exposure of common marmosets to MERS-CoV Jordan-n3/2012 or MERS-CoV EMC/2012 isolates does not result in lethal disease</article-title>
.
<source>Virology</source>
<year>2015</year>
;
<volume>485</volume>
:
<fpage>422</fpage>
<lpage>30</lpage>
.
<pub-id pub-id-type="pmid">26342468</pub-id>
</mixed-citation>
</ref>
<ref id="JIV499C15">
<label>15</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>van Doremalen</surname>
<given-names>N</given-names>
</name>
,
<name name-style="western">
<surname>Miazgowicz</surname>
<given-names>KL</given-names>
</name>
,
<name name-style="western">
<surname>Milne-Price</surname>
<given-names>S</given-names>
</name>
<etal>et al</etal>
</person-group>
<article-title>Host species restriction of Middle East respiratory syndrome coronavirus through its receptor, dipeptidyl peptidase 4</article-title>
.
<source>J Virol</source>
<year>2014</year>
;
<volume>88</volume>
:
<fpage>9220</fpage>
<lpage>32</lpage>
.
<pub-id pub-id-type="pmid">24899185</pub-id>
</mixed-citation>
</ref>
<ref id="JIV499C16">
<label>16</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Barlan</surname>
<given-names>A</given-names>
</name>
,
<name name-style="western">
<surname>Zhao</surname>
<given-names>J</given-names>
</name>
,
<name name-style="western">
<surname>Sarkar</surname>
<given-names>MK</given-names>
</name>
<etal>et al</etal>
</person-group>
<article-title>Receptor variation and susceptibility to Middle East respiratory syndrome coronavirus infection</article-title>
.
<source>J Virol</source>
<year>2014</year>
;
<volume>88</volume>
:
<fpage>4953</fpage>
<lpage>61</lpage>
.
<pub-id pub-id-type="pmid">24554656</pub-id>
</mixed-citation>
</ref>
<ref id="JIV499C17">
<label>17</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Zhao</surname>
<given-names>J</given-names>
</name>
,
<name name-style="western">
<surname>Li</surname>
<given-names>K</given-names>
</name>
,
<name name-style="western">
<surname>Wohlford-Lenane</surname>
<given-names>C</given-names>
</name>
<etal>et al</etal>
</person-group>
<article-title>Rapid generation of a mouse model for Middle East respiratory syndrome</article-title>
.
<source>Proc Natl Acad Sci U S A</source>
<year>2014</year>
;
<volume>111</volume>
:
<fpage>4970</fpage>
<lpage>5</lpage>
.
<pub-id pub-id-type="pmid">24599590</pub-id>
</mixed-citation>
</ref>
<ref id="JIV499C18">
<label>18</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Agrawal</surname>
<given-names>AS</given-names>
</name>
,
<name name-style="western">
<surname>Garron</surname>
<given-names>T</given-names>
</name>
,
<name name-style="western">
<surname>Tao</surname>
<given-names>X</given-names>
</name>
<etal>et al</etal>
</person-group>
<article-title>Generation of transgenic mouse model of Middle East Respiratory Syndrome-Coronavirus infection and disease</article-title>
.
<source>J Virol</source>
<year>2015</year>
;
<volume>89</volume>
:
<fpage>3659</fpage>
<lpage>70</lpage>
.
<pub-id pub-id-type="pmid">25589660</pub-id>
</mixed-citation>
</ref>
<ref id="JIV499C19">
<label>19</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Chow</surname>
<given-names>YH</given-names>
</name>
,
<name name-style="western">
<surname>Plumb</surname>
<given-names>J</given-names>
</name>
,
<name name-style="western">
<surname>Wen</surname>
<given-names>Y</given-names>
</name>
<etal>et al</etal>
</person-group>
<article-title>Targeting transgene expression to airway epithelia and submucosal glands, prominent sites of human CFTR expression</article-title>
.
<source>Mol Ther</source>
<year>2000</year>
;
<volume>2</volume>
:
<fpage>359</fpage>
<lpage>67</lpage>
.
<pub-id pub-id-type="pmid">11020351</pub-id>
</mixed-citation>
</ref>
<ref id="JIV499C20">
<label>20</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Chow</surname>
<given-names>YH</given-names>
</name>
,
<name name-style="western">
<surname>O'Brodovich</surname>
<given-names>H</given-names>
</name>
,
<name name-style="western">
<surname>Plumb</surname>
<given-names>J</given-names>
</name>
<etal>et al</etal>
</person-group>
<article-title>Development of an epithelium-specific expression cassette with human DNA regulatory elements for transgene expression in lung airways</article-title>
.
<source>Proc Natl Acad Sci U S A</source>
<year>1997</year>
;
<volume>94</volume>
:
<fpage>14695</fpage>
<lpage>700</lpage>
.
<pub-id pub-id-type="pmid">9405675</pub-id>
</mixed-citation>
</ref>
<ref id="JIV499C21">
<label>21</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>McCray</surname>
<given-names>PB</given-names>
<suffix>Jr</suffix>
</name>
,
<name name-style="western">
<surname>Pewe</surname>
<given-names>L</given-names>
</name>
,
<name name-style="western">
<surname>Wohlford-Lenane</surname>
<given-names>C</given-names>
</name>
<etal>et al</etal>
</person-group>
<article-title>Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus</article-title>
.
<source>J Virol</source>
<year>2007</year>
;
<volume>81</volume>
:
<fpage>813</fpage>
<lpage>21</lpage>
.
<pub-id pub-id-type="pmid">17079315</pub-id>
</mixed-citation>
</ref>
<ref id="JIV499C22">
<label>22</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Reznikov</surname>
<given-names>LR</given-names>
</name>
,
<name name-style="western">
<surname>Dong</surname>
<given-names>Q</given-names>
</name>
,
<name name-style="western">
<surname>Chen</surname>
<given-names>JH</given-names>
</name>
<etal>et al</etal>
</person-group>
<article-title>CFTR-deficient pigs display peripheral nervous system defects at birth</article-title>
.
<source>Proc Natl Acad Sci U S A</source>
<year>2013</year>
;
<volume>110</volume>
:
<fpage>3083</fpage>
<lpage>8</lpage>
.
<pub-id pub-id-type="pmid">23382208</pub-id>
</mixed-citation>
</ref>
<ref id="JIV499C23">
<label>23</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Lambeir</surname>
<given-names>AM</given-names>
</name>
,
<name name-style="western">
<surname>Durinx</surname>
<given-names>C</given-names>
</name>
,
<name name-style="western">
<surname>Scharpe</surname>
<given-names>S</given-names>
</name>
,
<name name-style="western">
<surname>De Meester</surname>
<given-names>I</given-names>
</name>
</person-group>
<article-title>Dipeptidyl-peptidase IV from bench to bedside: an update on structural properties, functions, and clinical aspects of the enzyme DPP IV</article-title>
.
<source>Crit Rev Clin Lab Sci</source>
<year>2003</year>
;
<volume>40</volume>
:
<fpage>209</fpage>
<lpage>94</lpage>
.
<pub-id pub-id-type="pmid">12892317</pub-id>
</mixed-citation>
</ref>
<ref id="JIV499C24">
<label>24</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Chan</surname>
<given-names>RW</given-names>
</name>
,
<name name-style="western">
<surname>Chan</surname>
<given-names>MC</given-names>
</name>
,
<name name-style="western">
<surname>Agnihothram</surname>
<given-names>S</given-names>
</name>
<etal>et al</etal>
</person-group>
<article-title>Tropism of and innate immune responses to the novel human betacoronavirus lineage C virus in human ex vivo respiratory organ cultures</article-title>
.
<source>J Virol</source>
<year>2013</year>
;
<volume>87</volume>
:
<fpage>6604</fpage>
<lpage>14</lpage>
.
<pub-id pub-id-type="pmid">23552422</pub-id>
</mixed-citation>
</ref>
<ref id="JIV499C25">
<label>25</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Glasser</surname>
<given-names>SW</given-names>
</name>
,
<name name-style="western">
<surname>Korfhagen</surname>
<given-names>TR</given-names>
</name>
,
<name name-style="western">
<surname>Wert</surname>
<given-names>SE</given-names>
</name>
<etal>et al</etal>
</person-group>
<article-title>Genetic element from human surfactant protein SP-C gene confers bronchiolar-alveolar cell specificity in transgenic mice</article-title>
.
<source>Am J Physiol</source>
<year>1991</year>
;
<volume>261</volume>
:
<fpage>L349</fpage>
<lpage>56</lpage>
.
<pub-id pub-id-type="pmid">1928370</pub-id>
</mixed-citation>
</ref>
<ref id="JIV499C26">
<label>26</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Arabi</surname>
<given-names>YM</given-names>
</name>
,
<name name-style="western">
<surname>Harthi</surname>
<given-names>A</given-names>
</name>
,
<name name-style="western">
<surname>Hussein</surname>
<given-names>J</given-names>
</name>
<etal>et al</etal>
</person-group>
<article-title>Severe neurologic syndrome associated with Middle East respiratory syndrome corona virus (MERS-CoV)</article-title>
.
<source>Infection</source>
<year>2015</year>
;
<volume>43</volume>
:
<fpage>495</fpage>
<lpage>501</lpage>
.
<pub-id pub-id-type="pmid">25600929</pub-id>
</mixed-citation>
</ref>
<ref id="JIV499C27">
<label>27</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Barnes</surname>
<given-names>K</given-names>
</name>
,
<name name-style="western">
<surname>Kenny</surname>
<given-names>AJ</given-names>
</name>
,
<name name-style="western">
<surname>Turner</surname>
<given-names>AJ</given-names>
</name>
</person-group>
<article-title>Localization of aminopeptidase N and dipeptidyl peptidase IV in pig striatum and in neuronal and glial cell cultures</article-title>
.
<source>Eur J Neurosci</source>
<year>1994</year>
;
<volume>6</volume>
:
<fpage>531</fpage>
<lpage>7</lpage>
.
<pub-id pub-id-type="pmid">7912983</pub-id>
</mixed-citation>
</ref>
<ref id="JIV499C28">
<label>28</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Schnabel</surname>
<given-names>R</given-names>
</name>
,
<name name-style="western">
<surname>Bernstein</surname>
<given-names>HG</given-names>
</name>
,
<name name-style="western">
<surname>Luppa</surname>
<given-names>H</given-names>
</name>
,
<name name-style="western">
<surname>Lojda</surname>
<given-names>Z</given-names>
</name>
,
<name name-style="western">
<surname>Barth</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Aminopeptidases in the circumventricular organs of the mouse brain: a histochemical study</article-title>
.
<source>Neuroscience</source>
<year>1992</year>
;
<volume>47</volume>
:
<fpage>431</fpage>
<lpage>8</lpage>
.
<pub-id pub-id-type="pmid">1353621</pub-id>
</mixed-citation>
</ref>
<ref id="JIV499C29">
<label>29</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Bourne</surname>
<given-names>A</given-names>
</name>
,
<name name-style="western">
<surname>Barnes</surname>
<given-names>K</given-names>
</name>
,
<name name-style="western">
<surname>Taylor</surname>
<given-names>BA</given-names>
</name>
,
<name name-style="western">
<surname>Turner</surname>
<given-names>AJ</given-names>
</name>
,
<name name-style="western">
<surname>Kenny</surname>
<given-names>AJ</given-names>
</name>
</person-group>
<article-title>Membrane peptidases in the pig choroid plexus and on other cell surfaces in contact with the cerebrospinal fluid</article-title>
.
<source>Biochem J</source>
<year>1989</year>
;
<volume>259</volume>
:
<fpage>69</fpage>
<lpage>80</lpage>
.
<pub-id pub-id-type="pmid">2655579</pub-id>
</mixed-citation>
</ref>
<ref id="JIV499C30">
<label>30</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Mitro</surname>
<given-names>A</given-names>
</name>
,
<name name-style="western">
<surname>Lojda</surname>
<given-names>Z</given-names>
</name>
</person-group>
<article-title>Histochemistry of proteases in ependyma, choroid plexus and leptomeninges</article-title>
.
<source>Histochemistry</source>
<year>1988</year>
;
<volume>88</volume>
:
<fpage>645</fpage>
<lpage>6</lpage>
.
<pub-id pub-id-type="pmid">3284853</pub-id>
</mixed-citation>
</ref>
<ref id="JIV499C31">
<label>31</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Mentzel</surname>
<given-names>S</given-names>
</name>
,
<name name-style="western">
<surname>Dijkman</surname>
<given-names>HB</given-names>
</name>
,
<name name-style="western">
<surname>Van Son</surname>
<given-names>JP</given-names>
</name>
,
<name name-style="western">
<surname>Koene</surname>
<given-names>RA</given-names>
</name>
,
<name name-style="western">
<surname>Assmann</surname>
<given-names>KJ</given-names>
</name>
</person-group>
<article-title>Organ distribution of aminopeptidase A and dipeptidyl peptidase IV in normal mice</article-title>
.
<source>J Histochem Cytochem</source>
<year>1996</year>
;
<volume>44</volume>
:
<fpage>445</fpage>
<lpage>61</lpage>
.
<pub-id pub-id-type="pmid">8627002</pub-id>
</mixed-citation>
</ref>
<ref id="JIV499C32">
<label>32</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Busek</surname>
<given-names>P</given-names>
</name>
,
<name name-style="western">
<surname>Stremenova</surname>
<given-names>J</given-names>
</name>
,
<name name-style="western">
<surname>Sedo</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Dipeptidyl peptidase-IV enzymatic activity bearing molecules in human brain tumors--good or evil?</article-title>
<source>Front Biosci</source>
<year>2008</year>
;
<volume>13</volume>
:
<fpage>2319</fpage>
<lpage>26</lpage>
.
<pub-id pub-id-type="pmid">17981714</pub-id>
</mixed-citation>
</ref>
<ref id="JIV499C33">
<label>33</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Busek</surname>
<given-names>P</given-names>
</name>
,
<name name-style="western">
<surname>Stremenova</surname>
<given-names>J</given-names>
</name>
,
<name name-style="western">
<surname>Krepela</surname>
<given-names>E</given-names>
</name>
,
<name name-style="western">
<surname>Sedo</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Modulation of substance P signaling by dipeptidyl peptidase-IV enzymatic activity in human glioma cell lines</article-title>
.
<source>Physiol Res</source>
<year>2008</year>
;
<volume>57</volume>
:
<fpage>443</fpage>
<lpage>9</lpage>
.
<pub-id pub-id-type="pmid">17949241</pub-id>
</mixed-citation>
</ref>
<ref id="JIV499C34">
<label>34</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Stremenova</surname>
<given-names>J</given-names>
</name>
,
<name name-style="western">
<surname>Krepela</surname>
<given-names>E</given-names>
</name>
,
<name name-style="western">
<surname>Mares</surname>
<given-names>V</given-names>
</name>
<etal>et al</etal>
</person-group>
<article-title>Expression and enzymatic activity of dipeptidyl peptidase-IV in human astrocytic tumours are associated with tumour grade</article-title>
.
<source>Int J Oncol</source>
<year>2007</year>
;
<volume>31</volume>
:
<fpage>785</fpage>
<lpage>92</lpage>
.
<pub-id pub-id-type="pmid">17786309</pub-id>
</mixed-citation>
</ref>
<ref id="JIV499C35">
<label>35</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Selinger</surname>
<given-names>C</given-names>
</name>
,
<name name-style="western">
<surname>Tisoncik-Go</surname>
<given-names>J</given-names>
</name>
,
<name name-style="western">
<surname>Menachery</surname>
<given-names>VD</given-names>
</name>
<etal>et al</etal>
</person-group>
<article-title>Cytokine systems approach demonstrates differences in innate and pro-inflammatory host responses between genetically distinct MERS-CoV isolates</article-title>
.
<source>BMC Genomics</source>
<year>2014</year>
;
<volume>15</volume>
:
<fpage>1161</fpage>
.
<pub-id pub-id-type="pmid">25534508</pub-id>
</mixed-citation>
</ref>
<ref id="JIV499C36">
<label>36</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Scheuplein</surname>
<given-names>VA</given-names>
</name>
,
<name name-style="western">
<surname>Seifried</surname>
<given-names>J</given-names>
</name>
,
<name name-style="western">
<surname>Malczyk</surname>
<given-names>AH</given-names>
</name>
<etal>et al</etal>
</person-group>
<article-title>High secretion of interferons by human plasmacytoid dendritic cells upon recognition of Middle East Respiratory Syndrome Coronavirus</article-title>
.
<source>J Virol</source>
<year>2015</year>
;
<volume>89</volume>
:
<fpage>3859</fpage>
<lpage>69</lpage>
.
<pub-id pub-id-type="pmid">25609809</pub-id>
</mixed-citation>
</ref>
<ref id="JIV499C37">
<label>37</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Zhou</surname>
<given-names>J</given-names>
</name>
,
<name name-style="western">
<surname>Chu</surname>
<given-names>H</given-names>
</name>
,
<name name-style="western">
<surname>Li</surname>
<given-names>C</given-names>
</name>
<etal>et al</etal>
</person-group>
<article-title>Active replication of Middle East respiratory syndrome coronavirus and aberrant induction of inflammatory cytokines and chemokines in human macrophages: implications for pathogenesis</article-title>
.
<source>J Infect Dis</source>
<year>2014</year>
;
<volume>209</volume>
:
<fpage>1331</fpage>
<lpage>42</lpage>
.
<pub-id pub-id-type="pmid">24065148</pub-id>
</mixed-citation>
</ref>
<ref id="JIV499C38">
<label>38</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Chu</surname>
<given-names>H</given-names>
</name>
,
<name name-style="western">
<surname>Zhou</surname>
<given-names>J</given-names>
</name>
,
<name name-style="western">
<surname>Wong</surname>
<given-names>BH</given-names>
</name>
<etal>et al</etal>
</person-group>
<article-title>Productive replication of Middle East respiratory syndrome coronavirus in monocyte-derived dendritic cells modulates innate immune response</article-title>
.
<source>Virology</source>
<year>2014</year>
;
<volume>454–455</volume>
:
<fpage>197</fpage>
<lpage>205</lpage>
.</mixed-citation>
</ref>
<ref id="JIV499C39">
<label>39</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Coleman</surname>
<given-names>CM</given-names>
</name>
,
<name name-style="western">
<surname>Matthews</surname>
<given-names>KL</given-names>
</name>
,
<name name-style="western">
<surname>Goicochea</surname>
<given-names>L</given-names>
</name>
,
<name name-style="western">
<surname>Frieman</surname>
<given-names>MB</given-names>
</name>
</person-group>
<article-title>Wild-type and innate immune-deficient mice are not susceptible to the Middle East respiratory syndrome coronavirus</article-title>
.
<source>J Gen Virol</source>
<year>2014</year>
;
<volume>95</volume>
:
<fpage>408</fpage>
<lpage>12</lpage>
.
<pub-id pub-id-type="pmid">24197535</pub-id>
</mixed-citation>
</ref>
<ref id="JIV499C40">
<label>40</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>de Wit</surname>
<given-names>E</given-names>
</name>
,
<name name-style="western">
<surname>Prescott</surname>
<given-names>J</given-names>
</name>
,
<name name-style="western">
<surname>Baseler</surname>
<given-names>L</given-names>
</name>
<etal>et al</etal>
</person-group>
<article-title>The Middle East respiratory syndrome coronavirus (MERS-CoV) does not replicate in Syrian hamsters</article-title>
.
<source>PLoS One</source>
<year>2013</year>
;
<volume>8</volume>
:
<fpage>e69127</fpage>
.
<pub-id pub-id-type="pmid">23844250</pub-id>
</mixed-citation>
</ref>
<ref id="JIV499C41">
<label>41</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Raj</surname>
<given-names>VS</given-names>
</name>
,
<name name-style="western">
<surname>Smits</surname>
<given-names>SL</given-names>
</name>
,
<name name-style="western">
<surname>Provacia</surname>
<given-names>LB</given-names>
</name>
<etal>et al</etal>
</person-group>
<article-title>Adenosine deaminase acts as a natural antagonist for dipeptidyl peptidase 4-mediated entry of the Middle East respiratory syndrome coronavirus</article-title>
.
<source>J Virol</source>
<year>2014</year>
;
<volume>88</volume>
:
<fpage>1834</fpage>
<lpage>8</lpage>
.
<pub-id pub-id-type="pmid">24257613</pub-id>
</mixed-citation>
</ref>
<ref id="JIV499C42">
<label>42</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>de Wit</surname>
<given-names>E</given-names>
</name>
,
<name name-style="western">
<surname>Rasmussen</surname>
<given-names>AL</given-names>
</name>
,
<name name-style="western">
<surname>Falzarano</surname>
<given-names>D</given-names>
</name>
<etal>et al</etal>
</person-group>
<article-title>Middle East respiratory syndrome coronavirus (MERS-CoV) causes transient lower respiratory tract infection in rhesus macaques</article-title>
.
<source>Proc Natl Acad Sci U S A</source>
<year>2013</year>
;
<volume>110</volume>
:
<fpage>16598</fpage>
<lpage>603</lpage>
.
<pub-id pub-id-type="pmid">24062443</pub-id>
</mixed-citation>
</ref>
<ref id="JIV499C43">
<label>43</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Munster</surname>
<given-names>VJ</given-names>
</name>
,
<name name-style="western">
<surname>de Wit</surname>
<given-names>E</given-names>
</name>
,
<name name-style="western">
<surname>Feldmann</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Pneumonia from human coronavirus in a macaque model</article-title>
.
<source>N Engl J Med</source>
<year>2013</year>
;
<volume>368</volume>
:
<fpage>1560</fpage>
<lpage>2</lpage>
.</mixed-citation>
</ref>
<ref id="JIV499C44">
<label>44</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Haagmans</surname>
<given-names>BL</given-names>
</name>
,
<name name-style="western">
<surname>van den Brand</surname>
<given-names>JM</given-names>
</name>
,
<name name-style="western">
<surname>Provacia</surname>
<given-names>LB</given-names>
</name>
<etal>et al</etal>
</person-group>
<article-title>Asymptomatic Middle East respiratory syndrome coronavirus infection in rabbits</article-title>
.
<source>J Virol</source>
<year>2015</year>
;
<volume>89</volume>
:
<fpage>6131</fpage>
<lpage>5</lpage>
.
<pub-id pub-id-type="pmid">25810539</pub-id>
</mixed-citation>
</ref>
<ref id="JIV499C45">
<label>45</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Adney</surname>
<given-names>DR</given-names>
</name>
,
<name name-style="western">
<surname>van Doremalen</surname>
<given-names>N</given-names>
</name>
,
<name name-style="western">
<surname>Brown</surname>
<given-names>VR</given-names>
</name>
<etal>et al</etal>
</person-group>
<article-title>Replication and shedding of MERS-CoV in upper respiratory tract of inoculated dromedary camels</article-title>
.
<source>Emerg Infect Dis</source>
<year>2014</year>
;
<volume>20</volume>
:
<fpage>1999</fpage>
<lpage>2005</lpage>
.
<pub-id pub-id-type="pmid">25418529</pub-id>
</mixed-citation>
</ref>
<ref id="JIV499C46">
<label>46</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Jewell</surname>
<given-names>NA</given-names>
</name>
,
<name name-style="western">
<surname>Cline</surname>
<given-names>T</given-names>
</name>
,
<name name-style="western">
<surname>Mertz</surname>
<given-names>SE</given-names>
</name>
<etal>et al</etal>
</person-group>
<article-title>Lambda interferon is the predominant interferon induced by influenza A virus infection in vivo</article-title>
.
<source>J Virol</source>
<year>2010</year>
;
<volume>84</volume>
:
<fpage>11515</fpage>
<lpage>22</lpage>
.
<pub-id pub-id-type="pmid">20739515</pub-id>
</mixed-citation>
</ref>
<ref id="JIV499C47">
<label>47</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Louveau</surname>
<given-names>A</given-names>
</name>
,
<name name-style="western">
<surname>Smirnov</surname>
<given-names>I</given-names>
</name>
,
<name name-style="western">
<surname>Keyes</surname>
<given-names>TJ</given-names>
</name>
<etal>et al</etal>
</person-group>
<article-title>Structural and functional features of central nervous system lymphatic vessels</article-title>
.
<source>Nature</source>
<year>2015</year>
;
<volume>523</volume>
:
<fpage>337</fpage>
<lpage>41</lpage>
.
<pub-id pub-id-type="pmid">26030524</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E24 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000E24 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:4747621
   |texte=   Middle East Respiratory Syndrome Coronavirus Causes Multiple Organ Damage and Lethal Disease in Mice Transgenic for Human Dipeptidyl Peptidase 4
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:26486634" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021