Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Generation of a Nebulizable CDR-Modified MERS-CoV Neutralizing Human Antibody

Identifieur interne : 000D70 ( Pmc/Corpus ); précédent : 000D69; suivant : 000D71

Generation of a Nebulizable CDR-Modified MERS-CoV Neutralizing Human Antibody

Auteurs : Sang Il Kim ; Sujeong Kim ; Jinhee Kim ; So Young Chang ; Jung Min Shim ; Jongwha Jin ; Chungsu Lim ; Songyi Baek ; Ji-Young Min ; Wan Beom Park ; Myoung-Don Oh ; Seungtaek Kim ; Junho Chung

Source :

RBID : PMC:6829326

Abstract

Middle East respiratory syndrome coronavirus (MERS-CoV) induces severe aggravating respiratory failure in infected patients, frequently resulting in mechanical ventilation. As limited therapeutic antibody is accumulated in lung tissue following systemic administration, inhalation is newly recognized as an alternative, possibly better, route of therapeutic antibody for pulmonary diseases. The nebulization process, however, generates diverse physiological stresses, and thus, the therapeutic antibody must be resistant to these stresses, remain stable, and form minimal aggregates. We first isolated a MERS-CoV neutralizing antibody that is reactive to the receptor-binding domain (RBD) of spike (S) glycoprotein. To increase stability, we introduced mutations into the complementarity-determining regions (CDRs) of the antibody. In the HCDRs (excluding HCDR3) in this clone, two hydrophobic residues were replaced with Glu, two residues were replaced with Asp, and four residues were replaced with positively charged amino acids. In LCDRs, only two Leu residues were replaced with Val. These modifications successfully generated a clone with significantly greater stability and equivalent reactivity and neutralizing activity following nebulization compared to the original clone. In summary, we generated a MERS-CoV neutralizing human antibody that is reactive to recombinant MERS-CoV S RBD protein for delivery via a pulmonary route by introducing stabilizing mutations into five CDRs.


Url:
DOI: 10.3390/ijms20205073
PubMed: 31614869
PubMed Central: 6829326

Links to Exploration step

PMC:6829326

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Generation of a Nebulizable CDR-Modified MERS-CoV Neutralizing Human Antibody</title>
<author>
<name sortKey="Kim, Sang Il" sort="Kim, Sang Il" uniqKey="Kim S" first="Sang Il" last="Kim">Sang Il Kim</name>
<affiliation>
<nlm:aff id="af1-ijms-20-05073">Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea;
<email>sangk1128@snu.ac.kr</email>
(S.I.K.);
<email>sujeong5425@snu.ac.kr</email>
(S.K.)</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af2-ijms-20-05073">Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kim, Sujeong" sort="Kim, Sujeong" uniqKey="Kim S" first="Sujeong" last="Kim">Sujeong Kim</name>
<affiliation>
<nlm:aff id="af1-ijms-20-05073">Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea;
<email>sangk1128@snu.ac.kr</email>
(S.I.K.);
<email>sujeong5425@snu.ac.kr</email>
(S.K.)</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af3-ijms-20-05073">Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Korea</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kim, Jinhee" sort="Kim, Jinhee" uniqKey="Kim J" first="Jinhee" last="Kim">Jinhee Kim</name>
<affiliation>
<nlm:aff id="af4-ijms-20-05073">Respiratory Virus Laboratory, Institut Pasteur Korea, Gyeonggi-do 13488, Korea;
<email>jinhee.kim@ip-korea.org</email>
(J.K.);
<email>soyoung.chang@ip-korea.org</email>
(S.Y.C.);
<email>ji-young.x.min@gsk.com</email>
(J.-Y.M.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chang, So Young" sort="Chang, So Young" uniqKey="Chang S" first="So Young" last="Chang">So Young Chang</name>
<affiliation>
<nlm:aff id="af4-ijms-20-05073">Respiratory Virus Laboratory, Institut Pasteur Korea, Gyeonggi-do 13488, Korea;
<email>jinhee.kim@ip-korea.org</email>
(J.K.);
<email>soyoung.chang@ip-korea.org</email>
(S.Y.C.);
<email>ji-young.x.min@gsk.com</email>
(J.-Y.M.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Shim, Jung Min" sort="Shim, Jung Min" uniqKey="Shim J" first="Jung Min" last="Shim">Jung Min Shim</name>
<affiliation>
<nlm:aff id="af5-ijms-20-05073">Zoonotic Virus Laboratory, Institut Pasteur Korea, Gyeonggi-do 13488, Korea;
<email>jungmin.shim@ip-korea.org</email>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Jin, Jongwha" sort="Jin, Jongwha" uniqKey="Jin J" first="Jongwha" last="Jin">Jongwha Jin</name>
<affiliation>
<nlm:aff id="af6-ijms-20-05073">New Drug Development Center, 123 Osongsaengmyeng-ro, Cheongju-si, Chungbuk 28160, Korea;
<email>jichang011@kbiohealth.kr</email>
(J.J.);
<email>opern88@kbiohealth.kr</email>
(C.L.);
<email>bettysongyi1@kbiohealth.kr</email>
(S.B.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lim, Chungsu" sort="Lim, Chungsu" uniqKey="Lim C" first="Chungsu" last="Lim">Chungsu Lim</name>
<affiliation>
<nlm:aff id="af6-ijms-20-05073">New Drug Development Center, 123 Osongsaengmyeng-ro, Cheongju-si, Chungbuk 28160, Korea;
<email>jichang011@kbiohealth.kr</email>
(J.J.);
<email>opern88@kbiohealth.kr</email>
(C.L.);
<email>bettysongyi1@kbiohealth.kr</email>
(S.B.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Baek, Songyi" sort="Baek, Songyi" uniqKey="Baek S" first="Songyi" last="Baek">Songyi Baek</name>
<affiliation>
<nlm:aff id="af6-ijms-20-05073">New Drug Development Center, 123 Osongsaengmyeng-ro, Cheongju-si, Chungbuk 28160, Korea;
<email>jichang011@kbiohealth.kr</email>
(J.J.);
<email>opern88@kbiohealth.kr</email>
(C.L.);
<email>bettysongyi1@kbiohealth.kr</email>
(S.B.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Min, Ji Young" sort="Min, Ji Young" uniqKey="Min J" first="Ji-Young" last="Min">Ji-Young Min</name>
<affiliation>
<nlm:aff id="af4-ijms-20-05073">Respiratory Virus Laboratory, Institut Pasteur Korea, Gyeonggi-do 13488, Korea;
<email>jinhee.kim@ip-korea.org</email>
(J.K.);
<email>soyoung.chang@ip-korea.org</email>
(S.Y.C.);
<email>ji-young.x.min@gsk.com</email>
(J.-Y.M.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Park, Wan Beom" sort="Park, Wan Beom" uniqKey="Park W" first="Wan Beom" last="Park">Wan Beom Park</name>
<affiliation>
<nlm:aff id="af7-ijms-20-05073">Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea;
<email>wbpark1@snu.ac.kr</email>
(W.B.P.);
<email>mdohmd@snu.ac.kr</email>
(M.-d.O.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Oh, Myoung Don" sort="Oh, Myoung Don" uniqKey="Oh M" first="Myoung-Don" last="Oh">Myoung-Don Oh</name>
<affiliation>
<nlm:aff id="af7-ijms-20-05073">Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea;
<email>wbpark1@snu.ac.kr</email>
(W.B.P.);
<email>mdohmd@snu.ac.kr</email>
(M.-d.O.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kim, Seungtaek" sort="Kim, Seungtaek" uniqKey="Kim S" first="Seungtaek" last="Kim">Seungtaek Kim</name>
<affiliation>
<nlm:aff id="af5-ijms-20-05073">Zoonotic Virus Laboratory, Institut Pasteur Korea, Gyeonggi-do 13488, Korea;
<email>jungmin.shim@ip-korea.org</email>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chung, Junho" sort="Chung, Junho" uniqKey="Chung J" first="Junho" last="Chung">Junho Chung</name>
<affiliation>
<nlm:aff id="af1-ijms-20-05073">Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea;
<email>sangk1128@snu.ac.kr</email>
(S.I.K.);
<email>sujeong5425@snu.ac.kr</email>
(S.K.)</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af2-ijms-20-05073">Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af3-ijms-20-05073">Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Korea</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">31614869</idno>
<idno type="pmc">6829326</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6829326</idno>
<idno type="RBID">PMC:6829326</idno>
<idno type="doi">10.3390/ijms20205073</idno>
<date when="2019">2019</date>
<idno type="wicri:Area/Pmc/Corpus">000D70</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000D70</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Generation of a Nebulizable CDR-Modified MERS-CoV Neutralizing Human Antibody</title>
<author>
<name sortKey="Kim, Sang Il" sort="Kim, Sang Il" uniqKey="Kim S" first="Sang Il" last="Kim">Sang Il Kim</name>
<affiliation>
<nlm:aff id="af1-ijms-20-05073">Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea;
<email>sangk1128@snu.ac.kr</email>
(S.I.K.);
<email>sujeong5425@snu.ac.kr</email>
(S.K.)</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af2-ijms-20-05073">Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kim, Sujeong" sort="Kim, Sujeong" uniqKey="Kim S" first="Sujeong" last="Kim">Sujeong Kim</name>
<affiliation>
<nlm:aff id="af1-ijms-20-05073">Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea;
<email>sangk1128@snu.ac.kr</email>
(S.I.K.);
<email>sujeong5425@snu.ac.kr</email>
(S.K.)</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af3-ijms-20-05073">Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Korea</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kim, Jinhee" sort="Kim, Jinhee" uniqKey="Kim J" first="Jinhee" last="Kim">Jinhee Kim</name>
<affiliation>
<nlm:aff id="af4-ijms-20-05073">Respiratory Virus Laboratory, Institut Pasteur Korea, Gyeonggi-do 13488, Korea;
<email>jinhee.kim@ip-korea.org</email>
(J.K.);
<email>soyoung.chang@ip-korea.org</email>
(S.Y.C.);
<email>ji-young.x.min@gsk.com</email>
(J.-Y.M.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chang, So Young" sort="Chang, So Young" uniqKey="Chang S" first="So Young" last="Chang">So Young Chang</name>
<affiliation>
<nlm:aff id="af4-ijms-20-05073">Respiratory Virus Laboratory, Institut Pasteur Korea, Gyeonggi-do 13488, Korea;
<email>jinhee.kim@ip-korea.org</email>
(J.K.);
<email>soyoung.chang@ip-korea.org</email>
(S.Y.C.);
<email>ji-young.x.min@gsk.com</email>
(J.-Y.M.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Shim, Jung Min" sort="Shim, Jung Min" uniqKey="Shim J" first="Jung Min" last="Shim">Jung Min Shim</name>
<affiliation>
<nlm:aff id="af5-ijms-20-05073">Zoonotic Virus Laboratory, Institut Pasteur Korea, Gyeonggi-do 13488, Korea;
<email>jungmin.shim@ip-korea.org</email>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Jin, Jongwha" sort="Jin, Jongwha" uniqKey="Jin J" first="Jongwha" last="Jin">Jongwha Jin</name>
<affiliation>
<nlm:aff id="af6-ijms-20-05073">New Drug Development Center, 123 Osongsaengmyeng-ro, Cheongju-si, Chungbuk 28160, Korea;
<email>jichang011@kbiohealth.kr</email>
(J.J.);
<email>opern88@kbiohealth.kr</email>
(C.L.);
<email>bettysongyi1@kbiohealth.kr</email>
(S.B.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lim, Chungsu" sort="Lim, Chungsu" uniqKey="Lim C" first="Chungsu" last="Lim">Chungsu Lim</name>
<affiliation>
<nlm:aff id="af6-ijms-20-05073">New Drug Development Center, 123 Osongsaengmyeng-ro, Cheongju-si, Chungbuk 28160, Korea;
<email>jichang011@kbiohealth.kr</email>
(J.J.);
<email>opern88@kbiohealth.kr</email>
(C.L.);
<email>bettysongyi1@kbiohealth.kr</email>
(S.B.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Baek, Songyi" sort="Baek, Songyi" uniqKey="Baek S" first="Songyi" last="Baek">Songyi Baek</name>
<affiliation>
<nlm:aff id="af6-ijms-20-05073">New Drug Development Center, 123 Osongsaengmyeng-ro, Cheongju-si, Chungbuk 28160, Korea;
<email>jichang011@kbiohealth.kr</email>
(J.J.);
<email>opern88@kbiohealth.kr</email>
(C.L.);
<email>bettysongyi1@kbiohealth.kr</email>
(S.B.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Min, Ji Young" sort="Min, Ji Young" uniqKey="Min J" first="Ji-Young" last="Min">Ji-Young Min</name>
<affiliation>
<nlm:aff id="af4-ijms-20-05073">Respiratory Virus Laboratory, Institut Pasteur Korea, Gyeonggi-do 13488, Korea;
<email>jinhee.kim@ip-korea.org</email>
(J.K.);
<email>soyoung.chang@ip-korea.org</email>
(S.Y.C.);
<email>ji-young.x.min@gsk.com</email>
(J.-Y.M.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Park, Wan Beom" sort="Park, Wan Beom" uniqKey="Park W" first="Wan Beom" last="Park">Wan Beom Park</name>
<affiliation>
<nlm:aff id="af7-ijms-20-05073">Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea;
<email>wbpark1@snu.ac.kr</email>
(W.B.P.);
<email>mdohmd@snu.ac.kr</email>
(M.-d.O.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Oh, Myoung Don" sort="Oh, Myoung Don" uniqKey="Oh M" first="Myoung-Don" last="Oh">Myoung-Don Oh</name>
<affiliation>
<nlm:aff id="af7-ijms-20-05073">Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea;
<email>wbpark1@snu.ac.kr</email>
(W.B.P.);
<email>mdohmd@snu.ac.kr</email>
(M.-d.O.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kim, Seungtaek" sort="Kim, Seungtaek" uniqKey="Kim S" first="Seungtaek" last="Kim">Seungtaek Kim</name>
<affiliation>
<nlm:aff id="af5-ijms-20-05073">Zoonotic Virus Laboratory, Institut Pasteur Korea, Gyeonggi-do 13488, Korea;
<email>jungmin.shim@ip-korea.org</email>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chung, Junho" sort="Chung, Junho" uniqKey="Chung J" first="Junho" last="Chung">Junho Chung</name>
<affiliation>
<nlm:aff id="af1-ijms-20-05073">Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea;
<email>sangk1128@snu.ac.kr</email>
(S.I.K.);
<email>sujeong5425@snu.ac.kr</email>
(S.K.)</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af2-ijms-20-05073">Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af3-ijms-20-05073">Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Korea</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">International Journal of Molecular Sciences</title>
<idno type="eISSN">1422-0067</idno>
<imprint>
<date when="2019">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Middle East respiratory syndrome coronavirus (MERS-CoV) induces severe aggravating respiratory failure in infected patients, frequently resulting in mechanical ventilation. As limited therapeutic antibody is accumulated in lung tissue following systemic administration, inhalation is newly recognized as an alternative, possibly better, route of therapeutic antibody for pulmonary diseases. The nebulization process, however, generates diverse physiological stresses, and thus, the therapeutic antibody must be resistant to these stresses, remain stable, and form minimal aggregates. We first isolated a MERS-CoV neutralizing antibody that is reactive to the receptor-binding domain (RBD) of spike (S) glycoprotein. To increase stability, we introduced mutations into the complementarity-determining regions (CDRs) of the antibody. In the HCDRs (excluding HCDR3) in this clone, two hydrophobic residues were replaced with Glu, two residues were replaced with Asp, and four residues were replaced with positively charged amino acids. In LCDRs, only two Leu residues were replaced with Val. These modifications successfully generated a clone with significantly greater stability and equivalent reactivity and neutralizing activity following nebulization compared to the original clone. In summary, we generated a MERS-CoV neutralizing human antibody that is reactive to recombinant MERS-CoV S RBD protein for delivery via a pulmonary route by introducing stabilizing mutations into five CDRs.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Zaki, A M" uniqKey="Zaki A">A.M. Zaki</name>
</author>
<author>
<name sortKey="Van Boheemen, S" uniqKey="Van Boheemen S">S. van Boheemen</name>
</author>
<author>
<name sortKey="Bestebroer, T M" uniqKey="Bestebroer T">T.M. Bestebroer</name>
</author>
<author>
<name sortKey="Osterhaus, A D" uniqKey="Osterhaus A">A.D. Osterhaus</name>
</author>
<author>
<name sortKey="Fouchier, R A" uniqKey="Fouchier R">R.A. Fouchier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Boheemen, S" uniqKey="Van Boheemen S">S. Van Boheemen</name>
</author>
<author>
<name sortKey="De Graaf, M" uniqKey="De Graaf M">M. de Graaf</name>
</author>
<author>
<name sortKey="Lauber, C" uniqKey="Lauber C">C. Lauber</name>
</author>
<author>
<name sortKey="Bestebroer, T M" uniqKey="Bestebroer T">T.M. Bestebroer</name>
</author>
<author>
<name sortKey="Raj, V S" uniqKey="Raj V">V.S. Raj</name>
</author>
<author>
<name sortKey="Zaki, A M" uniqKey="Zaki A">A.M. Zaki</name>
</author>
<author>
<name sortKey="Osterhaus, A D" uniqKey="Osterhaus A">A.D. Osterhaus</name>
</author>
<author>
<name sortKey="Haagmans, B L" uniqKey="Haagmans B">B.L. Haagmans</name>
</author>
<author>
<name sortKey="Gorbalenya, A E" uniqKey="Gorbalenya A">A.E. Gorbalenya</name>
</author>
<author>
<name sortKey="Snijder, E J" uniqKey="Snijder E">E.J. Snijder</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Raj, V S" uniqKey="Raj V">V.S. Raj</name>
</author>
<author>
<name sortKey="Mou, H" uniqKey="Mou H">H. Mou</name>
</author>
<author>
<name sortKey="Smits, S L" uniqKey="Smits S">S.L. Smits</name>
</author>
<author>
<name sortKey="Dekkers, D H" uniqKey="Dekkers D">D.H. Dekkers</name>
</author>
<author>
<name sortKey="Muller, M A" uniqKey="Muller M">M.A. Muller</name>
</author>
<author>
<name sortKey="Dijkman, R" uniqKey="Dijkman R">R. Dijkman</name>
</author>
<author>
<name sortKey="Muth, D" uniqKey="Muth D">D. Muth</name>
</author>
<author>
<name sortKey="Demmers, J A" uniqKey="Demmers J">J.A. Demmers</name>
</author>
<author>
<name sortKey="Zaki, A" uniqKey="Zaki A">A. Zaki</name>
</author>
<author>
<name sortKey="Fouchier, R A" uniqKey="Fouchier R">R.A. Fouchier</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chan, J F" uniqKey="Chan J">J.F. Chan</name>
</author>
<author>
<name sortKey="Choi, G K" uniqKey="Choi G">G.K. Choi</name>
</author>
<author>
<name sortKey="Tsang, A K" uniqKey="Tsang A">A.K. Tsang</name>
</author>
<author>
<name sortKey="Tee, K M" uniqKey="Tee K">K.M. Tee</name>
</author>
<author>
<name sortKey="Lam, H Y" uniqKey="Lam H">H.Y. Lam</name>
</author>
<author>
<name sortKey="Yip, C C" uniqKey="Yip C">C.C. Yip</name>
</author>
<author>
<name sortKey="To, K K" uniqKey="To K">K.K. To</name>
</author>
<author>
<name sortKey="Cheng, V C" uniqKey="Cheng V">V.C. Cheng</name>
</author>
<author>
<name sortKey="Yeung, M L" uniqKey="Yeung M">M.L. Yeung</name>
</author>
<author>
<name sortKey="Lau, S K" uniqKey="Lau S">S.K. Lau</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chan, J F" uniqKey="Chan J">J.F. Chan</name>
</author>
<author>
<name sortKey="Lau, S K" uniqKey="Lau S">S.K. Lau</name>
</author>
<author>
<name sortKey="Woo, P C" uniqKey="Woo P">P.C. Woo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oh, M D" uniqKey="Oh M">M.D. Oh</name>
</author>
<author>
<name sortKey="Park, W B" uniqKey="Park W">W.B. Park</name>
</author>
<author>
<name sortKey="Choe, P G" uniqKey="Choe P">P.G. Choe</name>
</author>
<author>
<name sortKey="Choi, S J" uniqKey="Choi S">S.J. Choi</name>
</author>
<author>
<name sortKey="Kim, J I" uniqKey="Kim J">J.I. Kim</name>
</author>
<author>
<name sortKey="Chae, J" uniqKey="Chae J">J. Chae</name>
</author>
<author>
<name sortKey="Park, S S" uniqKey="Park S">S.S. Park</name>
</author>
<author>
<name sortKey="Kim, E C" uniqKey="Kim E">E.C. Kim</name>
</author>
<author>
<name sortKey="Oh, H S" uniqKey="Oh H">H.S. Oh</name>
</author>
<author>
<name sortKey="Kim, E J" uniqKey="Kim E">E.J. Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guery, B" uniqKey="Guery B">B. Guery</name>
</author>
<author>
<name sortKey="Poissy, J" uniqKey="Poissy J">J. Poissy</name>
</author>
<author>
<name sortKey="El Mansouf, L" uniqKey="El Mansouf L">L. el Mansouf</name>
</author>
<author>
<name sortKey="Sejourne, C" uniqKey="Sejourne C">C. Sejourne</name>
</author>
<author>
<name sortKey="Ettahar, N" uniqKey="Ettahar N">N. Ettahar</name>
</author>
<author>
<name sortKey="Lemaire, X" uniqKey="Lemaire X">X. Lemaire</name>
</author>
<author>
<name sortKey="Vuotto, F" uniqKey="Vuotto F">F. Vuotto</name>
</author>
<author>
<name sortKey="Goffard, A" uniqKey="Goffard A">A. Goffard</name>
</author>
<author>
<name sortKey="Behillil, S" uniqKey="Behillil S">S. Behillil</name>
</author>
<author>
<name sortKey="Enouf, V" uniqKey="Enouf V">V. Enouf</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oh, M D" uniqKey="Oh M">M.D. Oh</name>
</author>
<author>
<name sortKey="Park, W B" uniqKey="Park W">W.B. Park</name>
</author>
<author>
<name sortKey="Park, S W" uniqKey="Park S">S.W. Park</name>
</author>
<author>
<name sortKey="Choe, P G" uniqKey="Choe P">P.G. Choe</name>
</author>
<author>
<name sortKey="Bang, J H" uniqKey="Bang J">J.H. Bang</name>
</author>
<author>
<name sortKey="Song, K H" uniqKey="Song K">K.H. Song</name>
</author>
<author>
<name sortKey="Kim, E S" uniqKey="Kim E">E.S. Kim</name>
</author>
<author>
<name sortKey="Bin Kim, H" uniqKey="Bin Kim H">H. Bin Kim</name>
</author>
<author>
<name sortKey="Kim, N J" uniqKey="Kim N">N.J. Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kindler, E" uniqKey="Kindler E">E. Kindler</name>
</author>
<author>
<name sortKey="Jonsdottir, H R" uniqKey="Jonsdottir H">H.R. Jonsdottir</name>
</author>
<author>
<name sortKey="Muth, D" uniqKey="Muth D">D. Muth</name>
</author>
<author>
<name sortKey="Hamming, O J" uniqKey="Hamming O">O.J. Hamming</name>
</author>
<author>
<name sortKey="Hartmann, R" uniqKey="Hartmann R">R. Hartmann</name>
</author>
<author>
<name sortKey="Rodriguez, R" uniqKey="Rodriguez R">R. Rodriguez</name>
</author>
<author>
<name sortKey="Geffers, R" uniqKey="Geffers R">R. Geffers</name>
</author>
<author>
<name sortKey="Fouchier, R A" uniqKey="Fouchier R">R.A. Fouchier</name>
</author>
<author>
<name sortKey="Drosten, C" uniqKey="Drosten C">C. Drosten</name>
</author>
<author>
<name sortKey="Muller, M A" uniqKey="Muller M">M.A. Muller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zielecki, F" uniqKey="Zielecki F">F. Zielecki</name>
</author>
<author>
<name sortKey="Weber, M" uniqKey="Weber M">M. Weber</name>
</author>
<author>
<name sortKey="Eickmann, M" uniqKey="Eickmann M">M. Eickmann</name>
</author>
<author>
<name sortKey="Spiegelberg, L" uniqKey="Spiegelberg L">L. Spiegelberg</name>
</author>
<author>
<name sortKey="Zaki, A M" uniqKey="Zaki A">A.M. Zaki</name>
</author>
<author>
<name sortKey="Matrosovich, M" uniqKey="Matrosovich M">M. Matrosovich</name>
</author>
<author>
<name sortKey="Becker, S" uniqKey="Becker S">S. Becker</name>
</author>
<author>
<name sortKey="Weber, F" uniqKey="Weber F">F. Weber</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Corti, D" uniqKey="Corti D">D. Corti</name>
</author>
<author>
<name sortKey="Misasi, J" uniqKey="Misasi J">J. Misasi</name>
</author>
<author>
<name sortKey="Mulangu, S" uniqKey="Mulangu S">S. Mulangu</name>
</author>
<author>
<name sortKey="Stanley, D A" uniqKey="Stanley D">D.A. Stanley</name>
</author>
<author>
<name sortKey="Kanekiyo, M" uniqKey="Kanekiyo M">M. Kanekiyo</name>
</author>
<author>
<name sortKey="Wollen, S" uniqKey="Wollen S">S. Wollen</name>
</author>
<author>
<name sortKey="Ploquin, A" uniqKey="Ploquin A">A. Ploquin</name>
</author>
<author>
<name sortKey="Doria Rose, N A" uniqKey="Doria Rose N">N.A. Doria-Rose</name>
</author>
<author>
<name sortKey="Staupe, R P" uniqKey="Staupe R">R.P. Staupe</name>
</author>
<author>
<name sortKey="Bailey, M" uniqKey="Bailey M">M. Bailey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gunn, B M" uniqKey="Gunn B">B.M. Gunn</name>
</author>
<author>
<name sortKey="Yu, W H" uniqKey="Yu W">W.H. Yu</name>
</author>
<author>
<name sortKey="Karim, M M" uniqKey="Karim M">M.M. Karim</name>
</author>
<author>
<name sortKey="Brannan, J M" uniqKey="Brannan J">J.M. Brannan</name>
</author>
<author>
<name sortKey="Herbert, A S" uniqKey="Herbert A">A.S. Herbert</name>
</author>
<author>
<name sortKey="Wec, A Z" uniqKey="Wec A">A.Z. Wec</name>
</author>
<author>
<name sortKey="Halfmann, P J" uniqKey="Halfmann P">P.J. Halfmann</name>
</author>
<author>
<name sortKey="Fusco, M L" uniqKey="Fusco M">M.L. Fusco</name>
</author>
<author>
<name sortKey="Schendel, S L" uniqKey="Schendel S">S.L. Schendel</name>
</author>
<author>
<name sortKey="Gangavarapu, K" uniqKey="Gangavarapu K">K. Gangavarapu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Walker, L M" uniqKey="Walker L">L.M. Walker</name>
</author>
<author>
<name sortKey="Burton, D R" uniqKey="Burton D">D.R. Burton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Du, L" uniqKey="Du L">L. Du</name>
</author>
<author>
<name sortKey="Yang, Y" uniqKey="Yang Y">Y. Yang</name>
</author>
<author>
<name sortKey="Zhou, Y" uniqKey="Zhou Y">Y. Zhou</name>
</author>
<author>
<name sortKey="Lu, L" uniqKey="Lu L">L. Lu</name>
</author>
<author>
<name sortKey="Li, F" uniqKey="Li F">F. Li</name>
</author>
<author>
<name sortKey="Jiang, S" uniqKey="Jiang S">S. Jiang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, N" uniqKey="Wang N">N. Wang</name>
</author>
<author>
<name sortKey="Shi, X" uniqKey="Shi X">X. Shi</name>
</author>
<author>
<name sortKey="Jiang, L" uniqKey="Jiang L">L. Jiang</name>
</author>
<author>
<name sortKey="Zhang, S" uniqKey="Zhang S">S. Zhang</name>
</author>
<author>
<name sortKey="Wang, D" uniqKey="Wang D">D. Wang</name>
</author>
<author>
<name sortKey="Tong, P" uniqKey="Tong P">P. Tong</name>
</author>
<author>
<name sortKey="Guo, D" uniqKey="Guo D">D. Guo</name>
</author>
<author>
<name sortKey="Fu, L" uniqKey="Fu L">L. Fu</name>
</author>
<author>
<name sortKey="Cui, Y" uniqKey="Cui Y">Y. Cui</name>
</author>
<author>
<name sortKey="Liu, X" uniqKey="Liu X">X. Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Corti, D" uniqKey="Corti D">D. Corti</name>
</author>
<author>
<name sortKey="Zhao, J" uniqKey="Zhao J">J. Zhao</name>
</author>
<author>
<name sortKey="Pedotti, M" uniqKey="Pedotti M">M. Pedotti</name>
</author>
<author>
<name sortKey="Simonelli, L" uniqKey="Simonelli L">L. Simonelli</name>
</author>
<author>
<name sortKey="Agnihothram, S" uniqKey="Agnihothram S">S. Agnihothram</name>
</author>
<author>
<name sortKey="Fett, C" uniqKey="Fett C">C. Fett</name>
</author>
<author>
<name sortKey="Fernandez Rodriguez, B" uniqKey="Fernandez Rodriguez B">B. Fernandez-Rodriguez</name>
</author>
<author>
<name sortKey="Foglierini, M" uniqKey="Foglierini M">M. Foglierini</name>
</author>
<author>
<name sortKey="Agatic, G" uniqKey="Agatic G">G. Agatic</name>
</author>
<author>
<name sortKey="Vanzetta, F" uniqKey="Vanzetta F">F. Vanzetta</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Du, L" uniqKey="Du L">L. Du</name>
</author>
<author>
<name sortKey="Zhao, G" uniqKey="Zhao G">G. Zhao</name>
</author>
<author>
<name sortKey="Yang, Y" uniqKey="Yang Y">Y. Yang</name>
</author>
<author>
<name sortKey="Qiu, H" uniqKey="Qiu H">H. Qiu</name>
</author>
<author>
<name sortKey="Wang, L" uniqKey="Wang L">L. Wang</name>
</author>
<author>
<name sortKey="Kou, Z" uniqKey="Kou Z">Z. Kou</name>
</author>
<author>
<name sortKey="Tao, X" uniqKey="Tao X">X. Tao</name>
</author>
<author>
<name sortKey="Yu, H" uniqKey="Yu H">H. Yu</name>
</author>
<author>
<name sortKey="Sun, S" uniqKey="Sun S">S. Sun</name>
</author>
<author>
<name sortKey="Tseng, C T" uniqKey="Tseng C">C.T. Tseng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jiang, L" uniqKey="Jiang L">L. Jiang</name>
</author>
<author>
<name sortKey="Wang, N" uniqKey="Wang N">N. Wang</name>
</author>
<author>
<name sortKey="Zuo, T" uniqKey="Zuo T">T. Zuo</name>
</author>
<author>
<name sortKey="Shi, X" uniqKey="Shi X">X. Shi</name>
</author>
<author>
<name sortKey="Poon, K M" uniqKey="Poon K">K.M. Poon</name>
</author>
<author>
<name sortKey="Wu, Y" uniqKey="Wu Y">Y. Wu</name>
</author>
<author>
<name sortKey="Gao, F" uniqKey="Gao F">F. Gao</name>
</author>
<author>
<name sortKey="Li, D" uniqKey="Li D">D. Li</name>
</author>
<author>
<name sortKey="Wang, R" uniqKey="Wang R">R. Wang</name>
</author>
<author>
<name sortKey="Guo, J" uniqKey="Guo J">J. Guo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Luke, T" uniqKey="Luke T">T. Luke</name>
</author>
<author>
<name sortKey="Wu, H" uniqKey="Wu H">H. Wu</name>
</author>
<author>
<name sortKey="Zhao, J" uniqKey="Zhao J">J. Zhao</name>
</author>
<author>
<name sortKey="Channappanavar, R" uniqKey="Channappanavar R">R. Channappanavar</name>
</author>
<author>
<name sortKey="Coleman, C M" uniqKey="Coleman C">C.M. Coleman</name>
</author>
<author>
<name sortKey="Jiao, J A" uniqKey="Jiao J">J.A. Jiao</name>
</author>
<author>
<name sortKey="Matsushita, H" uniqKey="Matsushita H">H. Matsushita</name>
</author>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y. Liu</name>
</author>
<author>
<name sortKey="Postnikova, E N" uniqKey="Postnikova E">E.N. Postnikova</name>
</author>
<author>
<name sortKey="Ork, B L" uniqKey="Ork B">B.L. Ork</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pascal, K E" uniqKey="Pascal K">K.E. Pascal</name>
</author>
<author>
<name sortKey="Coleman, C M" uniqKey="Coleman C">C.M. Coleman</name>
</author>
<author>
<name sortKey="Mujica, A O" uniqKey="Mujica A">A.O. Mujica</name>
</author>
<author>
<name sortKey="Kamat, V" uniqKey="Kamat V">V. Kamat</name>
</author>
<author>
<name sortKey="Badithe, A" uniqKey="Badithe A">A. Badithe</name>
</author>
<author>
<name sortKey="Fairhurst, J" uniqKey="Fairhurst J">J. Fairhurst</name>
</author>
<author>
<name sortKey="Hunt, C" uniqKey="Hunt C">C. Hunt</name>
</author>
<author>
<name sortKey="Strein, J" uniqKey="Strein J">J. Strein</name>
</author>
<author>
<name sortKey="Berrebi, A" uniqKey="Berrebi A">A. Berrebi</name>
</author>
<author>
<name sortKey="Sisk, J M" uniqKey="Sisk J">J.M. Sisk</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tang, X C" uniqKey="Tang X">X.C. Tang</name>
</author>
<author>
<name sortKey="Agnihothram, S S" uniqKey="Agnihothram S">S.S. Agnihothram</name>
</author>
<author>
<name sortKey="Jiao, Y" uniqKey="Jiao Y">Y. Jiao</name>
</author>
<author>
<name sortKey="Stanhope, J" uniqKey="Stanhope J">J. Stanhope</name>
</author>
<author>
<name sortKey="Graham, R L" uniqKey="Graham R">R.L. Graham</name>
</author>
<author>
<name sortKey="Peterson, E C" uniqKey="Peterson E">E.C. Peterson</name>
</author>
<author>
<name sortKey="Avnir, Y" uniqKey="Avnir Y">Y. Avnir</name>
</author>
<author>
<name sortKey="Tallarico, A S" uniqKey="Tallarico A">A.S. Tallarico</name>
</author>
<author>
<name sortKey="Sheehan, J" uniqKey="Sheehan J">J. Sheehan</name>
</author>
<author>
<name sortKey="Zhu, Q" uniqKey="Zhu Q">Q. Zhu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ying, T" uniqKey="Ying T">T. Ying</name>
</author>
<author>
<name sortKey="Du, L" uniqKey="Du L">L. Du</name>
</author>
<author>
<name sortKey="Ju, T W" uniqKey="Ju T">T.W. Ju</name>
</author>
<author>
<name sortKey="Prabakaran, P" uniqKey="Prabakaran P">P. Prabakaran</name>
</author>
<author>
<name sortKey="Lau, C C" uniqKey="Lau C">C.C. Lau</name>
</author>
<author>
<name sortKey="Lu, L" uniqKey="Lu L">L. Lu</name>
</author>
<author>
<name sortKey="Liu, Q" uniqKey="Liu Q">Q. Liu</name>
</author>
<author>
<name sortKey="Wang, L" uniqKey="Wang L">L. Wang</name>
</author>
<author>
<name sortKey="Feng, Y" uniqKey="Feng Y">Y. Feng</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Agrawal, A S" uniqKey="Agrawal A">A.S. Agrawal</name>
</author>
<author>
<name sortKey="Ying, T" uniqKey="Ying T">T. Ying</name>
</author>
<author>
<name sortKey="Tao, X" uniqKey="Tao X">X. Tao</name>
</author>
<author>
<name sortKey="Garron, T" uniqKey="Garron T">T. Garron</name>
</author>
<author>
<name sortKey="Algaissi, A" uniqKey="Algaissi A">A. Algaissi</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
</author>
<author>
<name sortKey="Wang, L" uniqKey="Wang L">L. Wang</name>
</author>
<author>
<name sortKey="Peng, B H" uniqKey="Peng B">B.H. Peng</name>
</author>
<author>
<name sortKey="Jiang, S" uniqKey="Jiang S">S. Jiang</name>
</author>
<author>
<name sortKey="Dimitrov, D S" uniqKey="Dimitrov D">D.S. Dimitrov</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cockrell, A S" uniqKey="Cockrell A">A.S. Cockrell</name>
</author>
<author>
<name sortKey="Yount, B L" uniqKey="Yount B">B.L. Yount</name>
</author>
<author>
<name sortKey="Scobey, T" uniqKey="Scobey T">T. Scobey</name>
</author>
<author>
<name sortKey="Jensen, K" uniqKey="Jensen K">K. Jensen</name>
</author>
<author>
<name sortKey="Douglas, M" uniqKey="Douglas M">M. Douglas</name>
</author>
<author>
<name sortKey="Beall, A" uniqKey="Beall A">A. Beall</name>
</author>
<author>
<name sortKey="Tang, X C" uniqKey="Tang X">X.C. Tang</name>
</author>
<author>
<name sortKey="Marasco, W A" uniqKey="Marasco W">W.A. Marasco</name>
</author>
<author>
<name sortKey="Heise, M T" uniqKey="Heise M">M.T. Heise</name>
</author>
<author>
<name sortKey="Baric, R S" uniqKey="Baric R">R.S. Baric</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fan, C" uniqKey="Fan C">C. Fan</name>
</author>
<author>
<name sortKey="Wu, X" uniqKey="Wu X">X. Wu</name>
</author>
<author>
<name sortKey="Liu, Q" uniqKey="Liu Q">Q. Liu</name>
</author>
<author>
<name sortKey="Li, Q" uniqKey="Li Q">Q. Li</name>
</author>
<author>
<name sortKey="Liu, S" uniqKey="Liu S">S. Liu</name>
</author>
<author>
<name sortKey="Lu, J" uniqKey="Lu J">J. Lu</name>
</author>
<author>
<name sortKey="Yang, Y" uniqKey="Yang Y">Y. Yang</name>
</author>
<author>
<name sortKey="Cao, Y" uniqKey="Cao Y">Y. Cao</name>
</author>
<author>
<name sortKey="Huang, W" uniqKey="Huang W">W. Huang</name>
</author>
<author>
<name sortKey="Liang, C" uniqKey="Liang C">C. Liang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Houser, K V" uniqKey="Houser K">K.V. Houser</name>
</author>
<author>
<name sortKey="Gretebeck, L" uniqKey="Gretebeck L">L. Gretebeck</name>
</author>
<author>
<name sortKey="Ying, T" uniqKey="Ying T">T. Ying</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
</author>
<author>
<name sortKey="Vogel, L" uniqKey="Vogel L">L. Vogel</name>
</author>
<author>
<name sortKey="Lamirande, E W" uniqKey="Lamirande E">E.W. Lamirande</name>
</author>
<author>
<name sortKey="Bock, K W" uniqKey="Bock K">K.W. Bock</name>
</author>
<author>
<name sortKey="Moore, I N" uniqKey="Moore I">I.N. Moore</name>
</author>
<author>
<name sortKey="Dimitrov, D S" uniqKey="Dimitrov D">D.S. Dimitrov</name>
</author>
<author>
<name sortKey="Subbarao, K" uniqKey="Subbarao K">K. Subbarao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Johnson, R F" uniqKey="Johnson R">R.F. Johnson</name>
</author>
<author>
<name sortKey="Bagci, U" uniqKey="Bagci U">U. Bagci</name>
</author>
<author>
<name sortKey="Keith, L" uniqKey="Keith L">L. Keith</name>
</author>
<author>
<name sortKey="Tang, X" uniqKey="Tang X">X. Tang</name>
</author>
<author>
<name sortKey="Mollura, D J" uniqKey="Mollura D">D.J. Mollura</name>
</author>
<author>
<name sortKey="Zeitlin, L" uniqKey="Zeitlin L">L. Zeitlin</name>
</author>
<author>
<name sortKey="Qin, J" uniqKey="Qin J">J. Qin</name>
</author>
<author>
<name sortKey="Huzella, L" uniqKey="Huzella L">L. Huzella</name>
</author>
<author>
<name sortKey="Bartos, C J" uniqKey="Bartos C">C.J. Bartos</name>
</author>
<author>
<name sortKey="Bohorova, N" uniqKey="Bohorova N">N. Bohorova</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y. Li</name>
</author>
<author>
<name sortKey="Wan, Y" uniqKey="Wan Y">Y. Wan</name>
</author>
<author>
<name sortKey="Liu, P" uniqKey="Liu P">P. Liu</name>
</author>
<author>
<name sortKey="Zhao, J" uniqKey="Zhao J">J. Zhao</name>
</author>
<author>
<name sortKey="Lu, G" uniqKey="Lu G">G. Lu</name>
</author>
<author>
<name sortKey="Qi, J" uniqKey="Qi J">J. Qi</name>
</author>
<author>
<name sortKey="Wang, Q" uniqKey="Wang Q">Q. Wang</name>
</author>
<author>
<name sortKey="Lu, X" uniqKey="Lu X">X. Lu</name>
</author>
<author>
<name sortKey="Wu, Y" uniqKey="Wu Y">Y. Wu</name>
</author>
<author>
<name sortKey="Liu, W" uniqKey="Liu W">W. Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Qiu, H" uniqKey="Qiu H">H. Qiu</name>
</author>
<author>
<name sortKey="Sun, S" uniqKey="Sun S">S. Sun</name>
</author>
<author>
<name sortKey="Xiao, H" uniqKey="Xiao H">H. Xiao</name>
</author>
<author>
<name sortKey="Feng, J" uniqKey="Feng J">J. Feng</name>
</author>
<author>
<name sortKey="Guo, Y" uniqKey="Guo Y">Y. Guo</name>
</author>
<author>
<name sortKey="Tai, W" uniqKey="Tai W">W. Tai</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
</author>
<author>
<name sortKey="Du, L" uniqKey="Du L">L. Du</name>
</author>
<author>
<name sortKey="Zhao, G" uniqKey="Zhao G">G. Zhao</name>
</author>
<author>
<name sortKey="Zhou, Y" uniqKey="Zhou Y">Y. Zhou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hart, T K" uniqKey="Hart T">T.K. Hart</name>
</author>
<author>
<name sortKey="Cook, R M" uniqKey="Cook R">R.M. Cook</name>
</author>
<author>
<name sortKey="Zia Amirhosseini, P" uniqKey="Zia Amirhosseini P">P. Zia-Amirhosseini</name>
</author>
<author>
<name sortKey="Minthorn, E" uniqKey="Minthorn E">E. Minthorn</name>
</author>
<author>
<name sortKey="Sellers, T S" uniqKey="Sellers T">T.S. Sellers</name>
</author>
<author>
<name sortKey="Maleeff, B E" uniqKey="Maleeff B">B.E. Maleeff</name>
</author>
<author>
<name sortKey="Eustis, S" uniqKey="Eustis S">S. Eustis</name>
</author>
<author>
<name sortKey="Schwartz, L W" uniqKey="Schwartz L">L.W. Schwartz</name>
</author>
<author>
<name sortKey="Tsui, P" uniqKey="Tsui P">P. Tsui</name>
</author>
<author>
<name sortKey="Appelbaum, E R" uniqKey="Appelbaum E">E.R. Appelbaum</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Koleba, T" uniqKey="Koleba T">T. Koleba</name>
</author>
<author>
<name sortKey="Ensom, M H" uniqKey="Ensom M">M.H. Ensom</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guilleminault, L" uniqKey="Guilleminault L">L. Guilleminault</name>
</author>
<author>
<name sortKey="Azzopardi, N" uniqKey="Azzopardi N">N. Azzopardi</name>
</author>
<author>
<name sortKey="Arnoult, C" uniqKey="Arnoult C">C. Arnoult</name>
</author>
<author>
<name sortKey="Sobilo, J" uniqKey="Sobilo J">J. Sobilo</name>
</author>
<author>
<name sortKey="Herve, V" uniqKey="Herve V">V. Herve</name>
</author>
<author>
<name sortKey="Montharu, J" uniqKey="Montharu J">J. Montharu</name>
</author>
<author>
<name sortKey="Guillon, A" uniqKey="Guillon A">A. Guillon</name>
</author>
<author>
<name sortKey="Andres, C" uniqKey="Andres C">C. Andres</name>
</author>
<author>
<name sortKey="Herault, O" uniqKey="Herault O">O. Herault</name>
</author>
<author>
<name sortKey="Le Pape, A" uniqKey="Le Pape A">A. Le Pape</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bitonti, A J" uniqKey="Bitonti A">A.J. Bitonti</name>
</author>
<author>
<name sortKey="Dumont, J A" uniqKey="Dumont J">J.A. Dumont</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bitonti, A J" uniqKey="Bitonti A">A.J. Bitonti</name>
</author>
<author>
<name sortKey="Dumont, J A" uniqKey="Dumont J">J.A. Dumont</name>
</author>
<author>
<name sortKey="Low, S C" uniqKey="Low S">S.C. Low</name>
</author>
<author>
<name sortKey="Peters, R T" uniqKey="Peters R">R.T. Peters</name>
</author>
<author>
<name sortKey="Kropp, K E" uniqKey="Kropp K">K.E. Kropp</name>
</author>
<author>
<name sortKey="Palombella, V J" uniqKey="Palombella V">V.J. Palombella</name>
</author>
<author>
<name sortKey="Stattel, J M" uniqKey="Stattel J">J.M. Stattel</name>
</author>
<author>
<name sortKey="Lu, Y" uniqKey="Lu Y">Y. Lu</name>
</author>
<author>
<name sortKey="Tan, C A" uniqKey="Tan C">C.A. Tan</name>
</author>
<author>
<name sortKey="Song, J J" uniqKey="Song J">J.J. Song</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Low, S C" uniqKey="Low S">S.C. Low</name>
</author>
<author>
<name sortKey="Nunes, S L" uniqKey="Nunes S">S.L. Nunes</name>
</author>
<author>
<name sortKey="Bitonti, A J" uniqKey="Bitonti A">A.J. Bitonti</name>
</author>
<author>
<name sortKey="Dumont, J A" uniqKey="Dumont J">J.A. Dumont</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Heeke, G" uniqKey="Van Heeke G">G. Van Heeke</name>
</author>
<author>
<name sortKey="Allosery, K" uniqKey="Allosery K">K. Allosery</name>
</author>
<author>
<name sortKey="De Brabandere, V" uniqKey="De Brabandere V">V. De Brabandere</name>
</author>
<author>
<name sortKey="De Smedt, T" uniqKey="De Smedt T">T. De Smedt</name>
</author>
<author>
<name sortKey="Detalle, L" uniqKey="Detalle L">L. Detalle</name>
</author>
<author>
<name sortKey="De Fougerolles, A" uniqKey="De Fougerolles A">A. de Fougerolles</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, Y S" uniqKey="Kim Y">Y.S. Kim</name>
</author>
<author>
<name sortKey="Aigerim, A" uniqKey="Aigerim A">A. Aigerim</name>
</author>
<author>
<name sortKey="Park, U" uniqKey="Park U">U. Park</name>
</author>
<author>
<name sortKey="Kim, Y" uniqKey="Kim Y">Y. Kim</name>
</author>
<author>
<name sortKey="Rhee, J Y" uniqKey="Rhee J">J.Y. Rhee</name>
</author>
<author>
<name sortKey="Choi, J P" uniqKey="Choi J">J.P. Choi</name>
</author>
<author>
<name sortKey="Park, W B" uniqKey="Park W">W.B. Park</name>
</author>
<author>
<name sortKey="Park, S W" uniqKey="Park S">S.W. Park</name>
</author>
<author>
<name sortKey="Kim, Y" uniqKey="Kim Y">Y. Kim</name>
</author>
<author>
<name sortKey="Lim, D G" uniqKey="Lim D">D.G. Lim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Noh, J" uniqKey="Noh J">J. Noh</name>
</author>
<author>
<name sortKey="Kim, O" uniqKey="Kim O">O. Kim</name>
</author>
<author>
<name sortKey="Jung, Y" uniqKey="Jung Y">Y. Jung</name>
</author>
<author>
<name sortKey="Han, H" uniqKey="Han H">H. Han</name>
</author>
<author>
<name sortKey="Kim, J E" uniqKey="Kim J">J.E. Kim</name>
</author>
<author>
<name sortKey="Kim, S" uniqKey="Kim S">S. Kim</name>
</author>
<author>
<name sortKey="Lee, S" uniqKey="Lee S">S. Lee</name>
</author>
<author>
<name sortKey="Park, J" uniqKey="Park J">J. Park</name>
</author>
<author>
<name sortKey="Jung, R H" uniqKey="Jung R">R.H. Jung</name>
</author>
<author>
<name sortKey="Kim, S I" uniqKey="Kim S">S.I. Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ying, T" uniqKey="Ying T">T. Ying</name>
</author>
<author>
<name sortKey="Prabakaran, P" uniqKey="Prabakaran P">P. Prabakaran</name>
</author>
<author>
<name sortKey="Du, L" uniqKey="Du L">L. Du</name>
</author>
<author>
<name sortKey="Shi, W" uniqKey="Shi W">W. Shi</name>
</author>
<author>
<name sortKey="Feng, Y" uniqKey="Feng Y">Y. Feng</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
</author>
<author>
<name sortKey="Wang, L" uniqKey="Wang L">L. Wang</name>
</author>
<author>
<name sortKey="Li, W" uniqKey="Li W">W. Li</name>
</author>
<author>
<name sortKey="Jiang, S" uniqKey="Jiang S">S. Jiang</name>
</author>
<author>
<name sortKey="Dimitrov, D S" uniqKey="Dimitrov D">D.S. Dimitrov</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pommie, C" uniqKey="Pommie C">C. Pommie</name>
</author>
<author>
<name sortKey="Levadoux, S" uniqKey="Levadoux S">S. Levadoux</name>
</author>
<author>
<name sortKey="Sabatier, R" uniqKey="Sabatier R">R. Sabatier</name>
</author>
<author>
<name sortKey="Lefranc, G" uniqKey="Lefranc G">G. Lefranc</name>
</author>
<author>
<name sortKey="Lefranc, M P" uniqKey="Lefranc M">M.P. Lefranc</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tartaglia, G G" uniqKey="Tartaglia G">G.G. Tartaglia</name>
</author>
<author>
<name sortKey="Cavalli, A" uniqKey="Cavalli A">A. Cavalli</name>
</author>
<author>
<name sortKey="Pellarin, R" uniqKey="Pellarin R">R. Pellarin</name>
</author>
<author>
<name sortKey="Caflisch, A" uniqKey="Caflisch A">A. Caflisch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Igawa, T" uniqKey="Igawa T">T. Igawa</name>
</author>
<author>
<name sortKey="Tsunoda, H" uniqKey="Tsunoda H">H. Tsunoda</name>
</author>
<author>
<name sortKey="Tachibana, T" uniqKey="Tachibana T">T. Tachibana</name>
</author>
<author>
<name sortKey="Maeda, A" uniqKey="Maeda A">A. Maeda</name>
</author>
<author>
<name sortKey="Mimoto, F" uniqKey="Mimoto F">F. Mimoto</name>
</author>
<author>
<name sortKey="Moriyama, C" uniqKey="Moriyama C">C. Moriyama</name>
</author>
<author>
<name sortKey="Nanami, M" uniqKey="Nanami M">M. Nanami</name>
</author>
<author>
<name sortKey="Sekimori, Y" uniqKey="Sekimori Y">Y. Sekimori</name>
</author>
<author>
<name sortKey="Nabuchi, Y" uniqKey="Nabuchi Y">Y. Nabuchi</name>
</author>
<author>
<name sortKey="Aso, Y" uniqKey="Aso Y">Y. Aso</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Feige, M J" uniqKey="Feige M">M.J. Feige</name>
</author>
<author>
<name sortKey="Hendershot, L M" uniqKey="Hendershot L">L.M. Hendershot</name>
</author>
<author>
<name sortKey="Buchner, J" uniqKey="Buchner J">J. Buchner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sormanni, P" uniqKey="Sormanni P">P. Sormanni</name>
</author>
<author>
<name sortKey="Amery, L" uniqKey="Amery L">L. Amery</name>
</author>
<author>
<name sortKey="Ekizoglou, S" uniqKey="Ekizoglou S">S. Ekizoglou</name>
</author>
<author>
<name sortKey="Vendruscolo, M" uniqKey="Vendruscolo M">M. Vendruscolo</name>
</author>
<author>
<name sortKey="Popovic, B" uniqKey="Popovic B">B. Popovic</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Larios Mora, A" uniqKey="Larios Mora A">A. Larios Mora</name>
</author>
<author>
<name sortKey="Detalle, L" uniqKey="Detalle L">L. Detalle</name>
</author>
<author>
<name sortKey="Gallup, J M" uniqKey="Gallup J">J.M. Gallup</name>
</author>
<author>
<name sortKey="Van Geelen, A" uniqKey="Van Geelen A">A. Van Geelen</name>
</author>
<author>
<name sortKey="Stohr, T" uniqKey="Stohr T">T. Stohr</name>
</author>
<author>
<name sortKey="Duprez, L" uniqKey="Duprez L">L. Duprez</name>
</author>
<author>
<name sortKey="Ackermann, M R" uniqKey="Ackermann M">M.R. Ackermann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Respaud, R" uniqKey="Respaud R">R. Respaud</name>
</author>
<author>
<name sortKey="Marchand, D" uniqKey="Marchand D">D. Marchand</name>
</author>
<author>
<name sortKey="Parent, C" uniqKey="Parent C">C. Parent</name>
</author>
<author>
<name sortKey="Pelat, T" uniqKey="Pelat T">T. Pelat</name>
</author>
<author>
<name sortKey="Thullier, P" uniqKey="Thullier P">P. Thullier</name>
</author>
<author>
<name sortKey="Tournamille, J F" uniqKey="Tournamille J">J.F. Tournamille</name>
</author>
<author>
<name sortKey="Viaud Massuard, M C" uniqKey="Viaud Massuard M">M.C. Viaud-Massuard</name>
</author>
<author>
<name sortKey="Diot, P" uniqKey="Diot P">P. Diot</name>
</author>
<author>
<name sortKey="Si Tahar, M" uniqKey="Si Tahar M">M. Si-Tahar</name>
</author>
<author>
<name sortKey="Vecellio, L" uniqKey="Vecellio L">L. Vecellio</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moussa, E M" uniqKey="Moussa E">E.M. Moussa</name>
</author>
<author>
<name sortKey="Panchal, J P" uniqKey="Panchal J">J.P. Panchal</name>
</author>
<author>
<name sortKey="Moorthy, B S" uniqKey="Moorthy B">B.S. Moorthy</name>
</author>
<author>
<name sortKey="Blum, J S" uniqKey="Blum J">J.S. Blum</name>
</author>
<author>
<name sortKey="Joubert, M K" uniqKey="Joubert M">M.K. Joubert</name>
</author>
<author>
<name sortKey="Narhi, L O" uniqKey="Narhi L">L.O. Narhi</name>
</author>
<author>
<name sortKey="Topp, E M" uniqKey="Topp E">E.M. Topp</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Beck Broichsitter, M" uniqKey="Beck Broichsitter M">M. Beck-Broichsitter</name>
</author>
<author>
<name sortKey="Kleimann, P" uniqKey="Kleimann P">P. Kleimann</name>
</author>
<author>
<name sortKey="Schmehl, T" uniqKey="Schmehl T">T. Schmehl</name>
</author>
<author>
<name sortKey="Betz, T" uniqKey="Betz T">T. Betz</name>
</author>
<author>
<name sortKey="Bakowsky, U" uniqKey="Bakowsky U">U. Bakowsky</name>
</author>
<author>
<name sortKey="Kissel, T" uniqKey="Kissel T">T. Kissel</name>
</author>
<author>
<name sortKey="Seeger, W" uniqKey="Seeger W">W. Seeger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rosenberg, A S" uniqKey="Rosenberg A">A.S. Rosenberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ewert, S" uniqKey="Ewert S">S. Ewert</name>
</author>
<author>
<name sortKey="Huber, T" uniqKey="Huber T">T. Huber</name>
</author>
<author>
<name sortKey="Honegger, A" uniqKey="Honegger A">A. Honegger</name>
</author>
<author>
<name sortKey="Pluckthun, A" uniqKey="Pluckthun A">A. Pluckthun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Honegger, A" uniqKey="Honegger A">A. Honegger</name>
</author>
<author>
<name sortKey="Malebranche, A D" uniqKey="Malebranche A">A.D. Malebranche</name>
</author>
<author>
<name sortKey="Rothlisberger, D" uniqKey="Rothlisberger D">D. Rothlisberger</name>
</author>
<author>
<name sortKey="Pluckthun, A" uniqKey="Pluckthun A">A. Pluckthun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chennamsetty, N" uniqKey="Chennamsetty N">N. Chennamsetty</name>
</author>
<author>
<name sortKey="Voynov, V" uniqKey="Voynov V">V. Voynov</name>
</author>
<author>
<name sortKey="Kayser, V" uniqKey="Kayser V">V. Kayser</name>
</author>
<author>
<name sortKey="Helk, B" uniqKey="Helk B">B. Helk</name>
</author>
<author>
<name sortKey="Trout, B L" uniqKey="Trout B">B.L. Trout</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X. Wang</name>
</author>
<author>
<name sortKey="Das, T K" uniqKey="Das T">T.K. Das</name>
</author>
<author>
<name sortKey="Singh, S K" uniqKey="Singh S">S.K. Singh</name>
</author>
<author>
<name sortKey="Kumar, S" uniqKey="Kumar S">S. Kumar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wu, S J" uniqKey="Wu S">S.J. Wu</name>
</author>
<author>
<name sortKey="Luo, J" uniqKey="Luo J">J. Luo</name>
</author>
<author>
<name sortKey="O Eil, K T" uniqKey="O Eil K">K.T. O’Neil</name>
</author>
<author>
<name sortKey="Kang, J" uniqKey="Kang J">J. Kang</name>
</author>
<author>
<name sortKey="Lacy, E R" uniqKey="Lacy E">E.R. Lacy</name>
</author>
<author>
<name sortKey="Canziani, G" uniqKey="Canziani G">G. Canziani</name>
</author>
<author>
<name sortKey="Baker, A" uniqKey="Baker A">A. Baker</name>
</author>
<author>
<name sortKey="Huang, M" uniqKey="Huang M">M. Huang</name>
</author>
<author>
<name sortKey="Tang, Q M" uniqKey="Tang Q">Q.M. Tang</name>
</author>
<author>
<name sortKey="Raju, T S" uniqKey="Raju T">T.S. Raju</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jespers, L" uniqKey="Jespers L">L. Jespers</name>
</author>
<author>
<name sortKey="Schon, O" uniqKey="Schon O">O. Schon</name>
</author>
<author>
<name sortKey="Famm, K" uniqKey="Famm K">K. Famm</name>
</author>
<author>
<name sortKey="Winter, G" uniqKey="Winter G">G. Winter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Perchiacca, J M" uniqKey="Perchiacca J">J.M. Perchiacca</name>
</author>
<author>
<name sortKey="Bhattacharya, M" uniqKey="Bhattacharya M">M. Bhattacharya</name>
</author>
<author>
<name sortKey="Tessier, P M" uniqKey="Tessier P">P.M. Tessier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dudgeon, K" uniqKey="Dudgeon K">K. Dudgeon</name>
</author>
<author>
<name sortKey="Rouet, R" uniqKey="Rouet R">R. Rouet</name>
</author>
<author>
<name sortKey="Kokmeijer, I" uniqKey="Kokmeijer I">I. Kokmeijer</name>
</author>
<author>
<name sortKey="Schofield, P" uniqKey="Schofield P">P. Schofield</name>
</author>
<author>
<name sortKey="Stolp, J" uniqKey="Stolp J">J. Stolp</name>
</author>
<author>
<name sortKey="Langley, D" uniqKey="Langley D">D. Langley</name>
</author>
<author>
<name sortKey="Stock, D" uniqKey="Stock D">D. Stock</name>
</author>
<author>
<name sortKey="Christ, D" uniqKey="Christ D">D. Christ</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Agrawal, A S" uniqKey="Agrawal A">A.S. Agrawal</name>
</author>
<author>
<name sortKey="Garron, T" uniqKey="Garron T">T. Garron</name>
</author>
<author>
<name sortKey="Tao, X" uniqKey="Tao X">X. Tao</name>
</author>
<author>
<name sortKey="Peng, B H" uniqKey="Peng B">B.H. Peng</name>
</author>
<author>
<name sortKey="Wakamiya, M" uniqKey="Wakamiya M">M. Wakamiya</name>
</author>
<author>
<name sortKey="Chan, T S" uniqKey="Chan T">T.S. Chan</name>
</author>
<author>
<name sortKey="Couch, R B" uniqKey="Couch R">R.B. Couch</name>
</author>
<author>
<name sortKey="Tseng, C T" uniqKey="Tseng C">C.T. Tseng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, K" uniqKey="Li K">K. Li</name>
</author>
<author>
<name sortKey="Wohlford Lenane, C" uniqKey="Wohlford Lenane C">C. Wohlford-Lenane</name>
</author>
<author>
<name sortKey="Perlman, S" uniqKey="Perlman S">S. Perlman</name>
</author>
<author>
<name sortKey="Zhao, J" uniqKey="Zhao J">J. Zhao</name>
</author>
<author>
<name sortKey="Jewell, A K" uniqKey="Jewell A">A.K. Jewell</name>
</author>
<author>
<name sortKey="Reznikov, L R" uniqKey="Reznikov L">L.R. Reznikov</name>
</author>
<author>
<name sortKey="Gibson Corley, K N" uniqKey="Gibson Corley K">K.N. Gibson-Corley</name>
</author>
<author>
<name sortKey="Meyerholz, D K" uniqKey="Meyerholz D">D.K. Meyerholz</name>
</author>
<author>
<name sortKey="Mccray, P B" uniqKey="Mccray P">P.B. McCray</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhao, G" uniqKey="Zhao G">G. Zhao</name>
</author>
<author>
<name sortKey="Jiang, Y" uniqKey="Jiang Y">Y. Jiang</name>
</author>
<author>
<name sortKey="Qiu, H" uniqKey="Qiu H">H. Qiu</name>
</author>
<author>
<name sortKey="Gao, T" uniqKey="Gao T">T. Gao</name>
</author>
<author>
<name sortKey="Zeng, Y" uniqKey="Zeng Y">Y. Zeng</name>
</author>
<author>
<name sortKey="Guo, Y" uniqKey="Guo Y">Y. Guo</name>
</author>
<author>
<name sortKey="Yu, H" uniqKey="Yu H">H. Yu</name>
</author>
<author>
<name sortKey="Li, J" uniqKey="Li J">J. Li</name>
</author>
<author>
<name sortKey="Kou, Z" uniqKey="Kou Z">Z. Kou</name>
</author>
<author>
<name sortKey="Du, L" uniqKey="Du L">L. Du</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, K" uniqKey="Li K">K. Li</name>
</author>
<author>
<name sortKey="Wohlford Lenane, C L" uniqKey="Wohlford Lenane C">C.L. Wohlford-Lenane</name>
</author>
<author>
<name sortKey="Channappanavar, R" uniqKey="Channappanavar R">R. Channappanavar</name>
</author>
<author>
<name sortKey="Park, J E" uniqKey="Park J">J.E. Park</name>
</author>
<author>
<name sortKey="Earnest, J T" uniqKey="Earnest J">J.T. Earnest</name>
</author>
<author>
<name sortKey="Bair, T B" uniqKey="Bair T">T.B. Bair</name>
</author>
<author>
<name sortKey="Bates, A M" uniqKey="Bates A">A.M. Bates</name>
</author>
<author>
<name sortKey="Brogden, K A" uniqKey="Brogden K">K.A. Brogden</name>
</author>
<author>
<name sortKey="Flaherty, H A" uniqKey="Flaherty H">H.A. Flaherty</name>
</author>
<author>
<name sortKey="Gallagher, T" uniqKey="Gallagher T">T. Gallagher</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kanof, M E" uniqKey="Kanof M">M.E. Kanof</name>
</author>
<author>
<name sortKey="Smith, P D" uniqKey="Smith P">P.D. Smith</name>
</author>
<author>
<name sortKey="Zola, H" uniqKey="Zola H">H. Zola</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barbas, C F" uniqKey="Barbas C">C.F. Barbas</name>
</author>
<author>
<name sortKey="Burton, D R" uniqKey="Burton D">D.R. Burton</name>
</author>
<author>
<name sortKey="Scott, J K" uniqKey="Scott J">J.K. Scott</name>
</author>
<author>
<name sortKey="Silverman, G J" uniqKey="Silverman G">G.J. Silverman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Andris Widhopf, J" uniqKey="Andris Widhopf J">J. Andris-Widhopf</name>
</author>
<author>
<name sortKey="Steinberger, P" uniqKey="Steinberger P">P. Steinberger</name>
</author>
<author>
<name sortKey="Fuller, R" uniqKey="Fuller R">R. Fuller</name>
</author>
<author>
<name sortKey="Rader, C" uniqKey="Rader C">C. Rader</name>
</author>
<author>
<name sortKey="Barbas, C F" uniqKey="Barbas C">C.F. Barbas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, Y" uniqKey="Lee Y">Y. Lee</name>
</author>
<author>
<name sortKey="Kim, H" uniqKey="Kim H">H. Kim</name>
</author>
<author>
<name sortKey="Chung, J" uniqKey="Chung J">J. Chung</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, S" uniqKey="Lee S">S. Lee</name>
</author>
<author>
<name sortKey="Yoon, I H" uniqKey="Yoon I">I.H. Yoon</name>
</author>
<author>
<name sortKey="Yoon, A" uniqKey="Yoon A">A. Yoon</name>
</author>
<author>
<name sortKey="Cook Mills, J M" uniqKey="Cook Mills J">J.M. Cook-Mills</name>
</author>
<author>
<name sortKey="Park, C G" uniqKey="Park C">C.G. Park</name>
</author>
<author>
<name sortKey="Chung, J" uniqKey="Chung J">J. Chung</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jin, J" uniqKey="Jin J">J. Jin</name>
</author>
<author>
<name sortKey="Park, G" uniqKey="Park G">G. Park</name>
</author>
<author>
<name sortKey="Park, J B" uniqKey="Park J">J.B. Park</name>
</author>
<author>
<name sortKey="Kim, S" uniqKey="Kim S">S. Kim</name>
</author>
<author>
<name sortKey="Kim, H" uniqKey="Kim H">H. Kim</name>
</author>
<author>
<name sortKey="Chung, J" uniqKey="Chung J">J. Chung</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reed, L J" uniqKey="Reed L">L.J. Reed</name>
</author>
<author>
<name sortKey="Muench, H" uniqKey="Muench H">H. Muench</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Int J Mol Sci</journal-id>
<journal-id journal-id-type="iso-abbrev">Int J Mol Sci</journal-id>
<journal-id journal-id-type="publisher-id">ijms</journal-id>
<journal-title-group>
<journal-title>International Journal of Molecular Sciences</journal-title>
</journal-title-group>
<issn pub-type="epub">1422-0067</issn>
<publisher>
<publisher-name>MDPI</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">31614869</article-id>
<article-id pub-id-type="pmc">6829326</article-id>
<article-id pub-id-type="doi">10.3390/ijms20205073</article-id>
<article-id pub-id-type="publisher-id">ijms-20-05073</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Generation of a Nebulizable CDR-Modified MERS-CoV Neutralizing Human Antibody</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<contrib-id contrib-id-type="orcid" authenticated="true">https://orcid.org/0000-0002-0472-8010</contrib-id>
<name>
<surname>Kim</surname>
<given-names>Sang Il</given-names>
</name>
<xref ref-type="aff" rid="af1-ijms-20-05073">1</xref>
<xref ref-type="aff" rid="af2-ijms-20-05073">2</xref>
<xref ref-type="author-notes" rid="fn1-ijms-20-05073"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kim</surname>
<given-names>Sujeong</given-names>
</name>
<xref ref-type="aff" rid="af1-ijms-20-05073">1</xref>
<xref ref-type="aff" rid="af3-ijms-20-05073">3</xref>
<xref ref-type="author-notes" rid="fn1-ijms-20-05073"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kim</surname>
<given-names>Jinhee</given-names>
</name>
<xref ref-type="aff" rid="af4-ijms-20-05073">4</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Chang</surname>
<given-names>So Young</given-names>
</name>
<xref ref-type="aff" rid="af4-ijms-20-05073">4</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Shim</surname>
<given-names>Jung Min</given-names>
</name>
<xref ref-type="aff" rid="af5-ijms-20-05073">5</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Jin</surname>
<given-names>Jongwha</given-names>
</name>
<xref ref-type="aff" rid="af6-ijms-20-05073">6</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Lim</surname>
<given-names>Chungsu</given-names>
</name>
<xref ref-type="aff" rid="af6-ijms-20-05073">6</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Baek</surname>
<given-names>Songyi</given-names>
</name>
<xref ref-type="aff" rid="af6-ijms-20-05073">6</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Min</surname>
<given-names>Ji-Young</given-names>
</name>
<xref ref-type="aff" rid="af4-ijms-20-05073">4</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Park</surname>
<given-names>Wan Beom</given-names>
</name>
<xref ref-type="aff" rid="af7-ijms-20-05073">7</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Oh</surname>
<given-names>Myoung-don</given-names>
</name>
<xref ref-type="aff" rid="af7-ijms-20-05073">7</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kim</surname>
<given-names>Seungtaek</given-names>
</name>
<xref ref-type="aff" rid="af5-ijms-20-05073">5</xref>
<xref rid="c1-ijms-20-05073" ref-type="corresp">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Chung</surname>
<given-names>Junho</given-names>
</name>
<xref ref-type="aff" rid="af1-ijms-20-05073">1</xref>
<xref ref-type="aff" rid="af2-ijms-20-05073">2</xref>
<xref ref-type="aff" rid="af3-ijms-20-05073">3</xref>
<xref rid="c1-ijms-20-05073" ref-type="corresp">*</xref>
</contrib>
</contrib-group>
<aff id="af1-ijms-20-05073">
<label>1</label>
Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea;
<email>sangk1128@snu.ac.kr</email>
(S.I.K.);
<email>sujeong5425@snu.ac.kr</email>
(S.K.)</aff>
<aff id="af2-ijms-20-05073">
<label>2</label>
Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea</aff>
<aff id="af3-ijms-20-05073">
<label>3</label>
Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Korea</aff>
<aff id="af4-ijms-20-05073">
<label>4</label>
Respiratory Virus Laboratory, Institut Pasteur Korea, Gyeonggi-do 13488, Korea;
<email>jinhee.kim@ip-korea.org</email>
(J.K.);
<email>soyoung.chang@ip-korea.org</email>
(S.Y.C.);
<email>ji-young.x.min@gsk.com</email>
(J.-Y.M.)</aff>
<aff id="af5-ijms-20-05073">
<label>5</label>
Zoonotic Virus Laboratory, Institut Pasteur Korea, Gyeonggi-do 13488, Korea;
<email>jungmin.shim@ip-korea.org</email>
</aff>
<aff id="af6-ijms-20-05073">
<label>6</label>
New Drug Development Center, 123 Osongsaengmyeng-ro, Cheongju-si, Chungbuk 28160, Korea;
<email>jichang011@kbiohealth.kr</email>
(J.J.);
<email>opern88@kbiohealth.kr</email>
(C.L.);
<email>bettysongyi1@kbiohealth.kr</email>
(S.B.)</aff>
<aff id="af7-ijms-20-05073">
<label>7</label>
Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea;
<email>wbpark1@snu.ac.kr</email>
(W.B.P.);
<email>mdohmd@snu.ac.kr</email>
(M.-d.O.)</aff>
<author-notes>
<corresp id="c1-ijms-20-05073">
<label>*</label>
Correspondence:
<email>seungtaek.kim@ip-korea.org</email>
(S.K.);
<email>jjhchung@snu.ac.kr</email>
(J.C.); Tel.: +82-2-3668-7439 (S.K.)</corresp>
<fn id="fn1-ijms-20-05073">
<label></label>
<p>These authors contributed equally to this work.</p>
</fn>
</author-notes>
<pub-date pub-type="epub">
<day>12</day>
<month>10</month>
<year>2019</year>
</pub-date>
<pub-date pub-type="collection">
<month>10</month>
<year>2019</year>
</pub-date>
<volume>20</volume>
<issue>20</issue>
<elocation-id>5073</elocation-id>
<history>
<date date-type="received">
<day>16</day>
<month>9</month>
<year>2019</year>
</date>
<date date-type="accepted">
<day>10</day>
<month>10</month>
<year>2019</year>
</date>
</history>
<permissions>
<copyright-statement>© 2019 by the authors.</copyright-statement>
<copyright-year>2019</copyright-year>
<license license-type="open-access">
<license-p>Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</ext-link>
).</license-p>
</license>
</permissions>
<abstract>
<p>Middle East respiratory syndrome coronavirus (MERS-CoV) induces severe aggravating respiratory failure in infected patients, frequently resulting in mechanical ventilation. As limited therapeutic antibody is accumulated in lung tissue following systemic administration, inhalation is newly recognized as an alternative, possibly better, route of therapeutic antibody for pulmonary diseases. The nebulization process, however, generates diverse physiological stresses, and thus, the therapeutic antibody must be resistant to these stresses, remain stable, and form minimal aggregates. We first isolated a MERS-CoV neutralizing antibody that is reactive to the receptor-binding domain (RBD) of spike (S) glycoprotein. To increase stability, we introduced mutations into the complementarity-determining regions (CDRs) of the antibody. In the HCDRs (excluding HCDR3) in this clone, two hydrophobic residues were replaced with Glu, two residues were replaced with Asp, and four residues were replaced with positively charged amino acids. In LCDRs, only two Leu residues were replaced with Val. These modifications successfully generated a clone with significantly greater stability and equivalent reactivity and neutralizing activity following nebulization compared to the original clone. In summary, we generated a MERS-CoV neutralizing human antibody that is reactive to recombinant MERS-CoV S RBD protein for delivery via a pulmonary route by introducing stabilizing mutations into five CDRs.</p>
</abstract>
<kwd-group>
<kwd>MERS-CoV</kwd>
<kwd>aerosol delivery</kwd>
<kwd>nebulizer</kwd>
<kwd>neutralizing antibody</kwd>
<kwd>antibody engineering</kwd>
<kwd>pulmonary disease</kwd>
<kwd>complementarity-determining regions</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec sec-type="intro" id="sec1-ijms-20-05073">
<title>1. Introduction</title>
<p>Middle East respiratory syndrome coronavirus (MERS-CoV) was first identified in Saudi Arabia in 2012 from a patient who suffered acute pneumonia and subsequent renal failure [
<xref rid="B1-ijms-20-05073" ref-type="bibr">1</xref>
]. Since then, the World Health Organization has reported 2254 laboratory-confirmed cases of MERS-CoV infections in 27 different countries around the world, and South Korea has recorded the highest number of cases outside of the Middle East. Despite resilient efforts throughout the scientific and medical communities, no vaccine or antiviral agent for MERS-CoV is currently available.</p>
<p>MERS-CoV is a large (30 kb), enveloped, single-stranded, positive-sense RNA virus. The viral genome encodes four major structural proteins: spike (S), envelope (E), membrane (M), and nucleocapsid (N) proteins [
<xref rid="B2-ijms-20-05073" ref-type="bibr">2</xref>
]. The S glycoprotein is a major envelope protein and interacts with the cellular receptor dipeptidyl peptidase 4 (DPP4) for entry into the host cell [
<xref rid="B3-ijms-20-05073" ref-type="bibr">3</xref>
]. This protein consists of the S1 and S2 subunits. The receptor-binding domain (RBD) within the S1 subunit mediates receptor binding, whereas the S2 subunit facilitates membrane fusion. DPP4 is expressed on a variety of human cells, including fibroblasts, intestinal epithelial cells, and hepatocytes [
<xref rid="B4-ijms-20-05073" ref-type="bibr">4</xref>
], as well as in the lung parenchyma and interstitium [
<xref rid="B5-ijms-20-05073" ref-type="bibr">5</xref>
,
<xref rid="B6-ijms-20-05073" ref-type="bibr">6</xref>
]. MERS-CoV is detected in respiratory secretions and the lower respiratory tract of the infected patients [
<xref rid="B7-ijms-20-05073" ref-type="bibr">7</xref>
,
<xref rid="B8-ijms-20-05073" ref-type="bibr">8</xref>
]. In the most severe cases of MERS-CoV infection, aggravating respiratory failure ultimately results in mechanical ventilation [
<xref rid="B9-ijms-20-05073" ref-type="bibr">9</xref>
]. These observations suggest that the MERS-CoV virus primarily infects the human respiratory tract and replicates within the human airway epithelium [
<xref rid="B10-ijms-20-05073" ref-type="bibr">10</xref>
,
<xref rid="B11-ijms-20-05073" ref-type="bibr">11</xref>
].</p>
<p>Antibodies play a crucial role in the prevention and treatment of viral infection. Polysera taken from recovered patients and vaccinated donors have been used as prophylactic agents for hepatitis B, rabies, and other viral diseases [
<xref rid="B12-ijms-20-05073" ref-type="bibr">12</xref>
,
<xref rid="B13-ijms-20-05073" ref-type="bibr">13</xref>
,
<xref rid="B14-ijms-20-05073" ref-type="bibr">14</xref>
]. Palivizumab (Synagis, Medimmune, Gaithersburg, MD, USA) was approved for the prophylaxis of RSV in 1998, and ibalizumab-uiyk (Trogarzo, TailMed Biologics, Taiwan) became clinically available in 2018 for the treatment of human immunodeficiency virus type 1 (HIV-1) infection in treatment-experienced adults with multi-drug-resistant HIV-1 and failure to respond to the current antiretroviral regimen.</p>
<p>In response to the ongoing epidemic, several groups have developed anti-MERS-CoV neutralizing monoclonal or polyclonal antibodies that target RBD [
<xref rid="B15-ijms-20-05073" ref-type="bibr">15</xref>
,
<xref rid="B16-ijms-20-05073" ref-type="bibr">16</xref>
]. These antibodies were generated from B cells derived from convalescent patients, nonimmune human antibody phage-display libraries, fully humanized mice, transchromosomic bovines, or hybridomas from mice that were immunized with MERS-CoV S. These antibodies potently inhibit RBD binding to the DPP4 receptor [
<xref rid="B17-ijms-20-05073" ref-type="bibr">17</xref>
,
<xref rid="B18-ijms-20-05073" ref-type="bibr">18</xref>
,
<xref rid="B19-ijms-20-05073" ref-type="bibr">19</xref>
,
<xref rid="B20-ijms-20-05073" ref-type="bibr">20</xref>
,
<xref rid="B21-ijms-20-05073" ref-type="bibr">21</xref>
,
<xref rid="B22-ijms-20-05073" ref-type="bibr">22</xref>
,
<xref rid="B23-ijms-20-05073" ref-type="bibr">23</xref>
]. Furthermore, therapeutic effects of RBD-specific neutralizing antibodies were evaluated in several animal models, including Ad5/hDPP4-trasduced mice, humanized DPP4 mice, and hDPP4-transgenic mice as well as hDPP4-knock-in mice, rabbits, and rhesus monkeys [
<xref rid="B17-ijms-20-05073" ref-type="bibr">17</xref>
,
<xref rid="B21-ijms-20-05073" ref-type="bibr">21</xref>
,
<xref rid="B24-ijms-20-05073" ref-type="bibr">24</xref>
,
<xref rid="B25-ijms-20-05073" ref-type="bibr">25</xref>
,
<xref rid="B26-ijms-20-05073" ref-type="bibr">26</xref>
,
<xref rid="B27-ijms-20-05073" ref-type="bibr">27</xref>
,
<xref rid="B28-ijms-20-05073" ref-type="bibr">28</xref>
,
<xref rid="B29-ijms-20-05073" ref-type="bibr">29</xref>
,
<xref rid="B30-ijms-20-05073" ref-type="bibr">30</xref>
].</p>
<p>All MERS-CoV neutralizing antibodies were developed for intravenous (i.v.) delivery; however, recent reports indicate that the amount of antibody delivered to lung tissue is often quite limited following systemic delivery [
<xref rid="B31-ijms-20-05073" ref-type="bibr">31</xref>
,
<xref rid="B32-ijms-20-05073" ref-type="bibr">32</xref>
]. In cynomolgus monkeys, bronchoalveolar lavage fluid contained dose-proportional concentrations of systemically administrated antibody, and these concentrations were approximately 500-fold less than those in plasma [
<xref rid="B31-ijms-20-05073" ref-type="bibr">31</xref>
]. Therefore, delivery of therapeutic antibody to lung tissues via inhalation has garnered considerable interest. Following delivery via the airway, cetuximab, an anti-epidermal growth factor receptor (EGFR) antibody, accumulated in normal and cancerous tissues in the lung at a concentration that was twice that achieved after i.v. delivery [
<xref rid="B33-ijms-20-05073" ref-type="bibr">33</xref>
]. In addition, recent studies showed that Fc fusion proteins and nanobodies are also efficiently delivered via the pulmonary route [
<xref rid="B34-ijms-20-05073" ref-type="bibr">34</xref>
,
<xref rid="B35-ijms-20-05073" ref-type="bibr">35</xref>
,
<xref rid="B36-ijms-20-05073" ref-type="bibr">36</xref>
,
<xref rid="B37-ijms-20-05073" ref-type="bibr">37</xref>
]. Therefore, MERS-CoV neutralizing antibody may also accumulate at higher concentrations following delivery via a pulmonary route, suggesting higher efficacy. In order for this pulmonary delivery to be successful, the antibody must be sufficiently stable to resist denaturation during the process of nebulization.</p>
<p>In this study, we generated a MERS-CoV neutralizing antibody for delivery via nebulization. We constructed a phage-display library from two convalescent MERS-CoV-infected patients and successfully isolated nine MERS-CoV RBD-specific neutralizing mAbs. After nebulization, these antibodies showed significant aggregation and reduced reactivity to recombinant S glycoprotein. We therefore reduced the number of hydrophobic residues and introduced solubilizing mutations within the complementarity-determining regions (CDRs), generating an antibody that is resistant to aggregation during nebulization and retains its MERS-CoV neutralizing activity.</p>
</sec>
<sec sec-type="results" id="sec2-ijms-20-05073">
<title>2. Results</title>
<sec id="sec2dot1-ijms-20-05073" sec-type="subjects">
<title>2.1. Generation of Antibodies Reactive to Recombinant MERS-CoV RBD Protein From Patients</title>
<p>We generated human single-chain variable fragment (scFv) phage-display libraries using peripheral blood mononuclear cells (PBMCs) isolated from two MERS-CoV-infected convalescent patients. One patient (P014) was considered to be the super spreader, and the other patient (P002) was the wife of the index patient in the previous report [
<xref rid="B38-ijms-20-05073" ref-type="bibr">38</xref>
]. The complexity of the libraries exceeded 3.6 × 10
<sup>9</sup>
and 1.9 × 10
<sup>9</sup>
colony-forming units for patients P002 and P014, respectively. After the third and fourth rounds of biopanning against recombinant MERS-CoV S RBD protein, the scFv clones were retrieved in a high-throughput manner as described previously [
<xref rid="B39-ijms-20-05073" ref-type="bibr">39</xref>
]. Briefly, 1800 microcolonies formed on the TR chip, and of these, 542 clones with unique
<italic>V
<sub>H</sub>
</italic>
and
<italic>V
<sub>Κ</sub>
</italic>
/
<italic>V
<sub>λ</sub>
</italic>
were identified. In these clones, 44 unique HCDR3 sequences were identified. We selected 44 clones encoding unique HCDR3 sequences and rescued phages for phage enzyme-linked immunosorbent assay (ELISA) analysis. A total of 36 unique scFv clones were highly reactive to recombinant MERS-CoV S RBD protein (data not shown). These clones were prepared as scFv fused with human Fc (scFv-hFc) using a eukaryotic expression vector and HEK293F cells. A human anti-MERS-CoV neutralizing mAb reported previously, m336, was also prepared in this same form for use as a positive control [
<xref rid="B40-ijms-20-05073" ref-type="bibr">40</xref>
].</p>
</sec>
<sec id="sec2dot2-ijms-20-05073">
<title>2.2. Selection of MERS-CoV Neutralizing Antibodies</title>
<p>We performed a microneutralization assay to test the neutralizing activity of the 36 identified scFv clones against MERS-CoV (MERS-CoV/KOR/KNIH/002_05_2015). Among these, scFV clones 10, 15, 20, C-8, 34, 42, 46, 47, and 48 potently inhibited MERS-CoV replication, with half-maximal inhibitory concentration (IC
<sub>50</sub>
) values ranging from 2.40 to 9.61 μg/mL (
<xref ref-type="app" rid="app1-ijms-20-05073">Table S1</xref>
).</p>
<p>Next, we tested the stability of these clones during nebulization. We nebulized the fusion proteins at a concentration of 100 μg/mL in phosphate-buffered saline (PBS) using a vibrating mesh nebulizer and then collected the aerosol. All the collected samples showed clearly visible aggregation (data not shown). After centrifugation to remove the aggregated material, we repeated the ELISA analysis and compared the reactivity of pre- and post-nebulized scFv-hFc. All nine clones showed significantly reduced reactivity against recombinant S glycoprotein after nebulization (
<xref ref-type="app" rid="app1-ijms-20-05073">Figure S1</xref>
).</p>
<p>We selected the clones C-8 and 48, as these antibodies exhibited the lowest IC
<sub>50</sub>
values among the antibodies derived from patients P002 and P014, respectively. Before performing further studies, we studied the mechanism underlying inhibition of viral infection on cells. The antibodies were mixed with recombinant S glycoprotein and added to hDPP4-expressing Huh-7 cells. Both C-8 and 48 scFv-hFc nearly completely blocked binding of recombinant S glycoprotein to cells at equimolar concentration of 100 nM (
<xref ref-type="app" rid="app1-ijms-20-05073">Figure S2</xref>
), indicating that the antibodies block the initial interaction of the virus with cells.</p>
</sec>
<sec id="sec2dot3-ijms-20-05073">
<title>2.3. Modification of CDR Residues to Enhance Antibody Stability</title>
<p>To enhance the stability of the C-8 and 48 clones, we sought to introduce mutations in CDRs, except for heavy chain CDR3 (HCDR3), for replacement of hydrophobic residues with hydrophilic residues. We defined CDRs according to the International Immunogenetics Information System (IMGT) and targeted Phe, Ile, Leu, Val, Met, Trp, and Tyr which were defined as hydrophobic amino acids in previous reports [
<xref rid="B41-ijms-20-05073" ref-type="bibr">41</xref>
,
<xref rid="B42-ijms-20-05073" ref-type="bibr">42</xref>
]. For the C-8 clone, the F29, Y32, I51, I52, F53, and F54 hydrophobic residues in HCDR1 and HCDR2 were selected for randomization (
<xref ref-type="fig" rid="ijms-20-05073-f001">Figure 1</xref>
A). These six residues were designed to encode the wild-type amino acid, Asp, Glu, or redundant amino acids depending on the degenerate codon in the first scFv phage-display library (
<xref ref-type="app" rid="app1-ijms-20-05073">Table S2</xref>
). We preferred negatively charged amino acids to positively charged amino acids as lowering the isoelectric point of an antibody may reduce the non-specific
<italic>in vivo</italic>
clearance [
<xref rid="B43-ijms-20-05073" ref-type="bibr">43</xref>
]. The randomized scFv phage-display library had a complexity of 2.6 × 10
<sup>9</sup>
colony-forming units, which exceeded the theoretical complexity of 1.3 × 10
<sup>5</sup>
on the nucleotide level. After two rounds of biopanning on recombinant MERS-CoV S RBD protein, we randomly rescued phage clones and performed phage ELISA. Eleven scFv clones showed reactivity to recombinant MERS-CoV S RBD protein similar to or higher than that of the original C-8 clone. The C-8-2 clone harbored F29E and Y32E replacements, while the other ten clones had only one residue replaced with either Asp, Glu, or redundant amino acids, depending on the degenerate codon. To test the stability of the C-8-2 clone during nebulization, a scFv-hFc fusion protein was prepared and subjected to ELISA following nebulization. The reactivity of C-8-2 scFv-hFc to recombinant S glycoprotein was much less affected by nebulization than that of C-8 scFv-hFc; however, the reactivity of the C-8-2 clone was somewhat reduced compared with that of the C-8 clone (
<xref ref-type="app" rid="app1-ijms-20-05073">Figure S3A</xref>
).</p>
<p>In a parallel experiment using clone 48, we prepared a randomized scFv phage-display library and selected seven clones. None of the clones were successfully expressed in the scFv-hFc format (less than 300 μg/L), preventing us from conducting further studies on clone 48 (data not shown).</p>
<p>To achieve further stabilization and affinity maturation, we generated a second scFv phage-display library using the same strategy to randomize nine residues in HCDR1 and HCDR2 of the C-8-2 clone to introduce more negatively charged residues (
<xref ref-type="fig" rid="ijms-20-05073-f001">Figure 1</xref>
A,
<xref ref-type="app" rid="app1-ijms-20-05073">Table S2</xref>
). The proline at H52A was excluded from the randomization, as proline frequently forms a unique structure essential for antibody reactivity [
<xref rid="B44-ijms-20-05073" ref-type="bibr">44</xref>
]. The second randomized scFv phage-display library had a complexity of 1.0 × 10
<sup>9</sup>
colony-forming units, which exceeded the theoretical complexity of 4.2 × 10
<sup>6</sup>
on the nucleotide level. After the second round of biopanning on recombinant MERS-CoV S RBD protein, we selected 12 clones that displayed greater reactivity to recombinant MERS-CoV S RBD protein than the C-8-2 clone in phage ELISA analysis. Clone C-8-2-4B contained replacement at six residues (G26D, T28K, S30K, S31R, G55D, and T56K;
<xref ref-type="fig" rid="ijms-20-05073-f001">Figure 1</xref>
A) and showed the highest intrinsic solubility score [
<xref rid="B45-ijms-20-05073" ref-type="bibr">45</xref>
] among the 12 tested clones. Interestingly, only two residues were replaced with Asp, and four residues were replaced with positively charged amino acids, as allowed by the degenerate codons (
<xref ref-type="fig" rid="ijms-20-05073-f001">Figure 1</xref>
A). We then prepared a C-8-2-4B scFv-hFc fusion protein using a eukaryotic expression system. After nebulization, the reactivity of C-8-2-4B scFv-hFc to recombinant S glycoprotein was less affected than either C-8 or C-8-2 scFv-hFc (
<xref ref-type="app" rid="app1-ijms-20-05073">Figure S3A,B</xref>
). In addition, the reactivity of C-8-2-4B scFv-hFc was enhanced compared to that of C-8-2 scFv-hFc and comparable to that of C-8 scFv-hFc.</p>
<p>Next, we prepared C-8 and C-8-2-4B IgG
<sub>1</sub>
using a eukaryotic expression system and compared the reactivity of these immunoglobulins to recombinant S glycoprotein before and after nebulization. As expected, the reactivity of C-8-2-4B IgG
<sub>1</sub>
was better retained following nebulization than that of C-8 IgG
<sub>1</sub>
(
<xref ref-type="app" rid="app1-ijms-20-05073">Figure S3C</xref>
). We also tested whether C-8-2-4B IgG
<sub>1</sub>
effectively blocked the interaction between recombinant S glycoprotein and hDPP4-expressing Huh-7 cells after nebulization. In flow cytometry analysis, we found that C-8-2-4B IgG
<sub>1</sub>
almost completely blocked the binding of recombinant S glycoprotein to hDPP4-expressing cells following nebulization, while C-8 IgG
<sub>1</sub>
failed to block this interaction after nebulization (
<xref ref-type="app" rid="app1-ijms-20-05073">Figure S3D</xref>
).</p>
<p>As C-8-2-4B IgG
<sub>1</sub>
showed a somewhat reduced reactivity after nebulization, we sought to confer additional stability by randomizing eight hydrophobic residues in LCDRs using the same randomization scheme. We achieved 2.0 × 10
<sup>9</sup>
colony-forming units in the third randomized scFv phage-display library, exceeding the theoretical complexity of 2.1 × 10
<sup>6</sup>
(
<xref ref-type="fig" rid="ijms-20-05073-f001">Figure 1</xref>
B). After two rounds of biopanning on recombinant MERS-CoV S RBD protein, we selected clones in a phage ELISA with reactivity similar to or greater than that of C-8-2-4B. Sanger sequencing revealed that a single clone was repetitively selected. The selected clone, C-8-2-4B-10D, harbored replacements at L27C and L92V with valine (
<xref ref-type="fig" rid="ijms-20-05073-f001">Figure 1</xref>
B). We prepared C-8-2-4B-10D IgG
<sub>1</sub>
using a eukaryotic expression system and analyzed the characteristics using ELISA, size-exclusion high-performance liquid chromatography (SE-HPLC), dynamic light scattering (DLS), and plaque reduction neutralization tests (PRNT
<sub>50</sub>
). ELISA revealed a noticeable decline in reactivity to recombinant S glycoprotein by C-8 IgG
<sub>1</sub>
and m336 IgG
<sub>1</sub>
after nebulization; yet, the change in reactivity of C-8-2-4B-10D IgG
<sub>1</sub>
after nebulization was negligible (
<xref ref-type="fig" rid="ijms-20-05073-f002">Figure 2</xref>
).</p>
<p>In SE-HPLC analysis, high-molecular weight aggregates were detected in post-nebulization samples of C-8 and m336 IgG
<sub>1</sub>
; however, no aggregate was found in post-nebulized samples of C-8-2-4B-10D IgG
<sub>1</sub>
(
<xref rid="ijms-20-05073-t001" ref-type="table">Table 1</xref>
,
<xref ref-type="app" rid="app1-ijms-20-05073">Figure S4</xref>
). In accordance with these SE-HPLC data, DLS analysis showed that the nebulization process converted 21.6% and 22.5% of C-8 and m336 IgG
<sub>1</sub>
, respectively, into high-molecular-weight aggregates, while nebulization resulted in <1% aggregates for C-8-2-4B-10D IgG
<sub>1</sub>
. (
<xref rid="ijms-20-05073-t001" ref-type="table">Table 1</xref>
,
<xref ref-type="fig" rid="ijms-20-05073-f003">Figure 3</xref>
).</p>
</sec>
<sec id="sec2dot4-ijms-20-05073">
<title>2.4. Neutralizing Potency After Nebulization</title>
<p>The neutralizing activities of pre- and post-nebulized C-8 and C-8-2-4B-10D IgG
<sub>1</sub>
were evaluated in PRNT
<sub>50</sub>
using the live MERS-CoV (MERS-CoV/KOR/KNIH/002_05_2015). Antibodies were mixed with live MERS-CoV, and then the antibody-virus mixture was allowed to infect Vero cells. C-8 and C-8-2-4B-10D IgG
<sub>1</sub>
exhibited effective inhibitory activity against MERS-CoV, with IC
<sub>50</sub>
values of 0.29 and 0.28 μg/mL, respectively. After nebulization, C-8-2-4B-10D showed an IC
<sub>50</sub>
value similar to that of pre-nebulized IgG
<sub>1</sub>
, but the IC
<sub>50</sub>
value of C-8 was dramatically increased following nebulization (
<xref ref-type="fig" rid="ijms-20-05073-f004">Figure 4</xref>
).</p>
</sec>
</sec>
<sec sec-type="discussion" id="sec3-ijms-20-05073">
<title>3. Discussion</title>
<p>Pulmonary delivery can be an efficient drug delivery route to the lung parenchyma, and such delivery can sometimes exceed the efficiency of systemic injection [
<xref rid="B33-ijms-20-05073" ref-type="bibr">33</xref>
]. To deliver drug via the airways, an aerosol that contains the drugs is generated by a nebulizer [
<xref rid="B46-ijms-20-05073" ref-type="bibr">46</xref>
]; however, the physical stress of nebulization often causes protein instability by affecting the integrity of the molecular structure, frequently resulting in fragmentation and aggregation [
<xref rid="B47-ijms-20-05073" ref-type="bibr">47</xref>
]. Aggregation of therapeutic proteins is a major concern, as it contributes to immunogenicity, which frequently causes adverse events, such as decreased drug efficacy, infusion reactions, cytokine release syndrome, or anaphylaxis [
<xref rid="B48-ijms-20-05073" ref-type="bibr">48</xref>
]. A vibrating mesh nebulizer, which was designed for protein delivery, generates limited variation on the temperature, concentration, and surface tension, and its effect on the stability of the protein is the least among nebulizers [
<xref rid="B49-ijms-20-05073" ref-type="bibr">49</xref>
]. This type of nebulizer also produces uniform sized particles and flow rates, which are also beneficial in maintaining the stability of biological products [
<xref rid="B37-ijms-20-05073" ref-type="bibr">37</xref>
].</p>
<p>To reduce the immunogenicity of therapeutic protein, maintaining the stability of the native protein conformation as well as minimal (or no) formation of high-molecular weight species are crucial [
<xref rid="B50-ijms-20-05073" ref-type="bibr">50</xref>
]. Therefore, engineering of a protein to render it more stable for pulmonary delivery is important. In a recent study, a trivalent nanobody against RSV F protein (ALX-O171) was successfully delivered directly into the lungs by nebulization and neutralized RSV in newborn lambs [
<xref rid="B46-ijms-20-05073" ref-type="bibr">46</xref>
]. In this case, the framework 2 region of the nanobody contained more hydrophilic residues that are not observed in human
<italic>V
<sub>H</sub>
</italic>
domains and thereby increasing the stability of the nanobody [
<xref rid="B37-ijms-20-05073" ref-type="bibr">37</xref>
]. In this study, we focused on CDRs, as the sequences of the CDR loops are closely related to the folding stability of antibodies [
<xref rid="B51-ijms-20-05073" ref-type="bibr">51</xref>
,
<xref rid="B52-ijms-20-05073" ref-type="bibr">52</xref>
]. CDR loops frequently possess hydrophobic residues to facilitate high binding affinity; however, solvent-exposed hydrophobic residues also impact antibody stability and aggregation [
<xref rid="B53-ijms-20-05073" ref-type="bibr">53</xref>
,
<xref rid="B54-ijms-20-05073" ref-type="bibr">54</xref>
,
<xref rid="B55-ijms-20-05073" ref-type="bibr">55</xref>
]. To increase solubility and counterbalance the impact of the hydrophobic residues required for antibody binding, solubilizing residues can be introduced either at the edges of the CDR loops or within the CDR [
<xref rid="B56-ijms-20-05073" ref-type="bibr">56</xref>
,
<xref rid="B57-ijms-20-05073" ref-type="bibr">57</xref>
]. Furthermore, negatively charged substitution mutations within CDRs can be used to prevent aggregation [
<xref rid="B58-ijms-20-05073" ref-type="bibr">58</xref>
]. In our study, we employed both strategies and reduced the number of hydrophobic residues and increased the number of charged residues in the CDRs, resulting in successful enhancement of the stability of a MERS-CoV neutralizing antibody. The final optimized antibody, C-8-2-4B-10D, showed very limited protein aggregation after nebulization and its biological potency was well maintained after such delivery. Further, we expect that formulation with surfactants such as polysorbate may prevent aggregation of this antibody during nebulization. </p>
<p>To test whether the C-8-2-4B-10D antibody provides better efficacy when delivered via a pulmonary route than via systemic injection, an animal model with progressive pulmonary failure is essential. In the case of hDPP4-transgenic mouse models, the infected mice exhibited central nervous system and multi-organ failure but no severe pulmonary symptoms [
<xref rid="B59-ijms-20-05073" ref-type="bibr">59</xref>
,
<xref rid="B60-ijms-20-05073" ref-type="bibr">60</xref>
,
<xref rid="B61-ijms-20-05073" ref-type="bibr">61</xref>
]. Recently, hDPP4-knock-in mice were developed and showed progressive pulmonary manifestations when infected with a mouse-adapted strain [
<xref rid="B62-ijms-20-05073" ref-type="bibr">62</xref>
]. Thus, in future studies, we will test the efficacy of C-8-2-4B-10D delivered via pulmonary route in these hDPP4-knock-in mice.</p>
</sec>
<sec id="sec4-ijms-20-05073">
<title>4. Materials and Methods</title>
<sec id="sec4dot1-ijms-20-05073">
<title>4.1. Ethics Statement</title>
<p>The study that provided the human samples was approved by the Institutional Ethics Review Board of Seoul National University Hospital (IRB approval number: 1602-100-742), and written informed consent was obtained from all participants.</p>
</sec>
<sec id="sec4dot2-ijms-20-05073">
<title>4.2. Construction of A Human scFv Phage-Display Library and Three Randomization Libraries</title>
<p>PBMCs were isolated from two MERS-CoV-infected convalescent patients using a Ficoll-Paque density gradient medium (GE Healthcare, Pittsburgh, PA, USA) as described previously [
<xref rid="B63-ijms-20-05073" ref-type="bibr">63</xref>
]. The PBMCs were subjected to total RNA isolation using the TRI Reagent (Invitrogen, Carlsbad, CA, USA) following the manufacturer’s instructions. The RNA was used to synthesize cDNA using Superscript III First-Strand Synthesis system (Invitrogen) with oligo(dT) primers according to the manufacturer’s instructions. Using the cDNA as a template, the genes encoding the variable regions of heavy and light chains (
<italic>V
<sub>H</sub>
</italic>
and
<italic>V
<sub>Κ</sub>
/V
<sub>λ</sub>
</italic>
) were amplified and used for the construction of a human scFv phage-display libraries as described previously [
<xref rid="B64-ijms-20-05073" ref-type="bibr">64</xref>
,
<xref rid="B65-ijms-20-05073" ref-type="bibr">65</xref>
].</p>
<p>For the construction of the first randomization library, a set of degenerate Ultramer DNA oligonucleotides (Integrated DNA Technologies, Coralville, IA, USA) encoding residues from H1 to H65 of clone C-8 (V
<sub>HN1</sub>
) was chemically synthesized to contain either a codon encoding the wild-type amino acid or a GAK degenerate codon at the H29, H32, H51, H52, H53, and H54 residues (
<xref ref-type="app" rid="app1-ijms-20-05073">Table S2</xref>
). Then, the gene fragment (V
<sub>HC</sub>
) encoding residues from H58 to H113 of clone C-8 was amplified by PCR using primer set 1 (
<xref ref-type="app" rid="app1-ijms-20-05073">Table S3</xref>
) in a T100 Thermal Cycler (Bio-Rad, Carlsbad, CA, USA). The PCR conditions were as follows: preliminary denaturation at 94 °C for 5 min, followed by 25 cycles of 15 s at 94 °C, 15 s at 56 °C and 90 s at 72 °C. A final extension was then conducted for 10 min at 72 °C. After electrophoresis on a 1% agarose gel, the PCR products were purified using QIAquick gel extraction kit (Qiagen Inc., Valencia, CA, USA) according to the manufacturer’s instructions. The purified V
<sub>HN1</sub>
and V
<sub>HC</sub>
gene fragments were mixed at a concentration of 100 ng and subjected to linker PCR using primer set 2 (
<xref ref-type="app" rid="app1-ijms-20-05073">Table S3</xref>
) in a T100 Thermal Cycler to yield the V
<sub>H1</sub>
fragment. The PCR conditions were as follows: preliminary denaturation at 94 °C for 5 min, followed by 25 cycles of 15 s at 94 °C, 15 s at 56 °C and 120 s at 72 °C. The reaction was ended with an extension step for 10 min at 72 °C. The gene fragment encoding
<italic>V
<sub>L</sub>
</italic>
(V
<sub>L1</sub>
) of clone C-8 was amplified by PCR using primer set 3 (
<xref ref-type="app" rid="app1-ijms-20-05073">Table S3</xref>
) with the same PCR conditions described above for amplification of V
<sub>HC</sub>
. Then, the V
<sub>H1</sub>
and V
<sub>L1</sub>
fragments were subjected to electrophoresis on a 1% agarose gel, and excised bands were purified using the QIAquick gel extraction kit. The purified V
<sub>H1</sub>
and V
<sub>L1</sub>
fragments were used for the synthesis of the scFv gene (scFv
<sub>1</sub>
) using PCR as described previously [
<xref rid="B64-ijms-20-05073" ref-type="bibr">64</xref>
]. The amplified scFv
<sub>1</sub>
fragment was purified and cloned into the phagemid vector as described [
<xref rid="B64-ijms-20-05073" ref-type="bibr">64</xref>
,
<xref rid="B65-ijms-20-05073" ref-type="bibr">65</xref>
].</p>
<p>For the construction of the second randomization library, a set of degenerate Ultramer DNA oligonucleotides encoding residues from H1 to H65 of clone C-8-2 (V
<sub>HN2</sub>
) was chemically synthesized to contain either a codon encoding the wild-type amino acid or a GAK degenerate codon at the H26 to H33 (HCDR1) and H51 to H57 (HCDR2) residues (
<xref ref-type="app" rid="app1-ijms-20-05073">Table S2</xref>
), excluding the previously randomized residues. The V
<sub>HN2</sub>
and V
<sub>HC</sub>
gene fragments were mixed at equal ratios at 100 ng and subjected to linker PCR using primer set 2 (
<xref ref-type="app" rid="app1-ijms-20-05073">Table S3</xref>
) in a T100 Thermal Cycler to yield the V
<sub>H2</sub>
gene fragment as described above. The V
<sub>H2</sub>
gene fragment was purified as described above and subjected to linker PCR with V
<sub>L1</sub>
fragments to yield the scFv
<sub>2</sub>
gene fragment, which was cloned into the phagemid vector as described above.</p>
<p>For the construction of the third randomization library, two sets of degenerate Ultramer DNA oligonucleotides with a length of 200 nucleotides were chemically synthesized. One set encoded from L1 to L61 residues of clone C-8 (V
<sub>LN</sub>
), while the other one encoded from L56 to L107 of clone C-8 (V
<sub>LC</sub>
). These degenerate oligonucleotides contained either a codon encoding the wild-type amino acid or a GAK degenerate codon at L27B, L27C, L30, L32, L50, L89, L92, and L96 residues (
<xref ref-type="app" rid="app1-ijms-20-05073">Table S2</xref>
). The V
<sub>LN</sub>
and V
<sub>LC</sub>
gene fragments (100 ng each) were subjected to a linker PCR using primer set 3 (
<xref ref-type="app" rid="app1-ijms-20-05073">Table S3</xref>
) in a T100 Thermal Cycler to produce the VL
<sub>2</sub>
gene fragment using the same PCR conditions as described above for the amplification of the V
<sub>H1</sub>
gene fragment. The gene fragment encoding V
<sub>H</sub>
of C-8-2-4B (VH
<sub>3</sub>
) was amplified by PCR using primer set 2 (
<xref ref-type="app" rid="app1-ijms-20-05073">Table S3</xref>
) using the same PCR conditions used for the amplification of the V
<sub>HC</sub>
gene fragment as described above. After purification, VL
<sub>2</sub>
and VH
<sub>3</sub>
gene fragments were used to produce the scFv
<sub>3</sub>
gene fragment, which was cloned into the phagemid vector as described above.</p>
</sec>
<sec id="sec4dot3-ijms-20-05073">
<title>4.3. Biopanning</title>
<p>The human scFv phage-display libraries were subjected to four rounds of biopanning against recombinant MERS-CoV S RBD protein (Sino Biological Inc., Beijing, China) as described previously [
<xref rid="B66-ijms-20-05073" ref-type="bibr">66</xref>
]. Briefly, the scFv phage-display libraries (~10
<sup>11</sup>
phage) were added to 3 μg of the recombinant MERS-CoV S RBD protein conjugated to 5.0 × 10
<sup>6</sup>
magnetic beads (Dynabeads M-270 epoxy, Invitrogen) and incubated with rotation for 2 h at 37 °C. The beads were washed once with 500 μL of 0.05% (
<italic>v</italic>
/
<italic>v</italic>
) Tween-20 (Sigma-Aldrich, St. Louis, MO, USA) in PBS (PBST) during the first round of biopanning. The number of washes was increased to three for the other rounds. Phages bound to beads were eluted, neutralized, allowed to infect
<italic>E. coli</italic>
ER2738 (New England Biolabs, Ipswich, MA, USA), and rescued as described previously [
<xref rid="B66-ijms-20-05073" ref-type="bibr">66</xref>
].</p>
<p>The first randomized scFv library was subjected to two rounds of biopanning against recombinant MERS-CoV S RBD protein. The scFv phage-display library (~10
<sup>11</sup>
phage) was added to 1.5 μg of the recombinant MERS-CoV S RBD protein conjugated to 2.5 × 10
<sup>6</sup>
magnetic beads and incubated with rotation for 2 h at 37 °C. The beads were washed once with 500 μL of 0.5% PBST and three times with 500 μL of 0.5% PBST during the first and second rounds of biopanning, respectively. After each round of washing, bound phages were eluted and rescued as described above.</p>
<p>For first round of biopanning for the second and third randomized scFv libraries, the scFv phage-display libraries (~10
<sup>11</sup>
phage) were added to 1.5 μg of the recombinant MERS-CoV S RBD protein conjugated to 2.5 × 10
<sup>6</sup>
magnetic beads and incubated with rotation for 2 h at 37 °C. After washing three times with 500 μL of 0.5% PBST, bound phages were eluted and rescued as described above.</p>
<p>Before the second round of biopanning of the second and third randomized scFv libraries, 10 μg of recombinant MERS-CoV S RBD protein was conjugated to 200 μg of non-magnetic beads (Nacalai, San Diego, CA, USA) following the manufacturer’s instructions. Then, the scFv phage-display libraries (~10
<sup>11</sup>
phage) were added to 1.5 μg of recombinant MERS-CoV S RBD protein conjugated to 2.5 × 10
<sup>6</sup>
magnetic beads and incubated on a rotator for 2 h at 37 °C. After washing three times with 500 μL of 0.5% PBST, magnetic beads were resuspended in 100 μL of PBS and transferred to a microtube (microTUBE AFA Fiber Pre-Slit Snap-Cap, 520045, Covaris, Woburn, MA, USA) along with the recombinant MERS-COV S RBD protein-conjugated non-magnetic beads resuspended in 30 μL of PBS at a concentration of 0.33 μg/mL. Then, these bead mixtures were subjected to an ultrasound washing step using an ultrasonicator (M220, Covaris) with the following conditions: duty factor (DF) 20%, peak incident power (PIP) 12.5 W, cycles/burst 50, 20 min, and 24 °C. After ultrasonication, magnetic beads were transferred to 1.5-mL microcentrifuge tube and washed three times with 0.5% PBST. Then, the bound phages were eluted and rescued as described above.</p>
</sec>
<sec id="sec4dot4-ijms-20-05073">
<title>4.4. High-Throughput Retrieval of scFv Clones and Phage ELISA</title>
<p>After the fourth round of biopanning of human scFv phage-display libraries, the plasmid DNA was obtained from overnight cultures of
<italic>E. coli</italic>
cells and subjected to high-throughput retrieval of scFv clones by TrueRepertoire analysis as described previously (Celemics, Seoul, Korea) [
<xref rid="B39-ijms-20-05073" ref-type="bibr">39</xref>
].</p>
<p>To select reactive clones to recombinant MERS-CoV S RBD protein, the scFv genes obtained from TrueRepertoire were cloned into the pComb3XSS vector [
<xref rid="B64-ijms-20-05073" ref-type="bibr">64</xref>
] and used to transform
<italic>E. coli</italic>
ER2738 cells. After overnight culture, the phages were rescued from individual colonies using the M13K07 helper phage and subjected to phage ELISA as described previously [
<xref rid="B64-ijms-20-05073" ref-type="bibr">64</xref>
]. Microtiter plates (Costar, Cambridge, MA, USA) were coated with 100 ng of recombinant MERS-CoV S RBD protein in coating buffer (0.1 M sodium bicarbonate, pH 8.6) at 4 °C overnight. The wells were blocked with 3% (
<italic>w</italic>
/
<italic>v</italic>
) bovine serum albumin (BSA; Thermo Scientific, Waltham, MA, USA) dissolved in PBS for 1 h at 37 °C, and culture supernatant containing scFv-displayed phages that were rescued from individual colonies were added into each well. After incubation for 2 h at 37 °C, the microtiter plates were washed three times with 0.05% PBST. Then, horseradish peroxidase (HRP)-conjugated anti-M13 monoclonal antibody (GE Healthcare) in 3% BSA/PBS was added into wells, and the plate was incubated for 1 h at 37 °C. After washing three times with PBST, 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid solution (Thermo Scientific) was used as the substrate for HRP. Absorbance was measured at 405 nm with a Multiskan Ascent microplate reader (Labsystems, Helsinki, Finland).</p>
<p>To select reactive clones from the randomized libraries, phage ELISA was performed as described previously [
<xref rid="B64-ijms-20-05073" ref-type="bibr">64</xref>
] using recombinant MERS-CoV S RBD protein-coated microtiter plates. The nucleotide sequences of positive scFv clones were determined by Sanger sequencing (Cosmogenetech, Seoul, Korea).</p>
</sec>
<sec id="sec4dot5-ijms-20-05073">
<title>4.5. Expression of scFv-hFc and IgG
<sub>1</sub>
</title>
<p>The genes encoding the selected scFv clones were cloned into a modified mammalian expression vector containing the hIgG
<sub>1</sub>
Fc regions (hFc) at the C-terminus as described previously [
<xref rid="B67-ijms-20-05073" ref-type="bibr">67</xref>
]. The expression vectors were transfected into HEK293F cells (Invitrogen), and the fusion proteins were purified by Protein A affinity chromatography as described previously [
<xref rid="B67-ijms-20-05073" ref-type="bibr">67</xref>
].</p>
<p>For the expression of IgG
<sub>1</sub>
, genes encoding
<italic>V
<sub>H</sub>
</italic>
and
<italic>V
<sub>L</sub>
</italic>
were amplified from the phage clones, cloned into a mammalian expression vector, and transfected into HEK293F cells. Then, IgG
<sub>1</sub>
was purified by Protein A affinity chromatography as described previously [
<xref rid="B68-ijms-20-05073" ref-type="bibr">68</xref>
]. Then the eluate containing IgG
<sub>1</sub>
was subjected to gel filtration chromatography. A total of 4 mg of IgG
<sub>1</sub>
was injected at a flow rate of 1 mL/min and purified by gel filtration using a XK16/100 column packed with Superdex 200 pg at pH 7.4 (ÄKTA pure, GE Healthcare). The chromatogram was recorded at a UV absorbance of 280 nm. The fractions containing IgG
<sub>1</sub>
were pooled by collection criteria and concentrated.</p>
</sec>
<sec id="sec4dot6-ijms-20-05073">
<title>4.6. ELISA</title>
<p>Microtiter plates (Costar) were coated with 100 ng of recombinant S glycoprotein in coating buffer at 4 °C overnight. The wells were blocked with 3% BSA/PBS for 1 h at 37 °C. Both nebulized and non-nebulized scFv-hFc or IgG
<sub>1</sub>
were serially diluted (5-fold, 12 dilutions starting from 500 nM for scFv-hFc fusion protein or 1000 nM for IgG
<sub>1</sub>
) in blocking buffer and added into individual wells. After incubation for 1 h at 37 °C, the microtiter plates were washed three times with 0.05% PBST. Then, HRP-conjugated rabbit anti-human IgG antibody (Invitrogen) in blocking buffer (1:5000) was added into wells, and the plate was incubated for 1 h at 37 °C. After washing three times with PBST, 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid solution (Thermo Scientific) was used as the substrate. Absorbance was measured at 405 nm using a microplate spectrophotometer (Multiskan GO; Thermo Scientific)</p>
</sec>
<sec id="sec4dot7-ijms-20-05073">
<title>4.7. Nebulization</title>
<p>A nebulizer (Aerogen Pro, Aerogen, Galway, Ireland) was used for all experiments following the manufacturer’s instructions. The nebulizer containing 1 mL of scFv-hFc fusion proteins or IgG
<sub>1</sub>
antibodies was placed on top of a 50-mL conical tube (SPL Life Sciences, Pocheon, Korea) and nebulized at a concentration of either 0.1, 0.3, or 1 mg/mL in PBS.</p>
</sec>
<sec id="sec4dot8-ijms-20-05073">
<title>4.8. Microneutralization Assay</title>
<p>The virus (MERS-CoV/KOR/KNIH/002_05_2015, accession number KT029139.1) was obtained from the Korea National Institute of Health (kindly provided by Dr. Sung Soon Kim) and propagated in Vero cells (ATCC CCL-81) in Dulbecco’s Modified Eagle’s Medium (DMEM, Welgene, Gyeongsan, Republic of Korea) in the presence of 2% fetal bovine serum (Gibco). The cells were grown in T-75 flasks, inoculated with MERS-CoV, and incubated at 37 °C in a 5% CO
<sub>2</sub>
environment. Then 3 days after inoculation, the viruses were harvested and stored at −80 °C. The virus titer was determined via a TCID
<sub>50</sub>
assay [
<xref rid="B69-ijms-20-05073" ref-type="bibr">69</xref>
].</p>
<p>A neutralization assay was performed as previously described [
<xref rid="B19-ijms-20-05073" ref-type="bibr">19</xref>
]. Briefly, Vero cells were seeded in 96-well plates (1 × 10
<sup>4</sup>
cells/well) in Opti-PRO SFM (Thermo Scientific) supplemented with 4 mM L-glutamine and 1× Antibiotics-Antimycotic (Thermo Scientific) and grown for 24 h at 37 °C in a 5% CO
<sub>2</sub>
environment. Two-fold serially diluted scFv-hFc fusion proteins were mixed with 100 TCID
<sub>50</sub>
of MERS-CoV, and the mixture was incubated for 30 min at 37 °C. Then, the mixture was added to the Vero cells in tetrad and incubated for 4 days at 37 °C in a 5% CO
<sub>2</sub>
environment. The cytopathic effect (CPE) in each well was visualized following crystal violet staining 4 days post-infection. The IC
<sub>50</sub>
values were calculated using the dose-response inhibition equation of GraphPad Prism 6 (GraphPad Software, La Jolla, CA, USA).</p>
</sec>
<sec id="sec4dot9-ijms-20-05073">
<title>4.9. Flow Cytometry</title>
<p>The scFv-hFc fusion proteins (2000, 1000, 250, or 200 nM) were incubated either with 200 nM of the recombinant S glycoprotein fused with a polyhistidine tag at the C-terminus (Sino Biological Inc.) or without S protein in 50 μL of 1% (
<italic>w</italic>
/
<italic>v</italic>
) BSA in PBS containing 0.02% (
<italic>w</italic>
/
<italic>v</italic>
) sodium azide (FACS buffer) at 37 °C for 1 h. The m336 scFv-hFc and irrelevant scFv-hFc fusion proteins were used as positive and negative controls, respectively. Huh-7 cells (hDPP4
<sup>+</sup>
) were added into v-bottom 96-well plates (Corning, Corning, NY, USA) at a density of 3 × 10
<sup>5</sup>
cells per well, and then, the mixture was added to the wells. After incubation at 37 °C for 1 h, cells were washed three times with FACS buffer and incubated with FITC-labeled rabbit anti-HIS Ab (Abcam, Cambridge, UK) at 37 °C for 1 h. Then, the cells were washed three times with FACS buffer, resuspended in 200 μL of PBS, and subjected to analysis by flow cytometry using a FACS Canto II instrument (BD Bioscience, San Jose, CA, USA). For each sample, 10,000 cells were assessed, and the data were analyzed using the FlowJo software (TreeStar, Ashland, OR, USA).</p>
</sec>
<sec id="sec4dot10-ijms-20-05073">
<title>4.10. SE-HPLC</title>
<p>Non-nebulized and nebulized samples were analyzed using Waters e2695 HPLC system (Waters Corporation, Milford, MA, USA) equipped with a BioSuite high-resolution size-exclusion chromatography column (250 Å 7.5 mm × 300 mm). Each sample (10 μg) was injected at a flow rate of 1 mL/min. The mobile phase was PBS (pH 7.4), and UV detection was performed at 280 nm/220 nm. The sample tray and column holder were maintained at 4 and 30 °C, respectively, throughout data acquisition. The molecular weights corresponding to the antibody peaks were calculated using the Empower software (Waters Corporation).</p>
</sec>
<sec id="sec4dot11-ijms-20-05073">
<title>4.11. DLS Assay</title>
<p>DLS experiments were performed using a Zetasizer Nano S (Malvern Panalytical Ltd., Malvern, UK) and a 633-nm/4-mW laser at a 173 ° detection angle as described previously [
<xref rid="B37-ijms-20-05073" ref-type="bibr">37</xref>
]. Non-nebulized and nebulized samples were analyzed by performing three acquisitions per sample. PBS (pH 7.4) was used as the reference solvent. The results were evaluated with the Zetasizer software 7.02 (Malvern Panalytical Ltd.).</p>
</sec>
<sec id="sec4dot12-ijms-20-05073">
<title>4.12. PRNT Assay</title>
<p>Vero cells were seeded in 12-well plates (3.5 × 10
<sup>5</sup>
cells/well) in Opti-PRO SFM supplemented with 4 mM L-glutamine and 1× Antibiotics-Antimycotic (Thermo Scientific) and grown for 24 h at 37 °C in a 5% CO
<sub>2</sub>
environment. IgG
<sub>1</sub>
antibodies were serially diluted three-fold in Dulbecco’s PBS (Welgene) and mixed with an equal volume of culture media containing MERS-CoV/KOR/KNIH/002_05_2015 (100 pfu). After incubation for 1 h at 37 °C in a 5% CO
<sub>2</sub>
environment, the virus-antibody mixture was added to the cells and maintained for 1 h at room temperature. The mixture was then removed, and the cells were overlaid with 1% agarose in DMEM. After incubation for 2 days at 37 °C in a 5% CO
<sub>2</sub>
environment, the cells were washed with PBS and fixed for 24 h with 4% paraformaldehyde. The agarose overlay was removed, and the cell monolayer was gently washed with water to remove residual agarose. The cells were stained with 0.5% crystal violet solution, and the plaques were counted manually. The number of plaques was plotted as a function of IgG
<sub>1</sub>
antibodies, and the concentration of IgG
<sub>1</sub>
at which the number of plaques was reduced by 50% compared to that in the absence of IgG
<sub>1</sub>
(PRNT
<sub>50</sub>
) was calculated using GraphPad Prism 6.</p>
</sec>
</sec>
</body>
<back>
<app-group>
<app id="app1-ijms-20-05073">
<title>Supplementary Materials</title>
<supplementary-material content-type="local-data" id="ijms-20-05073-s001">
<media xlink:href="ijms-20-05073-s001.pdf">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<p>Supplementary materials can be found at
<uri xlink:href="https://www.mdpi.com/1422-0067/20/20/5073/s1">https://www.mdpi.com/1422-0067/20/20/5073/s1</uri>
.</p>
</app>
</app-group>
<notes>
<title>Author Contributions</title>
<p>Conceptualization, S.K. (Seungtaek Kim) and J.C.; Methodology, S.I.K., S.K. (Sujeong Kim), S.Y.C. and J.K.; Validation, S.I.K., S.K. (Sujeong Kim), S.Y.C., and J.K.; Formal analysis, S.I.K., S.K. (Sujeong Kim) and J.K.; Investigation, S.I.K., S.K. (Sujeong Kim), J.K., S.Y.C., J.M.S., C.L. and S.B.; Resources, S.I.K., S.K. (Sujeong Kim), J.K., W.B.P. and M.-d.O.; Data curation, S.I.K., S.K. (Sujeong Kim); Writing—original draft preparation, S.I.K., S.K. (Sujeong Kim) and J.C.; Writing—review and editing, S.I.K. and J.C.; Visualization, S.I.K., S.K. (Sujeong Kim) and J.K.; Supervision, S.K. (Seungtaek Kim) and J.C.; Project administration, J.J., J.-Y.M., S.K. (Seungtaek Kim), and J.C.; Funding acquisition, J.J., J.-Y.M., S.K. (Seungtaek Kim) and J.C.</p>
</notes>
<notes>
<title>Funding</title>
<p>This research was funded by the National Research Foundation of Korea, grant number NRF-2016M3A9B6918973, 2016M3A9B6918984 and 2017M3A9G6068245.</p>
</notes>
<notes notes-type="COI-statement">
<title>Conflicts of Interest</title>
<p>The authors declare no conflict of interest.</p>
</notes>
<glossary>
<title>Abbreviations</title>
<array orientation="portrait">
<tbody>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">MERS-CoV</td>
<td align="left" valign="middle" rowspan="1" colspan="1">Middle East respiratory syndrome coronavirus</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">DPP4</td>
<td align="left" valign="middle" rowspan="1" colspan="1">dipeptidyl peptidase 4</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">RBD</td>
<td align="left" valign="middle" rowspan="1" colspan="1">receptor-binding domain</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">i.v.</td>
<td align="left" valign="middle" rowspan="1" colspan="1">intravenous</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">mAb</td>
<td align="left" valign="middle" rowspan="1" colspan="1">monoclonal antibody</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">CDR</td>
<td align="left" valign="middle" rowspan="1" colspan="1">complementarity-determining region</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">scFv</td>
<td align="left" valign="middle" rowspan="1" colspan="1">single-chain variable fragment</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">PBMC</td>
<td align="left" valign="middle" rowspan="1" colspan="1">peripheral blood mononuclear cell</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">SE-HPLC</td>
<td align="left" valign="middle" rowspan="1" colspan="1">size-exclusion high-performance liquid chromatography</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">DLS</td>
<td align="left" valign="middle" rowspan="1" colspan="1">dynamic light scattering</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">PRNT</td>
<td align="left" valign="middle" rowspan="1" colspan="1">plaque reduction neutralization test</td>
</tr>
</tbody>
</array>
</glossary>
<ref-list>
<title>References</title>
<ref id="B1-ijms-20-05073">
<label>1.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zaki</surname>
<given-names>A.M.</given-names>
</name>
<name>
<surname>van Boheemen</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Bestebroer</surname>
<given-names>T.M.</given-names>
</name>
<name>
<surname>Osterhaus</surname>
<given-names>A.D.</given-names>
</name>
<name>
<surname>Fouchier</surname>
<given-names>R.A.</given-names>
</name>
</person-group>
<article-title>Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia</article-title>
<source>N. Engl. J. Med.</source>
<year>2012</year>
<volume>367</volume>
<fpage>1814</fpage>
<lpage>1820</lpage>
<pub-id pub-id-type="doi">10.1056/NEJMoa1211721</pub-id>
<pub-id pub-id-type="pmid">23075143</pub-id>
</element-citation>
</ref>
<ref id="B2-ijms-20-05073">
<label>2.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Van Boheemen</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>de Graaf</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Lauber</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Bestebroer</surname>
<given-names>T.M.</given-names>
</name>
<name>
<surname>Raj</surname>
<given-names>V.S.</given-names>
</name>
<name>
<surname>Zaki</surname>
<given-names>A.M.</given-names>
</name>
<name>
<surname>Osterhaus</surname>
<given-names>A.D.</given-names>
</name>
<name>
<surname>Haagmans</surname>
<given-names>B.L.</given-names>
</name>
<name>
<surname>Gorbalenya</surname>
<given-names>A.E.</given-names>
</name>
<name>
<surname>Snijder</surname>
<given-names>E.J.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans</article-title>
<source>mBio</source>
<year>2012</year>
<volume>3</volume>
<pub-id pub-id-type="doi">10.1128/mBio.00473-12</pub-id>
<pub-id pub-id-type="pmid">23170002</pub-id>
</element-citation>
</ref>
<ref id="B3-ijms-20-05073">
<label>3.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Raj</surname>
<given-names>V.S.</given-names>
</name>
<name>
<surname>Mou</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Smits</surname>
<given-names>S.L.</given-names>
</name>
<name>
<surname>Dekkers</surname>
<given-names>D.H.</given-names>
</name>
<name>
<surname>Muller</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Dijkman</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Muth</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Demmers</surname>
<given-names>J.A.</given-names>
</name>
<name>
<surname>Zaki</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Fouchier</surname>
<given-names>R.A.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC</article-title>
<source>Nature</source>
<year>2013</year>
<volume>495</volume>
<fpage>251</fpage>
<lpage>254</lpage>
<pub-id pub-id-type="doi">10.1038/nature12005</pub-id>
<pub-id pub-id-type="pmid">23486063</pub-id>
</element-citation>
</ref>
<ref id="B4-ijms-20-05073">
<label>4.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<collab>The FANTOM Consortium and the RIKEN PMI and CLST (DGT)</collab>
</person-group>
<article-title>A promoter-level mammalian expression atlas</article-title>
<source>Nature</source>
<year>2014</year>
<volume>507</volume>
<fpage>462</fpage>
<lpage>470</lpage>
<pub-id pub-id-type="pmid">24670764</pub-id>
</element-citation>
</ref>
<ref id="B5-ijms-20-05073">
<label>5.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chan</surname>
<given-names>J.F.</given-names>
</name>
<name>
<surname>Choi</surname>
<given-names>G.K.</given-names>
</name>
<name>
<surname>Tsang</surname>
<given-names>A.K.</given-names>
</name>
<name>
<surname>Tee</surname>
<given-names>K.M.</given-names>
</name>
<name>
<surname>Lam</surname>
<given-names>H.Y.</given-names>
</name>
<name>
<surname>Yip</surname>
<given-names>C.C.</given-names>
</name>
<name>
<surname>To</surname>
<given-names>K.K.</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>V.C.</given-names>
</name>
<name>
<surname>Yeung</surname>
<given-names>M.L.</given-names>
</name>
<name>
<surname>Lau</surname>
<given-names>S.K.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Development and Evaluation of Novel Real-Time Reverse Transcription-PCR Assays with Locked Nucleic Acid Probes Targeting Leader Sequences of Human-Pathogenic Coronaviruses</article-title>
<source>J. Clin. Microbiol.</source>
<year>2015</year>
<volume>53</volume>
<fpage>2722</fpage>
<lpage>2726</lpage>
<pub-id pub-id-type="doi">10.1128/JCM.01224-15</pub-id>
<pub-id pub-id-type="pmid">26019210</pub-id>
</element-citation>
</ref>
<ref id="B6-ijms-20-05073">
<label>6.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chan</surname>
<given-names>J.F.</given-names>
</name>
<name>
<surname>Lau</surname>
<given-names>S.K.</given-names>
</name>
<name>
<surname>Woo</surname>
<given-names>P.C.</given-names>
</name>
</person-group>
<article-title>The emerging novel Middle East respiratory syndrome coronavirus: The “knowns” and “unknowns”</article-title>
<source>J. Med. Assoc.</source>
<year>2013</year>
<volume>112</volume>
<fpage>372</fpage>
<lpage>381</lpage>
<pub-id pub-id-type="doi">10.1016/j.jfma.2013.05.010</pub-id>
</element-citation>
</ref>
<ref id="B7-ijms-20-05073">
<label>7.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Oh</surname>
<given-names>M.D.</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>W.B.</given-names>
</name>
<name>
<surname>Choe</surname>
<given-names>P.G.</given-names>
</name>
<name>
<surname>Choi</surname>
<given-names>S.J.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>J.I.</given-names>
</name>
<name>
<surname>Chae</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>S.S.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>E.C.</given-names>
</name>
<name>
<surname>Oh</surname>
<given-names>H.S.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>E.J.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Viral Load Kinetics of MERS Coronavirus Infection</article-title>
<source>N. Engl. J. Med.</source>
<year>2016</year>
<volume>375</volume>
<fpage>1303</fpage>
<lpage>1305</lpage>
<pub-id pub-id-type="doi">10.1056/NEJMc1511695</pub-id>
</element-citation>
</ref>
<ref id="B8-ijms-20-05073">
<label>8.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guery</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Poissy</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>el Mansouf</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Sejourne</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Ettahar</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Lemaire</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Vuotto</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Goffard</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Behillil</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Enouf</surname>
<given-names>V.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Clinical features and viral diagnosis of two cases of infection with Middle East Respiratory Syndrome coronavirus: A report of nosocomial transmission</article-title>
<source>Lancet</source>
<year>2013</year>
<volume>381</volume>
<fpage>2265</fpage>
<lpage>2272</lpage>
<pub-id pub-id-type="doi">10.1016/S0140-6736(13)60982-4</pub-id>
<pub-id pub-id-type="pmid">23727167</pub-id>
</element-citation>
</ref>
<ref id="B9-ijms-20-05073">
<label>9.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Oh</surname>
<given-names>M.D.</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>W.B.</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>S.W.</given-names>
</name>
<name>
<surname>Choe</surname>
<given-names>P.G.</given-names>
</name>
<name>
<surname>Bang</surname>
<given-names>J.H.</given-names>
</name>
<name>
<surname>Song</surname>
<given-names>K.H.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>E.S.</given-names>
</name>
<name>
<surname>Bin Kim</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>N.J.</given-names>
</name>
</person-group>
<article-title>Middle East respiratory syndrome: What we learned from the 2015 outbreak in the Republic of Korea</article-title>
<source>Korean J. Intern. Med.</source>
<year>2018</year>
<volume>33</volume>
<fpage>233</fpage>
<lpage>246</lpage>
<pub-id pub-id-type="doi">10.3904/kjim.2018.031</pub-id>
<pub-id pub-id-type="pmid">29506344</pub-id>
</element-citation>
</ref>
<ref id="B10-ijms-20-05073">
<label>10.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kindler</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Jonsdottir</surname>
<given-names>H.R.</given-names>
</name>
<name>
<surname>Muth</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Hamming</surname>
<given-names>O.J.</given-names>
</name>
<name>
<surname>Hartmann</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Rodriguez</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Geffers</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Fouchier</surname>
<given-names>R.A.</given-names>
</name>
<name>
<surname>Drosten</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Muller</surname>
<given-names>M.A.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Efficient replication of the novel human betacoronavirus EMC on primary human epithelium highlights its zoonotic potential</article-title>
<source>MBio</source>
<year>2013</year>
<volume>4</volume>
<fpage>11</fpage>
<lpage>12</lpage>
<pub-id pub-id-type="doi">10.1128/mBio.00611-12</pub-id>
</element-citation>
</ref>
<ref id="B11-ijms-20-05073">
<label>11.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zielecki</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Weber</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Eickmann</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Spiegelberg</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Zaki</surname>
<given-names>A.M.</given-names>
</name>
<name>
<surname>Matrosovich</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Becker</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Weber</surname>
<given-names>F.</given-names>
</name>
</person-group>
<article-title>Human cell tropism and innate immune system interactions of human respiratory coronavirus EMC compared to those of severe acute respiratory syndrome coronavirus</article-title>
<source>J. Virol.</source>
<year>2013</year>
<volume>87</volume>
<fpage>5300</fpage>
<lpage>5304</lpage>
<pub-id pub-id-type="doi">10.1128/JVI.03496-12</pub-id>
<pub-id pub-id-type="pmid">23449793</pub-id>
</element-citation>
</ref>
<ref id="B12-ijms-20-05073">
<label>12.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Corti</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Misasi</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Mulangu</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Stanley</surname>
<given-names>D.A.</given-names>
</name>
<name>
<surname>Kanekiyo</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Wollen</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Ploquin</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Doria-Rose</surname>
<given-names>N.A.</given-names>
</name>
<name>
<surname>Staupe</surname>
<given-names>R.P.</given-names>
</name>
<name>
<surname>Bailey</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Protective monotherapy against lethal Ebola virus infection by a potently neutralizing antibody</article-title>
<source>Science</source>
<year>2016</year>
<volume>351</volume>
<fpage>1339</fpage>
<lpage>1342</lpage>
<pub-id pub-id-type="doi">10.1126/science.aad5224</pub-id>
<pub-id pub-id-type="pmid">26917593</pub-id>
</element-citation>
</ref>
<ref id="B13-ijms-20-05073">
<label>13.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gunn</surname>
<given-names>B.M.</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>W.H.</given-names>
</name>
<name>
<surname>Karim</surname>
<given-names>M.M.</given-names>
</name>
<name>
<surname>Brannan</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Herbert</surname>
<given-names>A.S.</given-names>
</name>
<name>
<surname>Wec</surname>
<given-names>A.Z.</given-names>
</name>
<name>
<surname>Halfmann</surname>
<given-names>P.J.</given-names>
</name>
<name>
<surname>Fusco</surname>
<given-names>M.L.</given-names>
</name>
<name>
<surname>Schendel</surname>
<given-names>S.L.</given-names>
</name>
<name>
<surname>Gangavarapu</surname>
<given-names>K.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A Role for Fc Function in Therapeutic Monoclonal Antibody-Mediated Protection against Ebola Virus</article-title>
<source>Cell Host Microbe.</source>
<year>2018</year>
<volume>24</volume>
<fpage>221</fpage>
<lpage>233</lpage>
<pub-id pub-id-type="doi">10.1016/j.chom.2018.07.009</pub-id>
<pub-id pub-id-type="pmid">30092199</pub-id>
</element-citation>
</ref>
<ref id="B14-ijms-20-05073">
<label>14.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Walker</surname>
<given-names>L.M.</given-names>
</name>
<name>
<surname>Burton</surname>
<given-names>D.R.</given-names>
</name>
</person-group>
<article-title>Passive immunotherapy of viral infections: ‘super-antibodies’ enter the fray</article-title>
<source>Nat. Rev. Immunol.</source>
<year>2018</year>
<volume>18</volume>
<fpage>297</fpage>
<lpage>308</lpage>
<pub-id pub-id-type="doi">10.1038/nri.2017.148</pub-id>
<pub-id pub-id-type="pmid">29379211</pub-id>
</element-citation>
</ref>
<ref id="B15-ijms-20-05073">
<label>15.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Du</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>MERS-CoV spike protein: A key target for antivirals</article-title>
<source>Expert. Opin. Targets</source>
<year>2017</year>
<volume>21</volume>
<fpage>131</fpage>
<lpage>143</lpage>
<pub-id pub-id-type="doi">10.1080/14728222.2017.1271415</pub-id>
<pub-id pub-id-type="pmid">27936982</pub-id>
</element-citation>
</ref>
<ref id="B16-ijms-20-05073">
<label>16.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Tong</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Fu</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Cui</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>X.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4</article-title>
<source>Cell Res.</source>
<year>2013</year>
<volume>23</volume>
<fpage>986</fpage>
<lpage>993</lpage>
<pub-id pub-id-type="doi">10.1038/cr.2013.92</pub-id>
<pub-id pub-id-type="pmid">23835475</pub-id>
</element-citation>
</ref>
<ref id="B17-ijms-20-05073">
<label>17.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Corti</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Pedotti</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Simonelli</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Agnihothram</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Fett</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Fernandez-Rodriguez</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Foglierini</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Agatic</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Vanzetta</surname>
<given-names>F.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Prophylactic and postexposure efficacy of a potent human monoclonal antibody against MERS coronavirus</article-title>
<source>Proc. Natl. Acad. Sci. USA</source>
<year>2015</year>
<volume>112</volume>
<fpage>10473</fpage>
<lpage>10478</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1510199112</pub-id>
<pub-id pub-id-type="pmid">26216974</pub-id>
</element-citation>
</ref>
<ref id="B18-ijms-20-05073">
<label>18.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Du</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Qiu</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Kou</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Tao</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Tseng</surname>
<given-names>C.T.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A conformation-dependent neutralizing monoclonal antibody specifically targeting receptor-binding domain in Middle East respiratory syndrome coronavirus spike protein</article-title>
<source>J. Virol.</source>
<year>2014</year>
<volume>88</volume>
<fpage>7045</fpage>
<lpage>7053</lpage>
<pub-id pub-id-type="doi">10.1128/JVI.00433-14</pub-id>
<pub-id pub-id-type="pmid">24719424</pub-id>
</element-citation>
</ref>
<ref id="B19-ijms-20-05073">
<label>19.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jiang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Zuo</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Poon</surname>
<given-names>K.M.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>J.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Potent neutralization of MERS-CoV by human neutralizing monoclonal antibodies to the viral spike glycoprotein</article-title>
<source>Sci Transl Med.</source>
<year>2014</year>
<volume>6</volume>
<fpage>59</fpage>
<pub-id pub-id-type="doi">10.1126/scitranslmed.3008140</pub-id>
</element-citation>
</ref>
<ref id="B20-ijms-20-05073">
<label>20.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Luke</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Channappanavar</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Coleman</surname>
<given-names>C.M.</given-names>
</name>
<name>
<surname>Jiao</surname>
<given-names>J.A.</given-names>
</name>
<name>
<surname>Matsushita</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Postnikova</surname>
<given-names>E.N.</given-names>
</name>
<name>
<surname>Ork</surname>
<given-names>B.L.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Human polyclonal immunoglobulin G from transchromosomic bovines inhibits MERS-CoV in vivo</article-title>
<source>Sci. Transl. Med.</source>
<year>2016</year>
<volume>8</volume>
<pub-id pub-id-type="doi">10.1126/scitranslmed.aaf1061</pub-id>
</element-citation>
</ref>
<ref id="B21-ijms-20-05073">
<label>21.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pascal</surname>
<given-names>K.E.</given-names>
</name>
<name>
<surname>Coleman</surname>
<given-names>C.M.</given-names>
</name>
<name>
<surname>Mujica</surname>
<given-names>A.O.</given-names>
</name>
<name>
<surname>Kamat</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Badithe</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Fairhurst</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Hunt</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Strein</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Berrebi</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Sisk</surname>
<given-names>J.M.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Pre- and postexposure efficacy of fully human antibodies against Spike protein in a novel humanized mouse model of MERS-CoV infection</article-title>
<source>Proc. Natl. Acad. Sci. USA</source>
<year>2015</year>
<volume>112</volume>
<fpage>8738</fpage>
<lpage>8743</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1510830112</pub-id>
<pub-id pub-id-type="pmid">26124093</pub-id>
</element-citation>
</ref>
<ref id="B22-ijms-20-05073">
<label>22.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tang</surname>
<given-names>X.C.</given-names>
</name>
<name>
<surname>Agnihothram</surname>
<given-names>S.S.</given-names>
</name>
<name>
<surname>Jiao</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Stanhope</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Graham</surname>
<given-names>R.L.</given-names>
</name>
<name>
<surname>Peterson</surname>
<given-names>E.C.</given-names>
</name>
<name>
<surname>Avnir</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Tallarico</surname>
<given-names>A.S.</given-names>
</name>
<name>
<surname>Sheehan</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>Q.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Identification of human neutralizing antibodies against MERS-CoV and their role in virus adaptive evolution</article-title>
<source>Proc. Natl. Acad. Sci. USA</source>
<year>2014</year>
<volume>111</volume>
<fpage>2018</fpage>
<lpage>2026</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1402074111</pub-id>
<pub-id pub-id-type="pmid">24778221</pub-id>
</element-citation>
</ref>
<ref id="B23-ijms-20-05073">
<label>23.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ying</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Du</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Ju</surname>
<given-names>T.W.</given-names>
</name>
<name>
<surname>Prabakaran</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Lau</surname>
<given-names>C.C.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Feng</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Exceptionally potent neutralization of Middle East respiratory syndrome coronavirus by human monoclonal antibodies</article-title>
<source>J. Virol.</source>
<year>2014</year>
<volume>88</volume>
<fpage>7796</fpage>
<lpage>7805</lpage>
<pub-id pub-id-type="doi">10.1128/JVI.00912-14</pub-id>
<pub-id pub-id-type="pmid">24789777</pub-id>
</element-citation>
</ref>
<ref id="B24-ijms-20-05073">
<label>24.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Agrawal</surname>
<given-names>A.S.</given-names>
</name>
<name>
<surname>Ying</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Tao</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Garron</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Algaissi</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Peng</surname>
<given-names>B.H.</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Dimitrov</surname>
<given-names>D.S.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Passive Transfer of A Germline-like Neutralizing Human Monoclonal Antibody Protects Transgenic Mice Against Lethal Middle East Respiratory Syndrome Coronavirus Infection</article-title>
<source>Sci. Rep.</source>
<year>2016</year>
<volume>6</volume>
<fpage>31629</fpage>
<pub-id pub-id-type="doi">10.1038/srep31629</pub-id>
<pub-id pub-id-type="pmid">27538452</pub-id>
</element-citation>
</ref>
<ref id="B25-ijms-20-05073">
<label>25.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cockrell</surname>
<given-names>A.S.</given-names>
</name>
<name>
<surname>Yount</surname>
<given-names>B.L.</given-names>
</name>
<name>
<surname>Scobey</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Jensen</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Douglas</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Beall</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>X.C.</given-names>
</name>
<name>
<surname>Marasco</surname>
<given-names>W.A.</given-names>
</name>
<name>
<surname>Heise</surname>
<given-names>M.T.</given-names>
</name>
<name>
<surname>Baric</surname>
<given-names>R.S.</given-names>
</name>
</person-group>
<article-title>A mouse model for MERS coronavirus-induced acute respiratory distress syndrome</article-title>
<source>Nat. Microbiol.</source>
<year>2016</year>
<volume>2</volume>
<fpage>16226</fpage>
<pub-id pub-id-type="doi">10.1038/nmicrobiol.2016.226</pub-id>
<pub-id pub-id-type="pmid">27892925</pub-id>
</element-citation>
</ref>
<ref id="B26-ijms-20-05073">
<label>26.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fan</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Cao</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>C.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A Human DPP4-Knockin Mouse’s Susceptibility to Infection by Authentic and Pseudotyped MERS-CoV</article-title>
<source>Viruses</source>
<year>2018</year>
<volume>10</volume>
<pub-id pub-id-type="doi">10.3390/v10090448</pub-id>
</element-citation>
</ref>
<ref id="B27-ijms-20-05073">
<label>27.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Houser</surname>
<given-names>K.V.</given-names>
</name>
<name>
<surname>Gretebeck</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Ying</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Vogel</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Lamirande</surname>
<given-names>E.W.</given-names>
</name>
<name>
<surname>Bock</surname>
<given-names>K.W.</given-names>
</name>
<name>
<surname>Moore</surname>
<given-names>I.N.</given-names>
</name>
<name>
<surname>Dimitrov</surname>
<given-names>D.S.</given-names>
</name>
<name>
<surname>Subbarao</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Prophylaxis With a Middle East Respiratory Syndrome Coronavirus (MERS-CoV)-Specific Human Monoclonal Antibody Protects Rabbits From MERS-CoV Infection</article-title>
<source>J. Infect. Dis.</source>
<year>2016</year>
<volume>213</volume>
<fpage>1557</fpage>
<lpage>1561</lpage>
<pub-id pub-id-type="doi">10.1093/infdis/jiw080</pub-id>
<pub-id pub-id-type="pmid">26941283</pub-id>
</element-citation>
</ref>
<ref id="B28-ijms-20-05073">
<label>28.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Johnson</surname>
<given-names>R.F.</given-names>
</name>
<name>
<surname>Bagci</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Keith</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Mollura</surname>
<given-names>D.J.</given-names>
</name>
<name>
<surname>Zeitlin</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Qin</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Huzella</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Bartos</surname>
<given-names>C.J.</given-names>
</name>
<name>
<surname>Bohorova</surname>
<given-names>N.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>3B11-N, a monoclonal antibody against MERS-CoV, reduces lung pathology in rhesus monkeys following intratracheal inoculation of MERS-CoV Jordan-n3/2012</article-title>
<source>Virology</source>
<year>2016</year>
<volume>490</volume>
<fpage>49</fpage>
<lpage>58</lpage>
<pub-id pub-id-type="doi">10.1016/j.virol.2016.01.004</pub-id>
<pub-id pub-id-type="pmid">26828465</pub-id>
</element-citation>
</ref>
<ref id="B29-ijms-20-05073">
<label>29.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Wan</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Qi</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>W.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A humanized neutralizing antibody against MERS-CoV targeting the receptor-binding domain of the spike protein</article-title>
<source>Cell Res.</source>
<year>2015</year>
<volume>25</volume>
<fpage>1237</fpage>
<lpage>1249</lpage>
<pub-id pub-id-type="doi">10.1038/cr.2015.113</pub-id>
<pub-id pub-id-type="pmid">26391698</pub-id>
</element-citation>
</ref>
<ref id="B30-ijms-20-05073">
<label>30.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Qiu</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Xiao</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Feng</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Tai</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Du</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>Single-dose treatment with a humanized neutralizing antibody affords full protection of a human transgenic mouse model from lethal Middle East respiratory syndrome (MERS)-coronavirus infection</article-title>
<source>Antivir. Res.</source>
<year>2016</year>
<volume>132</volume>
<fpage>141</fpage>
<lpage>148</lpage>
<pub-id pub-id-type="doi">10.1016/j.antiviral.2016.06.003</pub-id>
<pub-id pub-id-type="pmid">27312105</pub-id>
</element-citation>
</ref>
<ref id="B31-ijms-20-05073">
<label>31.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hart</surname>
<given-names>T.K.</given-names>
</name>
<name>
<surname>Cook</surname>
<given-names>R.M.</given-names>
</name>
<name>
<surname>Zia-Amirhosseini</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Minthorn</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Sellers</surname>
<given-names>T.S.</given-names>
</name>
<name>
<surname>Maleeff</surname>
<given-names>B.E.</given-names>
</name>
<name>
<surname>Eustis</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Schwartz</surname>
<given-names>L.W.</given-names>
</name>
<name>
<surname>Tsui</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Appelbaum</surname>
<given-names>E.R.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Preclinical efficacy and safety of mepolizumab (SB-240563), a humanized monoclonal antibody to IL-5, in cynomolgus monkeys</article-title>
<source>J. Allergy Clin. Immunol.</source>
<year>2001</year>
<volume>108</volume>
<fpage>250</fpage>
<lpage>257</lpage>
<pub-id pub-id-type="doi">10.1067/mai.2001.116576</pub-id>
<pub-id pub-id-type="pmid">11496242</pub-id>
</element-citation>
</ref>
<ref id="B32-ijms-20-05073">
<label>32.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Koleba</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Ensom</surname>
<given-names>M.H.</given-names>
</name>
</person-group>
<article-title>Pharmacokinetics of intravenous immunoglobulin: A systematic review</article-title>
<source>Pharmacotherapy</source>
<year>2006</year>
<volume>26</volume>
<fpage>813</fpage>
<lpage>827</lpage>
<pub-id pub-id-type="doi">10.1592/phco.26.6.813</pub-id>
<pub-id pub-id-type="pmid">16716135</pub-id>
</element-citation>
</ref>
<ref id="B33-ijms-20-05073">
<label>33.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guilleminault</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Azzopardi</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Arnoult</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Sobilo</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Herve</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Montharu</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Guillon</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Andres</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Herault</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Le Pape</surname>
<given-names>A.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Fate of inhaled monoclonal antibodies after the deposition of aerosolized particles in the respiratory system</article-title>
<source>J. Control. Release</source>
<year>2014</year>
<volume>196</volume>
<fpage>344</fpage>
<lpage>354</lpage>
<pub-id pub-id-type="doi">10.1016/j.jconrel.2014.10.003</pub-id>
<pub-id pub-id-type="pmid">25451545</pub-id>
</element-citation>
</ref>
<ref id="B34-ijms-20-05073">
<label>34.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bitonti</surname>
<given-names>A.J.</given-names>
</name>
<name>
<surname>Dumont</surname>
<given-names>J.A.</given-names>
</name>
</person-group>
<article-title>Pulmonary administration of therapeutic proteins using an immunoglobulin transport pathway</article-title>
<source>Adv. Drug Deliv. Rev.</source>
<year>2006</year>
<volume>58</volume>
<fpage>1106</fpage>
<lpage>1118</lpage>
<pub-id pub-id-type="doi">10.1016/j.addr.2006.07.015</pub-id>
<pub-id pub-id-type="pmid">16997417</pub-id>
</element-citation>
</ref>
<ref id="B35-ijms-20-05073">
<label>35.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bitonti</surname>
<given-names>A.J.</given-names>
</name>
<name>
<surname>Dumont</surname>
<given-names>J.A.</given-names>
</name>
<name>
<surname>Low</surname>
<given-names>S.C.</given-names>
</name>
<name>
<surname>Peters</surname>
<given-names>R.T.</given-names>
</name>
<name>
<surname>Kropp</surname>
<given-names>K.E.</given-names>
</name>
<name>
<surname>Palombella</surname>
<given-names>V.J.</given-names>
</name>
<name>
<surname>Stattel</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Tan</surname>
<given-names>C.A.</given-names>
</name>
<name>
<surname>Song</surname>
<given-names>J.J.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Pulmonary delivery of an erythropoietin Fc fusion protein in non-human primates through an immunoglobulin transport pathway</article-title>
<source>Proc. Natl. Acad. Sci. USA</source>
<year>2004</year>
<volume>101</volume>
<fpage>9763</fpage>
<lpage>9768</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.0403235101</pub-id>
<pub-id pub-id-type="pmid">15210944</pub-id>
</element-citation>
</ref>
<ref id="B36-ijms-20-05073">
<label>36.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Low</surname>
<given-names>S.C.</given-names>
</name>
<name>
<surname>Nunes</surname>
<given-names>S.L.</given-names>
</name>
<name>
<surname>Bitonti</surname>
<given-names>A.J.</given-names>
</name>
<name>
<surname>Dumont</surname>
<given-names>J.A.</given-names>
</name>
</person-group>
<article-title>Oral and pulmonary delivery of FSH-Fc fusion proteins via neonatal Fc receptor-mediated transcytosis</article-title>
<source>Hum. Reprod.</source>
<year>2005</year>
<volume>20</volume>
<fpage>1805</fpage>
<lpage>1813</lpage>
<pub-id pub-id-type="doi">10.1093/humrep/deh896</pub-id>
<pub-id pub-id-type="pmid">15817590</pub-id>
</element-citation>
</ref>
<ref id="B37-ijms-20-05073">
<label>37.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Van Heeke</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Allosery</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>De Brabandere</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>De Smedt</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Detalle</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>de Fougerolles</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Nanobodies(R) as inhaled biotherapeutics for lung diseases</article-title>
<source>Pharm. Ther.</source>
<year>2017</year>
<volume>169</volume>
<fpage>47</fpage>
<lpage>56</lpage>
<pub-id pub-id-type="doi">10.1016/j.pharmthera.2016.06.012</pub-id>
</element-citation>
</ref>
<ref id="B38-ijms-20-05073">
<label>38.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>Y.S.</given-names>
</name>
<name>
<surname>Aigerim</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Rhee</surname>
<given-names>J.Y.</given-names>
</name>
<name>
<surname>Choi</surname>
<given-names>J.P.</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>W.B.</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>S.W.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Lim</surname>
<given-names>D.G.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Sequential Emergence and Wide Spread of Neutralization Escape Middle East Respiratory Syndrome Coronavirus Mutants, South Korea, 2015</article-title>
<source>Emerg. Infect. Dis.</source>
<year>2019</year>
<volume>25</volume>
<fpage>1161</fpage>
<lpage>1168</lpage>
<pub-id pub-id-type="doi">10.3201/eid2506.181722</pub-id>
<pub-id pub-id-type="pmid">30900977</pub-id>
</element-citation>
</ref>
<ref id="B39-ijms-20-05073">
<label>39.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Noh</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Jung</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Han</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>J.E.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Jung</surname>
<given-names>R.H.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>S.I.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>High-throughput retrieval of physical DNA for NGS-identifiable clones in phage display library</article-title>
<source>MAbs</source>
<year>2019</year>
<volume>11</volume>
<fpage>532</fpage>
<lpage>545</lpage>
<pub-id pub-id-type="doi">10.1080/19420862.2019.1571878</pub-id>
<pub-id pub-id-type="pmid">30735467</pub-id>
</element-citation>
</ref>
<ref id="B40-ijms-20-05073">
<label>40.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ying</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Prabakaran</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Du</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Feng</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Dimitrov</surname>
<given-names>D.S.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Junctional and allele-specific residues are critical for MERS-CoV neutralization by an exceptionally potent germline-like antibody</article-title>
<source>Nat. Commun.</source>
<year>2015</year>
<volume>6</volume>
<fpage>8223</fpage>
<pub-id pub-id-type="doi">10.1038/ncomms9223</pub-id>
<pub-id pub-id-type="pmid">26370782</pub-id>
</element-citation>
</ref>
<ref id="B41-ijms-20-05073">
<label>41.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pommie</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Levadoux</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Sabatier</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Lefranc</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Lefranc</surname>
<given-names>M.P.</given-names>
</name>
</person-group>
<article-title>IMGT standardized criteria for statistical analysis of immunoglobulin V-REGION amino acid properties</article-title>
<source>J. Mol. Recognit.</source>
<year>2004</year>
<volume>17</volume>
<fpage>17</fpage>
<lpage>32</lpage>
<pub-id pub-id-type="doi">10.1002/jmr.647</pub-id>
<pub-id pub-id-type="pmid">14872534</pub-id>
</element-citation>
</ref>
<ref id="B42-ijms-20-05073">
<label>42.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tartaglia</surname>
<given-names>G.G.</given-names>
</name>
<name>
<surname>Cavalli</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Pellarin</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Caflisch</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Prediction of aggregation rate and aggregation-prone segments in polypeptide sequences</article-title>
<source>Protein Sci.</source>
<year>2005</year>
<volume>14</volume>
<fpage>2723</fpage>
<lpage>2734</lpage>
<pub-id pub-id-type="doi">10.1110/ps.051471205</pub-id>
<pub-id pub-id-type="pmid">16195556</pub-id>
</element-citation>
</ref>
<ref id="B43-ijms-20-05073">
<label>43.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Igawa</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Tsunoda</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Tachibana</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Maeda</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Mimoto</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Moriyama</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Nanami</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Sekimori</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Nabuchi</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Aso</surname>
<given-names>Y.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Reduced elimination of IgG antibodies by engineering the variable region</article-title>
<source>Protein Eng. Des. Sel.</source>
<year>2010</year>
<volume>23</volume>
<fpage>385</fpage>
<lpage>392</lpage>
<pub-id pub-id-type="doi">10.1093/protein/gzq009</pub-id>
<pub-id pub-id-type="pmid">20159773</pub-id>
</element-citation>
</ref>
<ref id="B44-ijms-20-05073">
<label>44.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Feige</surname>
<given-names>M.J.</given-names>
</name>
<name>
<surname>Hendershot</surname>
<given-names>L.M.</given-names>
</name>
<name>
<surname>Buchner</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>How antibodies fold</article-title>
<source>Trends Biochem. Sci.</source>
<year>2010</year>
<volume>35</volume>
<fpage>189</fpage>
<lpage>198</lpage>
<pub-id pub-id-type="doi">10.1016/j.tibs.2009.11.005</pub-id>
<pub-id pub-id-type="pmid">20022755</pub-id>
</element-citation>
</ref>
<ref id="B45-ijms-20-05073">
<label>45.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sormanni</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Amery</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Ekizoglou</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Vendruscolo</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Popovic</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>Rapid and accurate in silico solubility screening of a monoclonal antibody library</article-title>
<source>Sci. Rep.</source>
<year>2017</year>
<volume>7</volume>
<fpage>8200</fpage>
<pub-id pub-id-type="doi">10.1038/s41598-017-07800-w</pub-id>
<pub-id pub-id-type="pmid">28811609</pub-id>
</element-citation>
</ref>
<ref id="B46-ijms-20-05073">
<label>46.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Larios Mora</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Detalle</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Gallup</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Van Geelen</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Stohr</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Duprez</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Ackermann</surname>
<given-names>M.R.</given-names>
</name>
</person-group>
<article-title>Delivery of ALX-0171 by inhalation greatly reduces respiratory syncytial virus disease in newborn lambs</article-title>
<source>MAbs</source>
<year>2018</year>
<volume>10</volume>
<fpage>778</fpage>
<lpage>795</lpage>
<pub-id pub-id-type="doi">10.1080/19420862.2018.1470727</pub-id>
<pub-id pub-id-type="pmid">29733750</pub-id>
</element-citation>
</ref>
<ref id="B47-ijms-20-05073">
<label>47.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Respaud</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Marchand</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Parent</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Pelat</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Thullier</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Tournamille</surname>
<given-names>J.F.</given-names>
</name>
<name>
<surname>Viaud-Massuard</surname>
<given-names>M.C.</given-names>
</name>
<name>
<surname>Diot</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Si-Tahar</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Vecellio</surname>
<given-names>L.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Effect of formulation on the stability and aerosol performance of a nebulized antibody</article-title>
<source>MAbs</source>
<year>2014</year>
<volume>6</volume>
<fpage>1347</fpage>
<lpage>1355</lpage>
<pub-id pub-id-type="doi">10.4161/mabs.29938</pub-id>
<pub-id pub-id-type="pmid">25517319</pub-id>
</element-citation>
</ref>
<ref id="B48-ijms-20-05073">
<label>48.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Moussa</surname>
<given-names>E.M.</given-names>
</name>
<name>
<surname>Panchal</surname>
<given-names>J.P.</given-names>
</name>
<name>
<surname>Moorthy</surname>
<given-names>B.S.</given-names>
</name>
<name>
<surname>Blum</surname>
<given-names>J.S.</given-names>
</name>
<name>
<surname>Joubert</surname>
<given-names>M.K.</given-names>
</name>
<name>
<surname>Narhi</surname>
<given-names>L.O.</given-names>
</name>
<name>
<surname>Topp</surname>
<given-names>E.M.</given-names>
</name>
</person-group>
<article-title>Immunogenicity of Therapeutic Protein Aggregates</article-title>
<source>J. Pharm. Sci.</source>
<year>2016</year>
<volume>105</volume>
<fpage>417</fpage>
<lpage>430</lpage>
<pub-id pub-id-type="doi">10.1016/j.xphs.2015.11.002</pub-id>
<pub-id pub-id-type="pmid">26869409</pub-id>
</element-citation>
</ref>
<ref id="B49-ijms-20-05073">
<label>49.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Beck-Broichsitter</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kleimann</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Schmehl</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Betz</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Bakowsky</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Kissel</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Seeger</surname>
<given-names>W.</given-names>
</name>
</person-group>
<article-title>Impact of lyoprotectants for the stabilization of biodegradable nanoparticles on the performance of air-jet, ultrasonic, and vibrating-mesh nebulizers</article-title>
<source>Eur. J. Pharm. Biopharm.</source>
<year>2012</year>
<volume>82</volume>
<fpage>272</fpage>
<lpage>280</lpage>
<pub-id pub-id-type="doi">10.1016/j.ejpb.2012.07.004</pub-id>
<pub-id pub-id-type="pmid">22820646</pub-id>
</element-citation>
</ref>
<ref id="B50-ijms-20-05073">
<label>50.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rosenberg</surname>
<given-names>A.S.</given-names>
</name>
</person-group>
<article-title>Effects of protein aggregates: An immunologic perspective</article-title>
<source>AAPS J.</source>
<year>2006</year>
<volume>8</volume>
<fpage>501</fpage>
<lpage>507</lpage>
<pub-id pub-id-type="doi">10.1208/aapsj080359</pub-id>
</element-citation>
</ref>
<ref id="B51-ijms-20-05073">
<label>51.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ewert</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Huber</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Honegger</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Pluckthun</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Biophysical properties of human antibody variable domains</article-title>
<source>J. Mol. Biol.</source>
<year>2003</year>
<volume>325</volume>
<fpage>531</fpage>
<lpage>553</lpage>
<pub-id pub-id-type="doi">10.1016/S0022-2836(02)01237-8</pub-id>
<pub-id pub-id-type="pmid">12498801</pub-id>
</element-citation>
</ref>
<ref id="B52-ijms-20-05073">
<label>52.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Honegger</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Malebranche</surname>
<given-names>A.D.</given-names>
</name>
<name>
<surname>Rothlisberger</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Pluckthun</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>The influence of the framework core residues on the biophysical properties of immunoglobulin heavy chain variable domains</article-title>
<source>Protein Eng. Des. Sel.</source>
<year>2009</year>
<volume>22</volume>
<fpage>121</fpage>
<lpage>134</lpage>
<pub-id pub-id-type="doi">10.1093/protein/gzn077</pub-id>
<pub-id pub-id-type="pmid">19136675</pub-id>
</element-citation>
</ref>
<ref id="B53-ijms-20-05073">
<label>53.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chennamsetty</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Voynov</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Kayser</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Helk</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Trout</surname>
<given-names>B.L.</given-names>
</name>
</person-group>
<article-title>Design of therapeutic proteins with enhanced stability</article-title>
<source>Proc. Natl. Acad. Sci. USA</source>
<year>2009</year>
<volume>106</volume>
<fpage>11937</fpage>
<lpage>11942</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.0904191106</pub-id>
<pub-id pub-id-type="pmid">19571001</pub-id>
</element-citation>
</ref>
<ref id="B54-ijms-20-05073">
<label>54.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Das</surname>
<given-names>T.K.</given-names>
</name>
<name>
<surname>Singh</surname>
<given-names>S.K.</given-names>
</name>
<name>
<surname>Kumar</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Potential aggregation prone regions in biotherapeutics: A survey of commercial monoclonal antibodies</article-title>
<source>MAbs</source>
<year>2009</year>
<volume>1</volume>
<fpage>254</fpage>
<lpage>267</lpage>
<pub-id pub-id-type="doi">10.4161/mabs.1.3.8035</pub-id>
<pub-id pub-id-type="pmid">20065649</pub-id>
</element-citation>
</ref>
<ref id="B55-ijms-20-05073">
<label>55.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wu</surname>
<given-names>S.J.</given-names>
</name>
<name>
<surname>Luo</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>O’Neil</surname>
<given-names>K.T.</given-names>
</name>
<name>
<surname>Kang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Lacy</surname>
<given-names>E.R.</given-names>
</name>
<name>
<surname>Canziani</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Baker</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>Q.M.</given-names>
</name>
<name>
<surname>Raju</surname>
<given-names>T.S.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Structure-based engineering of a monoclonal antibody for improved solubility</article-title>
<source>Protein Eng. Des. Sel.</source>
<year>2010</year>
<volume>23</volume>
<fpage>643</fpage>
<lpage>651</lpage>
<pub-id pub-id-type="doi">10.1093/protein/gzq037</pub-id>
<pub-id pub-id-type="pmid">20543007</pub-id>
</element-citation>
</ref>
<ref id="B56-ijms-20-05073">
<label>56.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jespers</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Schon</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Famm</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Winter</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Aggregation-resistant domain antibodies selected on phage by heat denaturation</article-title>
<source>Nat. Biotechnol.</source>
<year>2004</year>
<volume>22</volume>
<fpage>1161</fpage>
<lpage>1165</lpage>
<pub-id pub-id-type="doi">10.1038/nbt1000</pub-id>
<pub-id pub-id-type="pmid">15300256</pub-id>
</element-citation>
</ref>
<ref id="B57-ijms-20-05073">
<label>57.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Perchiacca</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Bhattacharya</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Tessier</surname>
<given-names>P.M.</given-names>
</name>
</person-group>
<article-title>Mutational analysis of domain antibodies reveals aggregation hotspots within and near the complementarity determining regions</article-title>
<source>Proteins</source>
<year>2011</year>
<volume>79</volume>
<fpage>2637</fpage>
<lpage>2647</lpage>
<pub-id pub-id-type="doi">10.1002/prot.23085</pub-id>
<pub-id pub-id-type="pmid">21732420</pub-id>
</element-citation>
</ref>
<ref id="B58-ijms-20-05073">
<label>58.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dudgeon</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Rouet</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Kokmeijer</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Schofield</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Stolp</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Langley</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Stock</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Christ</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>General strategy for the generation of human antibody variable domains with increased aggregation resistance</article-title>
<source>Proc. Natl. Acad. Sci. USA</source>
<year>2012</year>
<volume>109</volume>
<fpage>10879</fpage>
<lpage>10884</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1202866109</pub-id>
<pub-id pub-id-type="pmid">22745168</pub-id>
</element-citation>
</ref>
<ref id="B59-ijms-20-05073">
<label>59.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Agrawal</surname>
<given-names>A.S.</given-names>
</name>
<name>
<surname>Garron</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Tao</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Peng</surname>
<given-names>B.H.</given-names>
</name>
<name>
<surname>Wakamiya</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Chan</surname>
<given-names>T.S.</given-names>
</name>
<name>
<surname>Couch</surname>
<given-names>R.B.</given-names>
</name>
<name>
<surname>Tseng</surname>
<given-names>C.T.</given-names>
</name>
</person-group>
<article-title>Generation of a transgenic mouse model of Middle East respiratory syndrome coronavirus infection and disease</article-title>
<source>J. Virol.</source>
<year>2015</year>
<volume>89</volume>
<fpage>3659</fpage>
<lpage>3670</lpage>
<pub-id pub-id-type="doi">10.1128/JVI.03427-14</pub-id>
<pub-id pub-id-type="pmid">25589660</pub-id>
</element-citation>
</ref>
<ref id="B60-ijms-20-05073">
<label>60.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Wohlford-Lenane</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Perlman</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Jewell</surname>
<given-names>A.K.</given-names>
</name>
<name>
<surname>Reznikov</surname>
<given-names>L.R.</given-names>
</name>
<name>
<surname>Gibson-Corley</surname>
<given-names>K.N.</given-names>
</name>
<name>
<surname>Meyerholz</surname>
<given-names>D.K.</given-names>
</name>
<name>
<surname>McCray</surname>
<given-names>P.B.</given-names>
<suffix>Jr.</suffix>
</name>
</person-group>
<article-title>Middle East Respiratory Syndrome Coronavirus Causes Multiple Organ Damage and Lethal Disease in Mice Transgenic for Human Dipeptidyl Peptidase 4</article-title>
<source>J. Infect. Dis.</source>
<year>2016</year>
<volume>213</volume>
<fpage>712</fpage>
<lpage>722</lpage>
<pub-id pub-id-type="doi">10.1093/infdis/jiv499</pub-id>
<pub-id pub-id-type="pmid">26486634</pub-id>
</element-citation>
</ref>
<ref id="B61-ijms-20-05073">
<label>61.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhao</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Qiu</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Zeng</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Kou</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Du</surname>
<given-names>L.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Multi-Organ Damage in Human Dipeptidyl Peptidase 4 Transgenic Mice Infected with Middle East Respiratory Syndrome-Coronavirus</article-title>
<source>PLoS ONE</source>
<year>2015</year>
<volume>10</volume>
<elocation-id>145561</elocation-id>
<pub-id pub-id-type="doi">10.1371/journal.pone.0145561</pub-id>
<pub-id pub-id-type="pmid">26701103</pub-id>
</element-citation>
</ref>
<ref id="B62-ijms-20-05073">
<label>62.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Wohlford-Lenane</surname>
<given-names>C.L.</given-names>
</name>
<name>
<surname>Channappanavar</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>J.E.</given-names>
</name>
<name>
<surname>Earnest</surname>
<given-names>J.T.</given-names>
</name>
<name>
<surname>Bair</surname>
<given-names>T.B.</given-names>
</name>
<name>
<surname>Bates</surname>
<given-names>A.M.</given-names>
</name>
<name>
<surname>Brogden</surname>
<given-names>K.A.</given-names>
</name>
<name>
<surname>Flaherty</surname>
<given-names>H.A.</given-names>
</name>
<name>
<surname>Gallagher</surname>
<given-names>T.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Mouse-adapted MERS coronavirus causes lethal lung disease in human DPP4 knockin mice</article-title>
<source>Proc. Natl. Acad. Sci. USA</source>
<year>2017</year>
<volume>114</volume>
<fpage>E3119</fpage>
<lpage>E3128</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1619109114</pub-id>
<pub-id pub-id-type="pmid">28348219</pub-id>
</element-citation>
</ref>
<ref id="B63-ijms-20-05073">
<label>63.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kanof</surname>
<given-names>M.E.</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>P.D.</given-names>
</name>
<name>
<surname>Zola</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Isolation of whole mononuclear cells from peripheral blood and cord blood</article-title>
<source>Curr. Protoc. Immunol.</source>
<year>2001</year>
<pub-id pub-id-type="doi">10.1002/0471142735.im0701s85</pub-id>
</element-citation>
</ref>
<ref id="B64-ijms-20-05073">
<label>64.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Barbas</surname>
<given-names>C.F.</given-names>
</name>
<name>
<surname>Burton</surname>
<given-names>D.R.</given-names>
</name>
<name>
<surname>Scott</surname>
<given-names>J.K.</given-names>
</name>
<name>
<surname>Silverman</surname>
<given-names>G.J.</given-names>
</name>
</person-group>
<article-title>Phage Display: A Laboratory Manual</article-title>
<publisher-name>Cold Spring Harbor Laboratory Press</publisher-name>
<publisher-loc>New York, NY, USA</publisher-loc>
<year>2001</year>
<pub-id pub-id-type="doi">10.1086/420571</pub-id>
</element-citation>
</ref>
<ref id="B65-ijms-20-05073">
<label>65.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Andris-Widhopf</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Steinberger</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Fuller</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Rader</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Barbas</surname>
<given-names>C.F.</given-names>
<suffix>3rd</suffix>
</name>
</person-group>
<article-title>Generation of human scFv antibody libraries: PCR amplification and assembly of light- and heavy-chain coding sequences</article-title>
<source>Cold Spring Harb. Protoc.</source>
<year>2011</year>
<volume>2011</volume>
<pub-id pub-id-type="doi">10.1101/pdb.prot065573</pub-id>
</element-citation>
</ref>
<ref id="B66-ijms-20-05073">
<label>66.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Chung</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>An antibody reactive to the Gly63-Lys68 epitope of NT-proBNP exhibits O-glycosylation-independent binding</article-title>
<source>Exp. Mol. Med.</source>
<year>2014</year>
<volume>46</volume>
<fpage>114</fpage>
<pub-id pub-id-type="doi">10.1038/emm.2014.57</pub-id>
</element-citation>
</ref>
<ref id="B67-ijms-20-05073">
<label>67.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Yoon</surname>
<given-names>I.H.</given-names>
</name>
<name>
<surname>Yoon</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Cook-Mills</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>C.G.</given-names>
</name>
<name>
<surname>Chung</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>An antibody to the sixth Ig-like domain of VCAM-1 inhibits leukocyte transendothelial migration without affecting adhesion</article-title>
<source>J. Immunol.</source>
<year>2012</year>
<volume>189</volume>
<fpage>4592</fpage>
<lpage>4601</lpage>
<pub-id pub-id-type="doi">10.4049/jimmunol.1103803</pub-id>
<pub-id pub-id-type="pmid">23028056</pub-id>
</element-citation>
</ref>
<ref id="B68-ijms-20-05073">
<label>68.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jin</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>J.B.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Chung</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>An anti-EGFR x cotinine bispecific antibody complexed with cotinine-conjugated duocarmycin inhibits growth of EGFR-positive cancer cells with KRAS mutations</article-title>
<source>Exp. Mol. Med.</source>
<year>2018</year>
<volume>50</volume>
<fpage>67</fpage>
<pub-id pub-id-type="doi">10.1038/s12276-018-0096-z</pub-id>
<pub-id pub-id-type="pmid">29795377</pub-id>
</element-citation>
</ref>
<ref id="B69-ijms-20-05073">
<label>69.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Reed</surname>
<given-names>L.J.</given-names>
</name>
<name>
<surname>Muench</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>A Simple Method for Estimating Fifty Per Cent. Endpoints</article-title>
<source>Am. J. Epidemiol.</source>
<year>1938</year>
<volume>27</volume>
<fpage>493</fpage>
<lpage>497</lpage>
<pub-id pub-id-type="doi">10.1093/oxfordjournals.aje.a118408</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
<floats-group>
<fig id="ijms-20-05073-f001" orientation="portrait" position="float">
<label>Figure 1</label>
<caption>
<p>Sequential randomization of CDR residues of the C-8 clone. (
<bold>A</bold>
) In the first randomized library, six hydrophobic amino acid residues (asterisks) in HCDR1 and HCDR2 were targeted. The second library was prepared in the C-8-2 clone by randomizing nine amino acid residues (asterisks) that were not randomized in the first randomized library. (
<bold>B</bold>
) Eight amino acid residues (asterisks) in LCDRs of the C-8-2-4B clone selected from the second library were randomized in the third randomized library.</p>
</caption>
<graphic xlink:href="ijms-20-05073-g001"></graphic>
</fig>
<fig id="ijms-20-05073-f002" orientation="portrait" position="float">
<label>Figure 2</label>
<caption>
<p>Reactivity of anti-MERS-CoV IgG
<sub>1</sub>
antibodies before and after nebulization. Following nebulization at a concentration of 1 mg/mL, aerosol was collected and subjected to ELISA. Recombinant S glycoprotein-coated microtiter plates were incubated with pre-nebulized and post-nebulized C-8 IgG
<sub>1</sub>
(
<bold>A</bold>
), C-8-2-4B-10D IgG
<sub>1</sub>
(
<bold>B</bold>
), and m336 (
<bold>C</bold>
). HRP-conjugated anti-human IgG antibody was used as the probe, and ABTS was used as the substrate. All experiments were performed in duplicate, and the data indicate mean ± SD.</p>
</caption>
<graphic xlink:href="ijms-20-05073-g002"></graphic>
</fig>
<fig id="ijms-20-05073-f003" orientation="portrait" position="float">
<label>Figure 3</label>
<caption>
<p>DLS analysis. To evaluate the size distribution profile of pre-nebulized C-8 (
<bold>A</bold>
), pre-nebulized C-8-2-4B-10D (
<bold>B</bold>
), pre-nebulized m336 (
<bold>C</bold>
), post-nebulized C-8 (
<bold>D</bold>
), post-nebulized C-8-2-4B-10D (
<bold>E</bold>
), and post-nebulized m336 IgG
<sub>1</sub>
(
<bold>F</bold>
) antibodies, DLS was performed using 633-nm/4-mW laser at a 173° detection angle. PBS was used as the reference solvent, and the results were evaluated with Zetasizer software 7.02. All experiments were performed in triplicate, and representative results are shown for each antibody.</p>
</caption>
<graphic xlink:href="ijms-20-05073-g003"></graphic>
</fig>
<fig id="ijms-20-05073-f004" orientation="portrait" position="float">
<label>Figure 4</label>
<caption>
<p>Neutralization of MERS-CoV by pre- and post-nebulized IgG
<sub>1</sub>
. Culture media containing 100 PFU MERS-CoV was mixed with equal volume of serially diluted C-8 IgG
<sub>1</sub>
(
<bold>A</bold>
), C-8-2-4B-10D IgG
<sub>1</sub>
(
<bold>B</bold>
), m336 IgG
<sub>1</sub>
(
<bold>C</bold>
), and palivizumab (
<bold>D</bold>
). After incubation for 1 h, the mixture was added to Vero cells. After 2 days, the plaques were counted. The inhibition of virus infection was plotted as a function of IgG
<sub>1</sub>
antibody concentration, and PRNT
<sub>50</sub>
values were calculated by GraphPad Prism 6. All experiments were performed in quadruplicate, and the data indicate mean ± SD.</p>
</caption>
<graphic xlink:href="ijms-20-05073-g004"></graphic>
</fig>
<table-wrap id="ijms-20-05073-t001" orientation="portrait" position="float">
<object-id pub-id-type="pii">ijms-20-05073-t001_Table 1</object-id>
<label>Table 1</label>
<caption>
<p>Size-exclusion high-performance liquid chromatography (SE-HPLC) and dynamic light scattering (DLS) analysis</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th rowspan="2" align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" colspan="1">Antibody</th>
<th colspan="2" align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1">SE-HPLC
<break></break>
(% Monomer/% Aggregates)</th>
<th colspan="2" align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1">DLS
<break></break>
(% Monomer ± SD/% Aggregates ± SD)</th>
</tr>
<tr>
<th align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Pre-Nebulization</th>
<th align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Post-Nebulization</th>
<th align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Pre-Nebulization</th>
<th align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Post-Nebulization</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">C-8</td>
<td align="center" valign="middle" rowspan="1" colspan="1">100.0/0</td>
<td align="center" valign="middle" rowspan="1" colspan="1">97.9/2.1</td>
<td align="center" valign="middle" rowspan="1" colspan="1">100.0 ± 0/0</td>
<td align="center" valign="middle" rowspan="1" colspan="1">78.4 ± 3.5/21.6 ± 3.5</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">C-8-2-4B-10D</td>
<td align="center" valign="middle" rowspan="1" colspan="1">100.0/0</td>
<td align="center" valign="middle" rowspan="1" colspan="1">100.0/0</td>
<td align="center" valign="middle" rowspan="1" colspan="1">99.2 ± 0.7/0.8 ± 0.7</td>
<td align="center" valign="middle" rowspan="1" colspan="1">98.6 ± 0.4/1.4 ± 0.4</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">m336</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">100.0/0</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">99.4/0.6</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">96.6 ± 0.6/3.4 ± 0.6</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">77.5 ± 2.3/22.5 ± 2.3</td>
</tr>
</tbody>
</table>
</table-wrap>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D70 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000D70 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:6829326
   |texte=   Generation of a Nebulizable CDR-Modified MERS-CoV Neutralizing Human Antibody
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:31614869" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021