Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 000B418 ( Pmc/Corpus ); précédent : 000B417; suivant : 000B419 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Ecological Traits Driving the Outbreaks and Emergence of Zoonotic Pathogens</title>
<author>
<name sortKey="Salkeld, Daniel J" sort="Salkeld, Daniel J" uniqKey="Salkeld D" first="Daniel J" last="Salkeld">Daniel J. Salkeld</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Stapp, Paul" sort="Stapp, Paul" uniqKey="Stapp P" first="Paul" last="Stapp">Paul Stapp</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tripp, Daniel W" sort="Tripp, Daniel W" uniqKey="Tripp D" first="Daniel W" last="Tripp">Daniel W. Tripp</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Gage, Kenneth L" sort="Gage, Kenneth L" uniqKey="Gage K" first="Kenneth L" last="Gage">Kenneth L. Gage</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lowell, Jennifer" sort="Lowell, Jennifer" uniqKey="Lowell J" first="Jennifer" last="Lowell">Jennifer Lowell</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Webb, Colleen T" sort="Webb, Colleen T" uniqKey="Webb C" first="Colleen T" last="Webb">Colleen T. Webb</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Brinkerhoff, R Jory" sort="Brinkerhoff, R Jory" uniqKey="Brinkerhoff R" first="R Jory" last="Brinkerhoff">R Jory Brinkerhoff</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Antolin, Michael F" sort="Antolin, Michael F" uniqKey="Antolin M" first="Michael F" last="Antolin">Michael F. Antolin</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmc">7109792</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7109792</idno>
<idno type="RBID">PMC:7109792</idno>
<idno type="doi">10.1093/biosci/biv179</idno>
<idno type="pmid">NONE</idno>
<date when="2016">2016</date>
<idno type="wicri:Area/Pmc/Corpus">000B41</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000B41</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Ecological Traits Driving the Outbreaks and Emergence of Zoonotic Pathogens</title>
<author>
<name sortKey="Salkeld, Daniel J" sort="Salkeld, Daniel J" uniqKey="Salkeld D" first="Daniel J" last="Salkeld">Daniel J. Salkeld</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Stapp, Paul" sort="Stapp, Paul" uniqKey="Stapp P" first="Paul" last="Stapp">Paul Stapp</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tripp, Daniel W" sort="Tripp, Daniel W" uniqKey="Tripp D" first="Daniel W" last="Tripp">Daniel W. Tripp</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Gage, Kenneth L" sort="Gage, Kenneth L" uniqKey="Gage K" first="Kenneth L" last="Gage">Kenneth L. Gage</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lowell, Jennifer" sort="Lowell, Jennifer" uniqKey="Lowell J" first="Jennifer" last="Lowell">Jennifer Lowell</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Webb, Colleen T" sort="Webb, Colleen T" uniqKey="Webb C" first="Colleen T" last="Webb">Colleen T. Webb</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Brinkerhoff, R Jory" sort="Brinkerhoff, R Jory" uniqKey="Brinkerhoff R" first="R Jory" last="Brinkerhoff">R Jory Brinkerhoff</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Antolin, Michael F" sort="Antolin, Michael F" uniqKey="Antolin M" first="Michael F" last="Antolin">Michael F. Antolin</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Bioscience</title>
<idno type="ISSN">0006-3568</idno>
<idno type="eISSN">1525-3244</idno>
<imprint>
<date when="2016">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<title>Abstract</title>
<p>Infectious diseases that are transmitted from wildlife hosts to humans, such as the Ebola virus and MERS virus, can be difficult to understand because the pathogens emerge from complex multifaceted ecological interactions. We use a wildlife–pathogen system—prairie dogs (Cynomys ludovicianus) and the plague bacterium (Yersinia pestis)—to describe aspects of disease ecology that apply to many cases of emerging infectious disease. We show that the monitoring and surveillance of hosts and vectors during the buildup to disease outbreaks are crucial for understanding pathogen-transmission dynamics and that a community-ecology framework is important to identify reservoir hosts. Incorporating multidisciplinary approaches and frameworks may improve wildlife–pathogen surveillance and our understanding of seemingly sporadic and rare pathogen outbreaks.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Antolin, Mf" uniqKey="Antolin M">MF Antolin</name>
</author>
<author>
<name sortKey="Gober, P" uniqKey="Gober P">P Gober</name>
</author>
<author>
<name sortKey="Luce, B" uniqKey="Luce B">B Luce</name>
</author>
<author>
<name sortKey="Biggins, De" uniqKey="Biggins D">DE Biggins</name>
</author>
<author>
<name sortKey="Van Pelt, We" uniqKey="Van Pelt W">WE Van Pelt</name>
</author>
<author>
<name sortKey="Seery, Db" uniqKey="Seery D">DB Seery</name>
</author>
<author>
<name sortKey="Lockhart, M" uniqKey="Lockhart M">M Lockhart</name>
</author>
<author>
<name sortKey="Ml, Ball" uniqKey="Ml B">Ball Ml</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Augustine, Dj" uniqKey="Augustine D">DJ Augustine</name>
</author>
<author>
<name sortKey="Matchett, Mr" uniqKey="Matchett M">MR Matchett</name>
</author>
<author>
<name sortKey="Toombs, Tp" uniqKey="Toombs T">TP Toombs</name>
</author>
<author>
<name sortKey="Cully, Jf" uniqKey="Cully J">JF Cully</name>
</author>
<author>
<name sortKey="Johnson, Tl" uniqKey="Johnson T">TL Johnson</name>
</author>
<author>
<name sortKey="Sidle, Jg" uniqKey="Sidle J">JG Sidle</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Azhar, Ei" uniqKey="Azhar E">EI Azhar</name>
</author>
<author>
<name sortKey="El Kafrawy, Sa" uniqKey="El Kafrawy S">SA El-Kafrawy</name>
</author>
<author>
<name sortKey="Farraj, Sa" uniqKey="Farraj S">SA Farraj</name>
</author>
<author>
<name sortKey="Hassan, Am" uniqKey="Hassan A">AM Hassan</name>
</author>
<author>
<name sortKey="Al Saeed, Ms" uniqKey="Al Saeed M">MS Al-Saeed</name>
</author>
<author>
<name sortKey="Hashem, Am" uniqKey="Hashem A">AM Hashem</name>
</author>
<author>
<name sortKey="Madani, Ta" uniqKey="Madani T">TA Madani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bacot, Aw" uniqKey="Bacot A">AW Bacot</name>
</author>
<author>
<name sortKey="Martin, Cj" uniqKey="Martin C">CJ Martin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ben Ari, T" uniqKey="Ben Ari T">T Ben Ari</name>
</author>
<author>
<name sortKey="Neerinckx, S" uniqKey="Neerinckx S">S Neerinckx</name>
</author>
<author>
<name sortKey="Gage, Kl" uniqKey="Gage K">KL Gage</name>
</author>
<author>
<name sortKey="Kreppel, K" uniqKey="Kreppel K">K Kreppel</name>
</author>
<author>
<name sortKey="Laudisoit, A" uniqKey="Laudisoit A">A Laudisoit</name>
</author>
<author>
<name sortKey="Leirs, H" uniqKey="Leirs H">H Leirs</name>
</author>
<author>
<name sortKey="Stenseth, Nc" uniqKey="Stenseth N">NC Stenseth</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Biggins, De" uniqKey="Biggins D">DE Biggins</name>
</author>
<author>
<name sortKey="Godbey, Jl" uniqKey="Godbey J">JL Godbey</name>
</author>
<author>
<name sortKey="Gage, Kl" uniqKey="Gage K">KL Gage</name>
</author>
<author>
<name sortKey="Carter, Lg" uniqKey="Carter L">LG Carter</name>
</author>
<author>
<name sortKey="Montenieri, Ja" uniqKey="Montenieri J">JA Montenieri</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Boegler, Ka" uniqKey="Boegler K">KA Boegler</name>
</author>
<author>
<name sortKey="Graham, Cb" uniqKey="Graham C">CB Graham</name>
</author>
<author>
<name sortKey="Montenieri, Ja" uniqKey="Montenieri J">JA Montenieri</name>
</author>
<author>
<name sortKey="Macmillan, K" uniqKey="Macmillan K">K MacMillan</name>
</author>
<author>
<name sortKey="Holmes, Jl" uniqKey="Holmes J">JL Holmes</name>
</author>
<author>
<name sortKey="Petersen, Jm" uniqKey="Petersen J">JM Petersen</name>
</author>
<author>
<name sortKey="Gage, Kl" uniqKey="Gage K">KL Gage</name>
</author>
<author>
<name sortKey="Eisen, Rj" uniqKey="Eisen R">RJ Eisen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Boone, A" uniqKey="Boone A">A Boone</name>
</author>
<author>
<name sortKey="Kraft, Jp" uniqKey="Kraft J">JP Kraft</name>
</author>
<author>
<name sortKey="Stapp, P" uniqKey="Stapp P">P Stapp</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brinkerhoff, Rj" uniqKey="Brinkerhoff R">RJ Brinkerhoff</name>
</author>
<author>
<name sortKey="Markeson, Ab" uniqKey="Markeson A">AB Markeson</name>
</author>
<author>
<name sortKey="Knouft, Jh" uniqKey="Knouft J">JH Knouft</name>
</author>
<author>
<name sortKey="Gage, Kl" uniqKey="Gage K">KL Gage</name>
</author>
<author>
<name sortKey="Montinieri, Ja" uniqKey="Montinieri J">JA Montinieri</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brinkerhoff, Rj" uniqKey="Brinkerhoff R">RJ Brinkerhoff</name>
</author>
<author>
<name sortKey="Collinge, Sk" uniqKey="Collinge S">SK Collinge</name>
</author>
<author>
<name sortKey="Bai, Y" uniqKey="Bai Y">Y Bai</name>
</author>
<author>
<name sortKey="Ray, C" uniqKey="Ray C">C Ray</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brinkerhoff, Rj" uniqKey="Brinkerhoff R">RJ Brinkerhoff</name>
</author>
<author>
<name sortKey="Martin, Ap" uniqKey="Martin A">AP Martin</name>
</author>
<author>
<name sortKey="Jones, Rt" uniqKey="Jones R">RT Jones</name>
</author>
<author>
<name sortKey="Collinge, Sk" uniqKey="Collinge S">SK Collinge</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Buhnerkempe, Mg" uniqKey="Buhnerkempe M">MG Buhnerkempe</name>
</author>
<author>
<name sortKey="Eisen, Rj" uniqKey="Eisen R">RJ Eisen</name>
</author>
<author>
<name sortKey="Goodell, B" uniqKey="Goodell B">B Goodell</name>
</author>
<author>
<name sortKey="Gage, Kl" uniqKey="Gage K">KL Gage</name>
</author>
<author>
<name sortKey="Antolin, Mf" uniqKey="Antolin M">MF Antolin</name>
</author>
<author>
<name sortKey="Webb, Ct" uniqKey="Webb C">CT Webb</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Collinge, Sk" uniqKey="Collinge S">SK Collinge</name>
</author>
<author>
<name sortKey="Johnson, Wc" uniqKey="Johnson W">WC Johnson</name>
</author>
<author>
<name sortKey="Ray, C" uniqKey="Ray C">C Ray</name>
</author>
<author>
<name sortKey="Matchett, R" uniqKey="Matchett R">R Matchett</name>
</author>
<author>
<name sortKey="Grensten, J" uniqKey="Grensten J">J Grensten</name>
</author>
<author>
<name sortKey="Cully, Jf" uniqKey="Cully J">JF Cully</name>
</author>
<author>
<name sortKey="Gage, Kl" uniqKey="Gage K">KL Gage</name>
</author>
<author>
<name sortKey="Kosoy, My" uniqKey="Kosoy M">MY Kosoy</name>
</author>
<author>
<name sortKey="Loye, Je" uniqKey="Loye J">JE Loye</name>
</author>
<author>
<name sortKey="Martin, Ap" uniqKey="Martin A">AP Martin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cully, Jf" uniqKey="Cully J">JF Cully</name>
</author>
<author>
<name sortKey="Williams, Es" uniqKey="Williams E">ES Williams</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cully, Jf" uniqKey="Cully J">JF Cully</name>
</author>
<author>
<name sortKey="Collinge, Sk" uniqKey="Collinge S">SK Collinge</name>
</author>
<author>
<name sortKey="Vannimwegen, Re" uniqKey="Vannimwegen R">RE VanNimwegen</name>
</author>
<author>
<name sortKey="Ray, C" uniqKey="Ray C">C Ray</name>
</author>
<author>
<name sortKey="Johnson, Wc" uniqKey="Johnson W">WC Johnson</name>
</author>
<author>
<name sortKey="Thiagarajan, B" uniqKey="Thiagarajan B">B Thiagarajan</name>
</author>
<author>
<name sortKey="Conlin, Db" uniqKey="Conlin D">DB Conlin</name>
</author>
<author>
<name sortKey="Holmes, Be" uniqKey="Holmes B">BE Holmes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eisen, Rj" uniqKey="Eisen R">RJ Eisen</name>
</author>
<author>
<name sortKey="Bearden, Sw" uniqKey="Bearden S">SW Bearden</name>
</author>
<author>
<name sortKey="Ap, Wilder" uniqKey="Ap W">Wilder Ap</name>
</author>
<author>
<name sortKey="Montenieri, Ja" uniqKey="Montenieri J">JA Montenieri</name>
</author>
<author>
<name sortKey="Antolin, Mf" uniqKey="Antolin M">MF Antolin</name>
</author>
<author>
<name sortKey="Gage, Kl" uniqKey="Gage K">KL Gage</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eisen, Rj" uniqKey="Eisen R">RJ Eisen</name>
</author>
<author>
<name sortKey="Petersen, Jm" uniqKey="Petersen J">JM Petersen</name>
</author>
<author>
<name sortKey="Higgins, Cl" uniqKey="Higgins C">CL Higgins</name>
</author>
<author>
<name sortKey="Wong, D" uniqKey="Wong D">D Wong</name>
</author>
<author>
<name sortKey="Levy, Ce" uniqKey="Levy C">CE Levy</name>
</author>
<author>
<name sortKey="Mead, Ps" uniqKey="Mead P">PS Mead</name>
</author>
<author>
<name sortKey="Schreifer, Me" uniqKey="Schreifer M">ME Schreifer</name>
</author>
<author>
<name sortKey="Griffith, Ks" uniqKey="Griffith K">KS Griffith</name>
</author>
<author>
<name sortKey="Gage, Kl" uniqKey="Gage K">KL Gage</name>
</author>
<author>
<name sortKey="Beard, Cb" uniqKey="Beard C">CB Beard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Franklin, Ha" uniqKey="Franklin H">HA Franklin</name>
</author>
<author>
<name sortKey="Stapp, P" uniqKey="Stapp P">P Stapp</name>
</author>
<author>
<name sortKey="Cohen, A" uniqKey="Cohen A">A Cohen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gage, Kl" uniqKey="Gage K">KL Gage</name>
</author>
<author>
<name sortKey="Kosoy, My" uniqKey="Kosoy M">MY Kosoy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Garrett, Mg" uniqKey="Garrett M">MG Garrett</name>
</author>
<author>
<name sortKey="Franklin, Wl" uniqKey="Franklin W">WL Franklin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="George, Db" uniqKey="George D">DB George</name>
</author>
<author>
<name sortKey="Webb, Ct" uniqKey="Webb C">CT Webb</name>
</author>
<author>
<name sortKey="Pepin, Km" uniqKey="Pepin K">KM Pepin</name>
</author>
<author>
<name sortKey="Savage, Lt" uniqKey="Savage L">LT Savage</name>
</author>
<author>
<name sortKey="Antolin, Mf" uniqKey="Antolin M">MF Antolin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Girard, Jm" uniqKey="Girard J">JM Girard</name>
</author>
<author>
<name sortKey="Wagner, Dm" uniqKey="Wagner D">DM Wagner</name>
</author>
<author>
<name sortKey="Vogler, Aj" uniqKey="Vogler A">AJ Vogler</name>
</author>
<author>
<name sortKey="Keys, C" uniqKey="Keys C">C Keys</name>
</author>
<author>
<name sortKey="Allender, Cj" uniqKey="Allender C">CJ Allender</name>
</author>
<author>
<name sortKey="Drickamer, Lc" uniqKey="Drickamer L">LC Drickamer</name>
</author>
<author>
<name sortKey="Keim, P" uniqKey="Keim P">P Keim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hanson, Da" uniqKey="Hanson D">DA Hanson</name>
</author>
<author>
<name sortKey="Britten, Hb" uniqKey="Britten H">HB Britten</name>
</author>
<author>
<name sortKey="Restani, M" uniqKey="Restani M">M Restani</name>
</author>
<author>
<name sortKey="Washburn, Lr" uniqKey="Washburn L">LR Washburn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Holmes, Be" uniqKey="Holmes B">BE Holmes</name>
</author>
<author>
<name sortKey="Foresman, Kr" uniqKey="Foresman K">KR Foresman</name>
</author>
<author>
<name sortKey="Matchett, Mr" uniqKey="Matchett M">MR Matchett</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hoogland, Jl" uniqKey="Hoogland J">JL. Hoogland</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hoogland, Jl" uniqKey="Hoogland J">JL. Hoogland</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jones, Ph" uniqKey="Jones P">PH Jones</name>
</author>
<author>
<name sortKey="Britten, Hb" uniqKey="Britten H">HB Britten</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Johnson, Tl" uniqKey="Johnson T">TL Johnson</name>
</author>
<author>
<name sortKey="Cully, Jf" uniqKey="Cully J">JF Cully</name>
</author>
<author>
<name sortKey="Collinge, Sk" uniqKey="Collinge S">SK Collinge</name>
</author>
<author>
<name sortKey="Ray, C" uniqKey="Ray C">C Ray</name>
</author>
<author>
<name sortKey="Frey, Cm" uniqKey="Frey C">CM Frey</name>
</author>
<author>
<name sortKey="Sandercock, Bk" uniqKey="Sandercock B">BK Sandercock</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Knowles, Cj" uniqKey="Knowles C">CJ. Knowles</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kotliar, Nb" uniqKey="Kotliar N">NB Kotliar</name>
</author>
<author>
<name sortKey="Miller, Bj" uniqKey="Miller B">BJ Miller</name>
</author>
<author>
<name sortKey="Reading, Rr" uniqKey="Reading R">RR Reading</name>
</author>
<author>
<name sortKey="Clark, Tw" uniqKey="Clark T">TW Clark</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kraft, J" uniqKey="Kraft J">J Kraft</name>
</author>
<author>
<name sortKey="Stapp, P" uniqKey="Stapp P">P Stapp</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ladeau, Sl" uniqKey="Ladeau S">SL LaDeau</name>
</author>
<author>
<name sortKey="Kilpatrick, Am" uniqKey="Kilpatrick A">AM Kilpatrick</name>
</author>
<author>
<name sortKey="Marra, Pp" uniqKey="Marra P">PP Marra</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Leroy, Em" uniqKey="Leroy E">EM Leroy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lloyd Smith, Jo" uniqKey="Lloyd Smith J">JO Lloyd-Smith</name>
</author>
<author>
<name sortKey="George, D" uniqKey="George D">D George</name>
</author>
<author>
<name sortKey="Pepin, Km" uniqKey="Pepin K">KM Pepin</name>
</author>
<author>
<name sortKey="Pitzer, Ve" uniqKey="Pitzer V">VE Pitzer</name>
</author>
<author>
<name sortKey="Pulliam, Jrc" uniqKey="Pulliam J">JRC Pulliam</name>
</author>
<author>
<name sortKey="Dobson, Ap" uniqKey="Dobson A">AP Dobson</name>
</author>
<author>
<name sortKey="Hudosn, Pj" uniqKey="Hudosn P">PJ Hudosn</name>
</author>
<author>
<name sortKey="Grenfell, Bt" uniqKey="Grenfell B">BT Grenfell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lowell, Jl" uniqKey="Lowell J">JL Lowell</name>
</author>
<author>
<name sortKey="Antolin, Mf" uniqKey="Antolin M">MF Antolin</name>
</author>
<author>
<name sortKey="Andersen, Gl" uniqKey="Andersen G">GL Andersen</name>
</author>
<author>
<name sortKey="Hu, P" uniqKey="Hu P">P Hu</name>
</author>
<author>
<name sortKey="Stowkowski, Rp" uniqKey="Stowkowski R">RP Stowkowski</name>
</author>
<author>
<name sortKey="Gage, Kl" uniqKey="Gage K">KL Gage</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Matchett, Mr" uniqKey="Matchett M">MR Matchett</name>
</author>
<author>
<name sortKey="Biggins, De" uniqKey="Biggins D">DE Biggins</name>
</author>
<author>
<name sortKey="Carlson, V" uniqKey="Carlson V">V Carlson</name>
</author>
<author>
<name sortKey="Powell, B" uniqKey="Powell B">B Powell</name>
</author>
<author>
<name sortKey="Rocke, T" uniqKey="Rocke T">T Rocke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcgee, Bk" uniqKey="Mcgee B">BK McGee</name>
</author>
<author>
<name sortKey="Butler, Mj" uniqKey="Butler M">MJ Butler</name>
</author>
<author>
<name sortKey="Pence, Db" uniqKey="Pence D">DB Pence</name>
</author>
<author>
<name sortKey="Alexander, Jl" uniqKey="Alexander J">JL Alexander</name>
</author>
<author>
<name sortKey="Nissen, Jb" uniqKey="Nissen J">JB Nissen</name>
</author>
<author>
<name sortKey="Ballard, Wb" uniqKey="Ballard W">WB Ballard</name>
</author>
<author>
<name sortKey="Nicholson, Kl" uniqKey="Nicholson K">KL Nicholson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Meyer, B" uniqKey="Meyer B">B Meyer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Olival, Kj" uniqKey="Olival K">KJ Olival</name>
</author>
<author>
<name sortKey="Hayman, Dts" uniqKey="Hayman D">DTS Hayman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pauli, Jn" uniqKey="Pauli J">JN Pauli</name>
</author>
<author>
<name sortKey="Buskirk, Sw" uniqKey="Buskirk S">SW Buskirk</name>
</author>
<author>
<name sortKey="Williams, Es" uniqKey="Williams E">ES Williams</name>
</author>
<author>
<name sortKey="Edwards, Wha" uniqKey="Edwards W">WHA Edwards</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rasmussen, Sa" uniqKey="Rasmussen S">SA Rasmussen</name>
</author>
<author>
<name sortKey="Gerber, Si" uniqKey="Gerber S">SI Gerber</name>
</author>
<author>
<name sortKey="Swerdlow, Dl" uniqKey="Swerdlow D">DL Swerdlow</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Roach, Jl" uniqKey="Roach J">JL Roach</name>
</author>
<author>
<name sortKey="Stapp, P" uniqKey="Stapp P">P Stapp</name>
</author>
<author>
<name sortKey="Van Horne, B" uniqKey="Van Horne B">B Van Horne</name>
</author>
<author>
<name sortKey="Antolin, Mf" uniqKey="Antolin M">MF Antolin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Salkeld, Dj" uniqKey="Salkeld D">DJ Salkeld</name>
</author>
<author>
<name sortKey="Stapp, P" uniqKey="Stapp P">P Stapp</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Salkeld, Dj" uniqKey="Salkeld D">DJ Salkeld</name>
</author>
<author>
<name sortKey="Stapp, P" uniqKey="Stapp P">P Stapp</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Salkeld, Dj" uniqKey="Salkeld D">DJ Salkeld</name>
</author>
<author>
<name sortKey="Eisen, Rj" uniqKey="Eisen R">RJ Eisen</name>
</author>
<author>
<name sortKey="Stapp, P" uniqKey="Stapp P">P Stapp</name>
</author>
<author>
<name sortKey="Wilder, Ap" uniqKey="Wilder A">AP Wilder</name>
</author>
<author>
<name sortKey="Lowell, J" uniqKey="Lowell J">J Lowell</name>
</author>
<author>
<name sortKey="Tripp, Dw" uniqKey="Tripp D">DW Tripp</name>
</author>
<author>
<name sortKey="Albertson, D" uniqKey="Albertson D">D Albertson</name>
</author>
<author>
<name sortKey="Antolin, Mf" uniqKey="Antolin M">MF Antolin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Salkeld, Dj" uniqKey="Salkeld D">DJ Salkeld</name>
</author>
<author>
<name sortKey="Salathe, M" uniqKey="Salathe M">M Salathe</name>
</author>
<author>
<name sortKey="Stapp, P" uniqKey="Stapp P">P Stapp</name>
</author>
<author>
<name sortKey="Jones, Jh" uniqKey="Jones J">JH Jones</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Savage, Lt" uniqKey="Savage L">LT Savage</name>
</author>
<author>
<name sortKey="Reich, Rm" uniqKey="Reich R">RM Reich</name>
</author>
<author>
<name sortKey="Hartley, Lm" uniqKey="Hartley L">LM Hartley</name>
</author>
<author>
<name sortKey="Stapp, P" uniqKey="Stapp P">P Stapp</name>
</author>
<author>
<name sortKey="Antolin, Mf" uniqKey="Antolin M">MF Antolin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Seery, Db" uniqKey="Seery D">DB Seery</name>
</author>
<author>
<name sortKey="Biggins, De" uniqKey="Biggins D">DE Biggins</name>
</author>
<author>
<name sortKey="Montenieri, Ja" uniqKey="Montenieri J">JA Montenieri</name>
</author>
<author>
<name sortKey="Enscore, Re" uniqKey="Enscore R">RE Enscore</name>
</author>
<author>
<name sortKey="Tanda, Dt" uniqKey="Tanda D">DT Tanda</name>
</author>
<author>
<name sortKey="Gage, Kl" uniqKey="Gage K">KL Gage</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Smith, Gjd" uniqKey="Smith G">GJD Smith</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Snall, T" uniqKey="Snall T">T Snall</name>
</author>
<author>
<name sortKey="O Hara, Rb" uniqKey="O Hara R">RB O'Hara</name>
</author>
<author>
<name sortKey="Ray, C" uniqKey="Ray C">C Ray</name>
</author>
<author>
<name sortKey="Collinge, Sk" uniqKey="Collinge S">SK Collinge</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Romain, K" uniqKey="Romain K">K Romain</name>
</author>
<author>
<name sortKey="Tripp, Dw" uniqKey="Tripp D">DW Tripp</name>
</author>
<author>
<name sortKey="Salkeld, Dj" uniqKey="Salkeld D">DJ Salkeld</name>
</author>
<author>
<name sortKey="Antolin, Mf" uniqKey="Antolin M">MF. Antolin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stapp, P" uniqKey="Stapp P">P Stapp</name>
</author>
<author>
<name sortKey="Antolin, Mf" uniqKey="Antolin M">MF Antolin</name>
</author>
<author>
<name sortKey="Ball, M" uniqKey="Ball M">M Ball</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stapp, P" uniqKey="Stapp P">P Stapp</name>
</author>
<author>
<name sortKey="Salkeld, Dj" uniqKey="Salkeld D">DJ Salkeld</name>
</author>
<author>
<name sortKey="Eisen, Rj" uniqKey="Eisen R">RJ Eisen</name>
</author>
<author>
<name sortKey="Pappert, R" uniqKey="Pappert R">R Pappert</name>
</author>
<author>
<name sortKey="Young, J" uniqKey="Young J">J Young</name>
</author>
<author>
<name sortKey="Carter, Lg" uniqKey="Carter L">LG Carter</name>
</author>
<author>
<name sortKey="Gage, Kl" uniqKey="Gage K">KL Gage</name>
</author>
<author>
<name sortKey="Tripp, Dw" uniqKey="Tripp D">DW Tripp</name>
</author>
<author>
<name sortKey="Antolin, Mf" uniqKey="Antolin M">MF Antolin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stapp, P" uniqKey="Stapp P">P Stapp</name>
</author>
<author>
<name sortKey="Salkeld, Dj" uniqKey="Salkeld D">DJ Salkeld</name>
</author>
<author>
<name sortKey="Franklin, Ha" uniqKey="Franklin H">HA Franklin</name>
</author>
<author>
<name sortKey="Kraft, Jp" uniqKey="Kraft J">JP Kraft</name>
</author>
<author>
<name sortKey="Tripp, Dw" uniqKey="Tripp D">DW Tripp</name>
</author>
<author>
<name sortKey="Antolin, Mf" uniqKey="Antolin M">MF Antolin</name>
</author>
<author>
<name sortKey="Gage, Kl" uniqKey="Gage K">KL Gage</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thomas, Re" uniqKey="Thomas R">RE Thomas</name>
</author>
<author>
<name sortKey="Beard, Ml" uniqKey="Beard M">ML Beard</name>
</author>
<author>
<name sortKey="Quan, Tj" uniqKey="Quan T">TJ Quan</name>
</author>
<author>
<name sortKey="Carter, Lg" uniqKey="Carter L">LG Carter</name>
</author>
<author>
<name sortKey="Barnes, Am" uniqKey="Barnes A">AM Barnes</name>
</author>
<author>
<name sortKey="Hopla, Ce" uniqKey="Hopla C">CE Hopla</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tripp, Dw" uniqKey="Tripp D">DW Tripp</name>
</author>
<author>
<name sortKey="Gage, Kl" uniqKey="Gage K">KL Gage</name>
</author>
<author>
<name sortKey="Montenieri, Ja" uniqKey="Montenieri J">JA Montenieri</name>
</author>
<author>
<name sortKey="Antolin, Mf" uniqKey="Antolin M">MF Antolin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Webb, Ct" uniqKey="Webb C">CT Webb</name>
</author>
<author>
<name sortKey="Brooks, Cp" uniqKey="Brooks C">CP Brooks</name>
</author>
<author>
<name sortKey="Gage, Kl" uniqKey="Gage K">KL Gage</name>
</author>
<author>
<name sortKey="Antolin, Mf" uniqKey="Antolin M">MF Antolin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wilder, Ap" uniqKey="Wilder A">AP Wilder</name>
</author>
<author>
<name sortKey="Eisen, Rj" uniqKey="Eisen R">RJ Eisen</name>
</author>
<author>
<name sortKey="Bearden, Sw" uniqKey="Bearden S">SW Bearden</name>
</author>
<author>
<name sortKey="Montenieri, Ja" uniqKey="Montenieri J">JA Montenieri</name>
</author>
<author>
<name sortKey="Tripp, Dw" uniqKey="Tripp D">DW Tripp</name>
</author>
<author>
<name sortKey="Brinkerhoff, Rj" uniqKey="Brinkerhoff R">RJ Brinkerhoff</name>
</author>
<author>
<name sortKey="Gage, Kl" uniqKey="Gage K">KL Gage</name>
</author>
<author>
<name sortKey="Antolin, Mf" uniqKey="Antolin M">MF Antolin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Williams, Sk" uniqKey="Williams S">SK Williams</name>
</author>
<author>
<name sortKey="Schotthoeffer, Am" uniqKey="Schotthoeffer A">AM Schotthoeffer</name>
</author>
<author>
<name sortKey="Montenieri, Ja" uniqKey="Montenieri J">JA Montenieri</name>
</author>
<author>
<name sortKey="Holmes, Jl" uniqKey="Holmes J">JL Holmes</name>
</author>
<author>
<name sortKey="Vetter, Sm" uniqKey="Vetter S">SM Vetter</name>
</author>
<author>
<name sortKey="Gage, Kl" uniqKey="Gage K">KL Gage</name>
</author>
<author>
<name sortKey="Bearden, Sw" uniqKey="Bearden S">SW Bearden</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wong, D" uniqKey="Wong D">D Wong</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Bioscience</journal-id>
<journal-id journal-id-type="iso-abbrev">Bioscience</journal-id>
<journal-id journal-id-type="hwp">bioscience</journal-id>
<journal-id journal-id-type="publisher-id">bioscience</journal-id>
<journal-title-group>
<journal-title>Bioscience</journal-title>
</journal-title-group>
<issn pub-type="ppub">0006-3568</issn>
<issn pub-type="epub">1525-3244</issn>
<publisher>
<publisher-name>Oxford University Press</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmc">7109792</article-id>
<article-id pub-id-type="doi">10.1093/biosci/biv179</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Overview Articles</subject>
</subj-group>
<subj-group subj-group-type="category-oup-series">
<subject>Editor's Choice</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Ecological Traits Driving the Outbreaks and Emergence of Zoonotic Pathogens</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Salkeld</surname>
<given-names>Daniel J</given-names>
</name>
<xref ref-type="aff" rid="aff1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Stapp</surname>
<given-names>Paul</given-names>
</name>
<xref ref-type="aff" rid="aff1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Tripp</surname>
<given-names>Daniel W</given-names>
</name>
<xref ref-type="aff" rid="aff1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Gage</surname>
<given-names>Kenneth L</given-names>
</name>
<xref ref-type="aff" rid="aff1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Lowell</surname>
<given-names>Jennifer</given-names>
</name>
<xref ref-type="aff" rid="aff1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Webb</surname>
<given-names>Colleen T</given-names>
</name>
<xref ref-type="aff" rid="aff1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Brinkerhoff</surname>
<given-names>R Jory</given-names>
</name>
<xref ref-type="aff" rid="aff1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Antolin</surname>
<given-names>Michael F</given-names>
</name>
<xref ref-type="aff" rid="aff1"></xref>
</contrib>
</contrib-group>
<aff id="aff1">Dan Salkeld (
<email>dansalkeld@gmail.com</email>
) is an ecologist and epidemiologist affiliated with the Department of Biology at Colorado State University. Paul Stapp is a professor in the Department of Biological Science at California State University, in Fullerton. Dan Tripp is a biologist at the Colorado Division of Parks and Wildlife, in Fort Collins. Ken Gage is the chief of the Flea-Borne Diseases Laboratory, of CDC's Bacterial Zoonoses Branch, Division of Vector-Borne Infectious Diseases, in Fort Collins, Colorado. Jen Lowell is a professor of Health Sciences at Carroll College, in Helena, Montana. Colleen Webb and Michael Antolin are professors in the Department of Biology at Colorado State University, with interests in disease ecology and evolution. Jory Brinkerhoff is a professor at the Department of Biology at the University of Richmond, in Virginia.</aff>
<pub-date pub-type="ppub">
<day>01</day>
<month>2</month>
<year>2016</year>
</pub-date>
<pub-date pub-type="epub" iso-8601-date="2016-01-13">
<day>13</day>
<month>1</month>
<year>2016</year>
</pub-date>
<volume>66</volume>
<issue>2</issue>
<fpage>118</fpage>
<lpage>129</lpage>
<permissions>
<copyright-statement>© The Author(s) 2016. Published by Oxford University Press on behalf of the American Institute of Biological Sciences. All rights reserved. For Permissions, please e-mail:
<email>journals.permissions@oup.com</email>
.</copyright-statement>
<copyright-year>2016</copyright-year>
<license>
<license-p>This article is made available via the PMC Open Access Subset for unrestricted re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the COVID-19 pandemic or until permissions are revoked in writing. Upon expiration of these permissions, PMC is granted a perpetual license to make this article available via PMC and Europe PMC, consistent with existing copyright protections.</license-p>
</license>
</permissions>
<self-uri xlink:href="biv179.pdf"></self-uri>
<abstract>
<title>Abstract</title>
<p>Infectious diseases that are transmitted from wildlife hosts to humans, such as the Ebola virus and MERS virus, can be difficult to understand because the pathogens emerge from complex multifaceted ecological interactions. We use a wildlife–pathogen system—prairie dogs (Cynomys ludovicianus) and the plague bacterium (Yersinia pestis)—to describe aspects of disease ecology that apply to many cases of emerging infectious disease. We show that the monitoring and surveillance of hosts and vectors during the buildup to disease outbreaks are crucial for understanding pathogen-transmission dynamics and that a community-ecology framework is important to identify reservoir hosts. Incorporating multidisciplinary approaches and frameworks may improve wildlife–pathogen surveillance and our understanding of seemingly sporadic and rare pathogen outbreaks.</p>
</abstract>
<kwd-group>
<kwd>Yersinia pestis</kwd>
<kwd>prairie dog</kwd>
<kwd>plague</kwd>
<kwd>disease ecology</kwd>
</kwd-group>
<funding-group>
<award-group>
<funding-source>
<named-content content-type="funder-name">Short Grass Steppe Long Term Ecological Research Grants</named-content>
</funding-source>
<award-id>DEB-0217631, 0823405</award-id>
</award-group>
<award-group>
<funding-source>
<named-content content-type="funder-name">Ecology of Infectious Diseases programs</named-content>
</funding-source>
<award-id>DEB 0224328, EID 0327052</award-id>
</award-group>
</funding-group>
<counts>
<page-count count="12"></page-count>
</counts>
</article-meta>
</front>
<body>
<sec id="sec1">
<title>Outbreaks of infectious zoonotic pathogens</title>
<p>Novel infectious diseases that spread from wildlife species to human populations can have profound impacts ranging from individual morbidity and mortality to global pandemics, with consequences for public health, economies, and culture. Zoonotic diseases (transmitted from animals to humans) result from the “spillover” of the pathogen from wildlife species into humans—with the initial transmission in human populations possibly going undetected or undiagnosed—followed by wider-scale outbreaks that take place before effective therapies are available or developed. Zoonotic spillovers can be difficult to predict because they result from complex multifaceted ecological interactions and often exhibit patterns of sporadic epidemics that affect local host populations, interspersed by periods of “disappearance” into long-term quiescent phases of cryptic persistence in unknown reservoirs. These events do not lend themselves to accurate disease forecasting and prediction.</p>
<p>Recent outbreaks of the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) and the Ebola virus illustrate these challenges. MERS-CoV was first discovered in a patient in Saudi Arabia in 2012 and has since infected more than 950 people globally, resulting in more than 350 deaths (Rasmussen et al.
<xref rid="bib41" ref-type="bibr">2015</xref>
). Camels are believed to be the infectious source for humans, and retrospective antibody surveys indicate that the virus circulated in camels for a substantial time—at least 20 years—before MERS was identified in humans (e.g., Azhar et al.
<xref rid="bib3" ref-type="bibr">2014</xref>
, Meyer et al.
<xref rid="bib38" ref-type="bibr">2014</xref>
). But this type of pathogen discovery does not tell the whole story of spillover and zoonosis emergence. The 2014 Ebola virus outbreak in West Africa revealed that virus transmission can change from a local, rural, and rare zoonotic spillover to an urban epidemic with thousands of fatalities. With rapid international transport, several infected travelers died after transit from West Africa to other parts of the word, which demonstrates the potential of a worldwide epidemic. Although fruit bats have been touted as potential Ebola virus reservoirs, no consensus exists on the identity of the Ebola virus reservoir species or even of the natural history of the virus in putative wildlife hosts (Olival and Hayman
<xref rid="bib39" ref-type="bibr">2014</xref>
). The ongoing MERS-CoV and Ebola virus outbreaks underscore the inherent difficulties in predicting the emergence, transmission, and sporadic outbreaks of zoonotic pathogens that persist in multihost systems but lack a clearly identified wildlife reservoir.</p>
<p>This pattern of events—emerging outbreaks of disease, global travel, unidentified reservoir hosts, and variable transmission routes—has often been repeated. MERS-CoV and Ebola virus are simply the latest examples; the list of recently emerged pathogens includes Severe Acute Respiratory Syndrome (SARS) coronavirus, HIV, Chikungunya virus, and tick-borne pathogens (e.g.,
<italic>Borrelia burgdorferi</italic>
, which causes Lyme disease). Emerging pathogens such as these constitute an important public health issue but also create problems for wildlife conservation and management. For example, the arrival of West Nile virus in the United States reduced native bird populations (LaDeau et al.
<xref rid="bib32" ref-type="bibr">2007</xref>
). Large-scale mortality of wildlife (lowland gorillas) has been attributed to Ebola virus spread (Leroy et al.
<xref rid="bib33" ref-type="bibr">2004</xref>
). Furthermore, control initiatives to protect public health from disease originating in wildlife may involve culling and other disruptions of wildlife (e.g., badger culling and bovine tuberculosis in the United Kingdom), which gives rise to controversies over the value of ecosystem function, protection, and environmental ethics.</p>
<p>Ideally, to control or predict the size and frequency of outbreaks, we should understand how pathogens persist in the cryptic phase, and we need to identify and predict conditions that cause outbreaks. Persistence and outbreaks can be affected by rates of transmission that are influenced by multiple factors, such as rainfall and temperature, host and vector abundance, exposure rates, and host behavior. But not all hosts are equal: Pathogens often display broad host ranges, infecting multiple host species that vary in predisposition to infectiousness, susceptibility to disease, and modes of transmission (e.g., direct contact, vector borne, and environmental exposure). Detection of the pathogen can be difficult if incidence becomes so low that ongoing surveillance efforts cannot detect outbreaks without an increase in sampling efforts. Similarly, efforts to study pathogen ecology may be stymied by environments that present logistic challenges for field studies—for instance, subterranean burrows, marine environments, forest canopies, and cave networks—and therefore affect our ability to detect disease dynamics before a full-scale outbreak is underway.</p>
</sec>
<sec id="sec2">
<title>The prairie dog–plague
<italic>(Yersinia pestis)</italic>

disease system</title>
<p>As an example of the patterns and properties of emerging zoonotic pathogens, we describe research on the ecology and epidemiology of
<italic>Yersinia pestis</italic>
, the bacterium that causes plague, on grasslands of the Great Plains of North America. Plague is most famous for the Black Death that devastated human populations of medieval Europe beginning in 1347 and persisting with repeated outbreaks for four centuries. During the late nineteenth century, plague spread from its endemic range in Asia to Africa and the Americas, and outbreaks still cause hundreds of human cases annually, especially in Africa (Gage and Kosoy
<xref rid="bib19" ref-type="bibr">2005</xref>
). Introduced into the United States circa 1900,
<italic>Y. pestis</italic>
is now established and affects wildlife populations throughout the western United States, with occasional spillover to humans (approximately 10 cases per year) and domestic animals (Antolin et al.
<xref rid="bib1" ref-type="bibr">2002</xref>
, Gage and Kosoy
<xref rid="bib19" ref-type="bibr">2005</xref>
).</p>
<p>On the Great Plains, plague sporadically erupts in outbreaks that decimate populations of black-tailed prairie dogs (
<italic>Cynomys ludovicianus</italic>
; hereafter,
<italic>prairie dogs</italic>
). Prairie dogs are diurnal, social ground squirrels (figure
<xref ref-type="fig" rid="fig1">1</xref>
) that occupy spatially distinct colonies that can extend across several hundred hectares of grassland habitat. Within colonies, prairie dogs are organized into smaller social groups called coteries (1–2 adult males, 2–4 adult females, yearlings and juvenile offspring) that inhabit a well-developed burrow system within a territory that they defend from neighboring individuals (Hoogland
<xref rid="bib25" ref-type="bibr">1995</xref>
). During plague outbreaks, it is common for 95%–100% of individuals in colonies to die, making plague the most important nonanthropogenic threat to prairie dog populations (Cully and Williams 2001, Antolin et al.
<xref rid="bib1" ref-type="bibr">2002</xref>
, Pauli et al.
<xref rid="bib40" ref-type="bibr">2006</xref>
), whose abundance was already reduced (estimated as high as 90%) as a result of habitat loss and poisoning programs for agriculture and urban development. Plague's impact in altering the prairie ecosystem can be profound because prairie dogs are ecosystem engineers that modify the environment by their grazing and burrowing activities and thereby can create habitat for a variety of other species (Antolin et al.
<xref rid="bib1" ref-type="bibr">2002</xref>
, Kotliar et al.
<xref rid="bib30" ref-type="bibr">2006</xref>
). Consequently, plague-induced die-offs can have effects that reverberate throughout the prairie ecosystem. For example, the black-footed ferret (
<italic>Mustela nigripes</italic>
), one of the most endangered mammals in the world, depends on large complexes of prairie dog colonies as its primary source of prey and is itself highly susceptible to plague (Antolin et al.
<xref rid="bib1" ref-type="bibr">2002</xref>
, Matchett et al.
<xref rid="bib36" ref-type="bibr">2010</xref>
). Here, we describe recent research into the plague–prairie dog system, which employed approaches such as community ecology, population biology, and epidemiology. We use this investigation as a model for illustrating how disease ecology may prove helpful in developing strategies for understanding and predicting the emergence of other pathogens, such as MERS-CoV or Ebola virus.</p>
<fig id="fig1" orientation="portrait" position="float">
<label>Figure 1.</label>
<caption>
<p>Prairie dogs (left) are burrowing, herbivorous, diurnal ground squirrels that inhabit the grasslands and shrublands of the Great Plains of North America (photograph: Austin Allison, Colorado Parks and Wildlife). The most widespread of the five species, the black-tailed prairie dog (Cynomys ludovicianus) is the most social and highly susceptible to plague mortality (Cully and Williams
<xref rid="bib14" ref-type="bibr">2001</xref>
). In suitable habitat, black-tailed prairie dogs can occupy large (hundreds of hectares), densely populated colonies. Within a colony, prairie dogs live in territorially defended social groups called coteries, consisting of 1–2 adult males, 2–4 adult females, yearlings, and juvenile offspring (Hoogland
<xref rid="bib25" ref-type="bibr">1995</xref>
). Prairie dogs are commonly infested with fleas: 88% of prairie dogs in Colorado had fleas, with an average of 14.3 fleas per infested host (Tripp et al.
<xref rid="bib56" ref-type="bibr">2009</xref>
). The vast majority of fleas were one of three species: Oropsylla hirsuta (right, photograph: Dan Tripp, Colorado Parks and Wildlife), O. tuberculata cynomuris, and Pulex simulans. Except for P. simulans, which is also found on carnivores, the fleas associated with prairie dogs are rarely found on other mammals (Brinkerhoff et al.
<xref rid="bib9" ref-type="bibr">2006</xref>
, McGee et al.
<xref rid="bib37" ref-type="bibr">2006</xref>
, Salkeld et al.
<xref rid="bib45" ref-type="bibr">2007</xref>
, Stapp et al.
<xref rid="bib54" ref-type="bibr">2009</xref>
, Tripp et al.
<xref rid="bib56" ref-type="bibr">2009</xref>
).</p>
</caption>
<graphic xlink:href="biv179fig1"></graphic>
</fig>
</sec>
<sec id="sec3">
<title>Variation in modes of transmission</title>
<p>The plague bacterium possesses multiple modes of transmission. Classically, flea-borne transmission was thought to be most efficient after
<italic>Y. pestis</italic>
forms a biofilm that blocks the flea's proventriculus and midgut, typically 2–3 weeks postinfection. The blockage causes fleas to starve and escalate feeding attempts, which increases
<italic>Y. pestis</italic>
transmission (Bacot and Martin
<xref rid="bib4" ref-type="bibr">1914</xref>
, Eisen et al.
<xref rid="bib16" ref-type="bibr">2006</xref>
, Wilder et al.
<xref rid="bib58" ref-type="bibr">2008</xref>
). Black-tailed prairie dogs are most commonly infested by the prairie dog flea
<italic>Oropsylla hirsuta</italic>
(figure
<xref ref-type="fig" rid="fig1">1</xref>
), and although blockage of the proventriculus had been demonstrated in
<italic>O. hirsuta</italic>
, it is an infrequent and inefficient mode of infection in this species (Wilder et al.
<xref rid="bib58" ref-type="bibr">2008</xref>
). An epidemiologic SEI (susceptible–exposed–infected) model suggested that
<italic>Y. pestis</italic>
transmission by blocked fleas is incapable of driving plague outbreaks in prairie dog colonies because of the temporal delay until blockage occurs (Webb et al.
<xref rid="bib57" ref-type="bibr">2006</xref>
). Laboratory investigations have since demonstrated that fleas are also capable of early-phase transmission—that is, transmitting plague during the first few days following ingestion of an infectious blood meal and prior to the development of a proventricular blockage (Eisen et al.
<xref rid="bib16" ref-type="bibr">2006</xref>
, Wilder et al.
<xref rid="bib58" ref-type="bibr">2008</xref>
). Both
<italic>O. hirsuta</italic>
and the other main prairie dog flea,
<italic>Oropsylla tuberculata cynomuris</italic>
, can transmit plague for the 24–48 hours postinfection—and at much higher rates than had been previously measured (Wilder et al.
<xref rid="bib58" ref-type="bibr">2008</xref>
). Models incorporating early-phase transmission have been able to simulate plague dynamics observed during prairie dog die-offs (Eisen et al.
<xref rid="bib16" ref-type="bibr">2006</xref>
, Salkeld et al.
<xref rid="bib46" ref-type="bibr">2010</xref>
, Buhnerkempe et al.
<xref rid="bib12" ref-type="bibr">2011</xref>
).</p>
<p>The plague bacterium can also be spread through direct contact with infected tissue or blood, through trophic or vehicle-borne transmission by consumption of infectious prey or carrion, and through pneumonic transmission via inhalation of respiratory droplets. Prairie dogs are highly social, exhibiting close contact within burrows and while grooming ectoparasites from each other. Like other ground-dwelling squirrels, prairie dogs are known to engage in cannibalism (Hoogland
<xref rid="bib25" ref-type="bibr">1995</xref>
). Therefore, transmission via direct contact may be expected in prairie dogs, and the conditions of subterranean nesting chambers may also be conducive to pneumonic transmission. Laboratory experiments have shown that rodents can be infected with plague by consuming infected prey tissue (Thomas et al.
<xref rid="bib55" ref-type="bibr">1989</xref>
), and pneumonic transmission has been demonstrated between carnivores and between carnivores and humans (Salkeld and Stapp
<xref rid="bib43" ref-type="bibr">2006</xref>
, Wong et al.
<xref rid="bib60" ref-type="bibr">2009</xref>
). Webb and colleagues’ (2006) SEI model, however, suggested that pneumonic transmission is unlikely to be important in driving plague outbreaks, and flea-dusting with insecticides slows or stops die-offs in the field (Seery et al.
<xref rid="bib48" ref-type="bibr">2003</xref>
), implying that vector-borne transmission is likely the predominant mechanism during outbreaks. Although the relative importance of pneumonic, contact, or trophic transmission mechanisms in plague persistence and outbreaks in wild prairie dog colonies remains largely unknown, human exposures are known to have occurred by these routes and by flea-borne transmission (Gage and Kosoy
<xref rid="bib19" ref-type="bibr">2005</xref>
).</p>
</sec>
<sec id="sec4">
<title>Contact rates and transmission dynamics change during the course of a disease outbreak</title>
<p>Until recently, observed patterns of plague outbreaks in prairie dogs suggested that
<italic>Y. pestis</italic>
’ presence in a prairie dog colony caused high and rapid levels of mortality, with colony extinction occurring in a matter of 6–8 weeks after first observation of plague activity (Webb et al.
<xref rid="bib57" ref-type="bibr">2006</xref>
). In northern Colorado, the probability of colony extinction was influenced by the size and fate of adjacent colonies (Stapp et al.
<xref rid="bib52" ref-type="bibr">2004</xref>
, Savage et al.
<xref rid="bib47" ref-type="bibr">2011</xref>
), although the timing of die-offs did not reveal neat colony-to-colony waves of plague spread at a timescale consistent with rapid die-offs. Consequently, one interpretation has been that the bacterium was unlikely to persist within prairie dog populations, and instead, it was thought that plague was normally absent from prairie dog colonies between outbreaks and persisted either in disease-resistant alternate hosts that shared the same habitat (e.g., deer mice,
<italic>Peromyscus maniculatus</italic>
) or in nearby locations, such as the foothills of the Rocky Mountains, with occasional incursions into prairie dog populations (Cully and Williams
<xref rid="bib14" ref-type="bibr">2001</xref>
, Gage and Kosoy
<xref rid="bib19" ref-type="bibr">2005</xref>
, Brinkerhoff et al.
<xref rid="bib10" ref-type="bibr">2009</xref>
).</p>
<p>A combination of intensive fieldwork, laboratory studies, and modeling efforts has resulted in an improved understanding of the dynamics of plague in hosts and vectors during die-offs in prairie dog colonies. During plague outbreaks, both the prevalence and abundance of fleas (
<italic>O. hirsuta, O. cynomuris tuberculata</italic>
, and
<italic>Pulex simulans</italic>
—the last a flea found on both carnivores and prairie dogs) on prairie dogs increase (figure
<xref ref-type="fig" rid="fig2">2</xref>
) as hungry, infected fleas search for living prairie dogs after the death of their hosts (Pauli et al.
<xref rid="bib40" ref-type="bibr">2006</xref>
, Tripp et al.
<xref rid="bib56" ref-type="bibr">2009</xref>
). At the same time, fleas in prairie dog burrows become more abundant, and the prevalence of
<italic>Y. pestis</italic>
in the fleas increases (St. Romain et al.
<xref rid="bib51" ref-type="bibr">2013</xref>
). The close-knit nature of the prairie dog coterie suggests that invasion by
<italic>Y. pestis</italic>
—in an infectious flea or an infected prairie dog—will almost certainly result in exposure to all of the coterie members. When a coterie perishes or is abandoned, the territory is usually absorbed by an adjacent coterie (Hoogland
<xref rid="bib25" ref-type="bibr">1995</xref>
), which would imply that infected and hungry fleas can infest exploring
<italic>Y. pestis</italic>
–naive prairie dogs, which are then carried back to the home coterie, resulting in coterie-to-coterie pathogen transmission. In this scenario, as plague begins to spread, transmission rates snowball because of increased abundance of fleas searching for meals and the consequent increased opportunities for
<italic>Y. pestis</italic>
transmission (Tripp et al.
<xref rid="bib56" ref-type="bibr">2009</xref>
).</p>
<fig id="fig2" orientation="portrait" position="float">
<label>Figure 2.</label>
<caption>
<p>A conceptual representation of the anatomy of a plague outbreak in a prairie dog colony. Field observations show that plague activity may be ongoing several months prior to a recognized prairie dog die-off (St. Romain et al.
<xref rid="bib51" ref-type="bibr">2013</xref>
). High grasshopper mouse abundance is correlated with a higher likelihood of plague outbreak the following year, although grasshopper-mice populations are also affected by Y. pestis activity (Stapp et al.
<xref rid="bib53" ref-type="bibr">2008</xref>
,
<xref rid="bib54" ref-type="bibr">2009</xref>
). The abundance of fleas infected with Y. pestis also rises during the observed outbreaks (Tripp et al.
<xref rid="bib56" ref-type="bibr">2009</xref>
).</p>
</caption>
<graphic xlink:href="biv179fig2"></graphic>
</fig>
<p>Hypothetically, outbreaks may also occur if conditions on colonies exacerbate prairie dog contacts via territorial disputes between coteries and therefore result in greater flea exchange and pathogen transmission between neighboring coteries. Recent observations that prairie dog dispersal is elevated after the disappearance or death of close kin within a coterie (Hoogland
<xref rid="bib26" ref-type="bibr">2013</xref>
) suggest that dispersal and transmission rates may increase substantially as mortality increases. That is, if one or two individuals within a coterie die from plague, remaining individuals may be motivated to disperse, carrying
<italic>Y. pestis</italic>
with them. Although a modeling scenario that incorporated dispersal and breeding seasons did not reveal noticeable changes in plague transmission rates (Salkeld et al.
<xref rid="bib46" ref-type="bibr">2010</xref>
), the relationship between coterie boundary dynamics and prairie dog density requires more investigation, especially under the circumstances of a plague outbreak.</p>
</sec>
<sec id="sec5">
<title>Smoldering disease transmission</title>
<p>Determining the duration of a disease outbreak is not a trivial matter. Despite the sheer numbers of prairie dogs that are killed during plague outbreaks, most mortality occurs belowground (potentially creating a large reservoir of infectious tissue and infectious fleas that may ultimately slow re-establishment of the colony). Carcasses on the surface are removed quickly by scavenging carnivores (on average, in less than 2 days; Boone et al. 2008), and finding a prairie dog carcass is not a common event. Annual monitoring programs that track size and fate of colonies rely on noticeable declines in prairie dog numbers and lack the fine temporal resolution required to accurately describe spatiotemporal patterns of mortality leading up to and during outbreaks. PCR analysis of prairie dog fleas in northern Colorado demonstrates that plague activity can occur for 6–15 months before obvious prairie dog mortality that may signal an outbreak (figure
<xref ref-type="fig" rid="fig2">2</xref>
; St. Romain et al.
<xref rid="bib51" ref-type="bibr">2013</xref>
). In Montana,
<italic>Y. pestis</italic>
-positive fleas have been found in burrows without evidence of ongoing prairie dog die-offs (Hanson et al.
<xref rid="bib23" ref-type="bibr">2007</xref>
), although other studies have struggled to find
<italic>Y. pestis</italic>
persisting in fleas (Holmes et al.
<xref rid="bib24" ref-type="bibr">2006</xref>
).</p>
<p>Further evidence for slow, smoldering pathogen transmission prior to large plague outbreaks and die-offs comes from experimental management—vaccinations and flea-dusting (application of insecticides to prairie dog burrows)—which increased survival of prairie dogs and black-footed ferrets even in the absence of conspicuous plague activity (Biggins et al.
<xref rid="bib6" ref-type="bibr">2010</xref>
, Matchett et al.
<xref rid="bib36" ref-type="bibr">2010</xref>
). In the case of flea-dusting, reduced prairie dog mortality may have occurred because of the suppression of other unrecognized vector-borne pathogens. Increased survival of black-footed ferrets after vaccination may be caused by protection when animals are exposed to soil or carcasses that harbor viable
<italic>Y. pestis.</italic>
A spatially explicit agent-based model also suggested that outbreaks occur as a culmination of plague activity lasting for several months to multiple years, although disease fade-outs were also likely (Salkeld et al.
<xref rid="bib46" ref-type="bibr">2010</xref>
). Taken together, these observations suggest that
<italic>Y. pestis</italic>
transmission can occur at low rates without widespread mortality, making pathogen activity difficult to observe.</p>
<p>Slow, smoldering, cryptic disease transmission in animal populations prior to outbreaks in humans is also a hypothetical explanation for the persistence of pathogens such as MERS-CoV and Ebola virus. For example, MERS-CoV has circulated in camels for at least two decades (Meyer et al.
<xref rid="bib38" ref-type="bibr">2014</xref>
). Presumably, human cases have occurred during that time span but have not been accurately diagnosed. Similarly, the H1N1 “swine-flu” outbreak that was detected initially in Mexico and the United States in 2009—and was thought to have traveled globally within a few weeks of detection—was probably circulating in humans for several months prior to its discovery (Smith et al.
<xref rid="bib49" ref-type="bibr">2009</xref>
). In the case of Ebola virus, the identification of seropositive wildlife hosts normally occurs in the wake of observed human outbreaks, but an early-warning sentinel species has yet to be identified. These observations beg the question of how to develop more effective surveillance for zoonotic pathogens of epidemic and pandemic potential in the early stages of an outbreak.</p>
</sec>
<sec id="sec6">
<title>Pathogen maintenance through metapopulation dynamics</title>
<p>Prairie dog colonies can comprise several thousand individuals and are often separated from one another by several kilometers of uninhabited grasslands (figure
<xref ref-type="fig" rid="fig3">3</xref>
). Colony fates vary among those that experience outbreaks, recover, and then undergo recurrent die-offs (figure
<xref ref-type="fig" rid="fig4">4</xref>
); colonies that experience plague and are never repopulated; and colonies that appear to remain unaffected by plague (Stapp et al.
<xref rid="bib52" ref-type="bibr">2004</xref>
, Augustine et al.
<xref rid="bib2" ref-type="bibr">2008</xref>
, Johnson et al.
<xref rid="bib28" ref-type="bibr">2011</xref>
). Landscape context can affect plague activity: A higher degree of geographic isolation from colonies with plague outbreaks reduces the risk of plague at a given colony (Collinge et al.
<xref rid="bib13" ref-type="bibr">2005</xref>
, Savage et al.
<xref rid="bib47" ref-type="bibr">2011</xref>
). The framework of rapidly occurring die-offs makes plague persistence between outbreaks difficult to explain.</p>
<fig id="fig3" orientation="portrait" position="float">
<label>Figure 3.</label>
<caption>
<p>A map showing black-tailed prairie dog colonies on the Pawnee National Grassland, Colorado, that experienced plague activity during 2003–2008. Colony size is monitored annually in late summer or fall by the US Forest Service, and active prairie dog colony area is determined by the presence of burrows that are cleared of vegetation and cobwebs and/or show signs of fresh digging and/or fresh scat (Savage et al.
<xref rid="bib47" ref-type="bibr">2011</xref>
). Colony area is shown here for the year prior to collapse as a result of Yersinia pestis–induced die-off (confirmed by the screening of fleas or prairie dog carcasses, in most cases). The decline in colony area ranged from 92% to 100% in 20 of 22 colonies and was 35% in colony 81 and 75% in colony 82. Measured declines in colony area were sometimes only observed the year after known plague activity, presumably because burrows may still have been considered active if the die-off had occurred shortly before US Forest Service monitoring.</p>
</caption>
<graphic xlink:href="biv179fig3"></graphic>
</fig>
<fig id="fig4" orientation="portrait" position="float">
<label>Figure 4.</label>
<caption>
<p>A time series of the size of nine prairie dog colonies on the Pawnee National Grassland (PNG), north Colorado, from 1981 to 2010. Sudden declines in colony area can be attributed to plague outbreaks, and in 2004–2008, the presence of Y. pestis was confirmed by postmortem examination of dead prairie dogs, or by polymerase chain reaction (PCR) screening of fleas. Note that the scales of the y-axes vary. The patterns shown here are representative of other PNG prairie dog colonies; on average, 14% of prairie dog colonies experienced die-offs each year (n = 70 colonies active for at least 3 consecutive years; data from 1982 to 2009), although several colonies (23%) have shown no evidence of die-offs. Colonies normally show evidence of repopulation within a year of an outbreak (52%), although it may take several years to re-establish a population size comparable to that prior to the plague outbreak. Some colonies (16%) have never recovered even after more than 20 years (see colony 67).</p>
</caption>
<graphic xlink:href="biv179fig4"></graphic>
</fig>
<p>However, if plague activity begins several months before causing a colony's extinction, then a broader window of opportunity exists for prairie dogs to disperse between colonies, thereby spreading
<italic>Y. pestis.</italic>
Thus, if prairie dog colonies are viewed as a connected network or metapopulation on the landscape (Stapp et al.
<xref rid="bib52" ref-type="bibr">2004</xref>
, Snall et al.
<xref rid="bib50" ref-type="bibr">2008</xref>
, Savage et al.
<xref rid="bib47" ref-type="bibr">2011</xref>
, George et al.
<xref rid="bib21" ref-type="bibr">2013</xref>
), a snapshot of colonies at a particular time would reveal that plague may be absent, smoldering, fading out, or causing die-offs, with local conditions (e.g., flea populations, prairie dog behavior, alternate host densities) determining the likelihood of each colony's fate. In other words, plague persists at the landscape scale because of host spatial dynamics (figure
<xref ref-type="fig" rid="fig5">5</xref>
).</p>
<fig id="fig5" orientation="portrait" position="float">
<label>Figure 5.</label>
<caption>
<p>A conceptual diagram of the metapopulation dynamics of plague and prairie dogs. The perceived abundance of the prairie dog population is shown in gray. The numbers of prairie dogs infected with Yersinia pestis are shown in dark gray. A plague outbreak in population A may cause a die-off in the hosts, but the pathogen is transmitted to nearby populations (light gray arrows). In the new populations, Y. pestis may (a) smolder and transmit slowly (e.g., population B), (b) cause a new outbreak (e.g., population C), or (c) fade out (e.g., population E). Subsequent spread (dark gray arrows) may occur from populations actively experiencing die-offs (e.g., population C to population D) or from populations experiencing smoldering plague transmission (e.g., population B to population C). Across a mosaic of prairie dog colonies on the landscape, plague may therefore be absent, smoldering, fading out, or causing die-offs. Researchers monitoring prairie dog colonies may not notice declines in population density (background gray) in the cases in which fade-out or smoldering transmission occurs; therefore, there is an observer bias in understanding Y. pestis’ presence and spread.</p>
</caption>
<graphic xlink:href="biv179fig5"></graphic>
</fig>
</sec>
<sec id="sec7">
<title>Synchronized outbreaks</title>
<p>If pathogen transmission between relatively isolated and independent host colonies allows for long-term persistence at the landscape level, we must ask these questions: How far and how often does the pathogen spread? The frequency of colony die-offs varies across years, and an epidemiologic challenge is to discover the degree to which different disease clusters are linked. Determining the distance that
<italic>Y. pestis</italic>
travels between and during outbreaks will provide insight into complex underlying mechanisms that dictate long-term persistence of
<italic>Y. pestis</italic>
in the environment. Molecular genetic analyses of
<italic>Y. pestis</italic>
in Colorado (Lowell et al.
<xref rid="bib35" ref-type="bibr">2015</xref>
) revealed locally confined genotypes, suggesting that the clones of bacteria are maintained at local scales representative of rodent dispersal patterns. This supports the idea that distinct
<italic>Y. pestis</italic>
genotypes persist in localized plague foci at spatial scales reflecting prairie dog spatial dynamics and that the transmission and persistence of
<italic>Y. pestis</italic>
are facilitated by prairie dog colonies recovering before subsequent reinvasion by
<italic>Y. pestis</italic>
. Furthermore, genetic evidence does not support the hypothesis that plague outbreaks on the grasslands occur because
<italic>Y. pestis</italic>
is transmitted from a distant maintenance reservoir, such as in the Rocky Mountain foothills, about 100 kilometers (km) from the Pawnee National Grassland (PNG). Interpreted in this way, widespread regional plague activity is the result of
<italic>Y. pestis</italic>
clones propagating locally and simultaneously rather than the result of sweeping clonal spread across the landscape. More systematic sampling ­(spatially and geographically) and improved genotyping of
<italic>Y. pestis</italic>
clones are required to determine the spatial extent of
<italic>Y. pestis</italic>
foci even though favorable climatic conditions spur plague outbreaks at several locales in chorus (Ben Ari et al.
<xref rid="bib5" ref-type="bibr">2011</xref>
, Savage et al.
<xref rid="bib47" ref-type="bibr">2011</xref>
, Lowell et al.
<xref rid="bib35" ref-type="bibr">2015</xref>
).</p>
</sec>
<sec id="sec8">
<title>Pathogen spread on the landscape by host dispersal</title>
<p>The exact mechanism(s) of
<italic>Y. pestis</italic>
movement between colonies are still debated. Given the distances between colonies, some authors have presumed that
<italic>Y. pestis</italic>
is transported by dispersing prairie dogs that are infected or carrying infected fleas (figure
<xref ref-type="fig" rid="fig3">3</xref>
; Girard et al.
<xref rid="bib22" ref-type="bibr">2004</xref>
, Stapp et al.
<xref rid="bib52" ref-type="bibr">2004</xref>
). Field observations of dispersing black-tailed prairie dogs demonstrate that prairie dogs can move easily between nearby colonies, often negotiating distances of 2–7 km (Garrett and Franklin
<xref rid="bib20" ref-type="bibr">1988</xref>
) and occasionally moving up to 10 km (Knowles
<xref rid="bib29" ref-type="bibr">1985</xref>
). These distances readily encompass the estimated mean dispersal distance for plague (6.9 km) generated for a complex of prairie dog colonies in Montana (Snall et al.
<xref rid="bib50" ref-type="bibr">2008</xref>
). Genetic studies suggest that that dispersal and gene flow continues on prairie dog colonies after initial colonization, probably along drainage routes, although there is some isolation by distance (Garrett and Franklin
<xref rid="bib20" ref-type="bibr">1988</xref>
, Roach et al.
<xref rid="bib42" ref-type="bibr">2001</xref>
, Jones and Britten
<xref rid="bib27" ref-type="bibr">2010</xref>
). Studies of prairie dog fleas have failed to show an effect of distance on flea gene flow, suggesting that flea dispersal can be widespread (Jones and Britten
<xref rid="bib27" ref-type="bibr">2010</xref>
, Brinkerhoff et al.
<xref rid="bib11" ref-type="bibr">2011</xref>
). Given that prairie dog dispersal is commonplace, the movement of infected prairie dogs—or the movement of infectious fleas on prairie dogs—can account for a large portion of plague spread and persistence at the landscape level (Stapp et al.
<xref rid="bib52" ref-type="bibr">2004</xref>
) and corroborates recent analyses that show outbreaks can be predicted by connectivity to other towns experiencing plague (as well as current-year climatic conditions). Thus, plague outbreaks cluster in groups of prairie dog colonies with short intercolony distances, whereas isolated colonies experience fewer plague outbreaks (figure
<xref ref-type="fig" rid="fig3">3</xref>
; Savage et al.
<xref rid="bib47" ref-type="bibr">2011</xref>
).</p>
</sec>
<sec id="sec9">
<title>Pathogen spread on the landscape facilitated by interacting species</title>
<p>However, prairie dog dispersal is not universally accepted as the driver of plague spread (Snall et al.
<xref rid="bib50" ref-type="bibr">2008</xref>
, George et al.
<xref rid="bib21" ref-type="bibr">2013</xref>
). Instead,
<italic>Y. pestis</italic>
dispersal may be explained by the wider-ranging behavior of carnivores or other plague-resistant species that carry infected fleas between colonies or through stepwise transmission between individuals of other rodent species (Girard et al.
<xref rid="bib22" ref-type="bibr">2004</xref>
, Snall et al.
<xref rid="bib50" ref-type="bibr">2008</xref>
, George et al.
<xref rid="bib21" ref-type="bibr">2013</xref>
). Coyotes and swift foxes interact closely with prairie dog populations—as predators and as scavengers of prairie dog carcasses, and they also exhibit higher use of prairie dog colony habitat—raising the possibility that predators functionally link colonies (Salkeld et al.
<xref rid="bib45" ref-type="bibr">2007</xref>
, Boone et al.
<xref rid="bib8" ref-type="bibr">2009</xref>
). Furthermore, carnivores are frequently exposed to plague and have been found carrying flea species commonly found on prairie dogs and previously observed as infected with
<italic>Y. pestis</italic>
(e.g.,
<italic>Pulex simulans</italic>
), although
<italic>Y. pestis</italic>
-positive fleas have yet to be found on carnivores (McGee et al.
<xref rid="bib37" ref-type="bibr">2006</xref>
, Salkeld and Stapp
<xref rid="bib43" ref-type="bibr">2006</xref>
, Salkeld et al.
<xref rid="bib45" ref-type="bibr">2007</xref>
, Tripp et al.
<xref rid="bib56" ref-type="bibr">2009</xref>
). It is worth noting that prairie dog– and carnivore-mediated dispersal of
<italic>Y. pestis</italic>
are not mutually exclusive, and the importance of carnivores in the spread of plague will likely vary, depending on the species involved (Brinkerhoff et al.
<xref rid="bib10" ref-type="bibr">2009</xref>
). But
<italic>Y. pestis</italic>
spread on wider-ranging carnivores might explain the higher estimates of plague dispersal estimates in Montana (i.e., 4.5–12.6 km; Snall et al.
<xref rid="bib50" ref-type="bibr">2008</xref>
). Ebola virus transmission dynamics in the context of multiple species movements remains underexplored (Olival and Hayman
<xref rid="bib39" ref-type="bibr">2014</xref>
) but will be complex because of the different scales of movement of bats and primates—and of humans, both domestically and internationally. In the case of MERS-CoV, human-determined camel movements and market economics will also influence pathogen transport.</p>
</sec>
<sec id="sec10">
<title>Surveillance bias and the identification of reservoir hosts</title>
<p>If disease outbreaks are sporadic and difficult to predict, a bias toward studies of the pathogen's ecology during the peaks or aftermaths of the outbreaks will naturally arise. This bias toward postoutbreak studies may lead to overlooking the wildlife species involved in the initial introduction of the disease and an erroneous identification of reservoir hosts. For example, on the PNG, deer mice and ground squirrels are sometimes found seropositive
<italic>after</italic>
a prairie dog die-off but do not seem to be involved in
<italic>Y. pestis</italic>
transmission dynamics before or during the die-off (Stapp et al.
<xref rid="bib53" ref-type="bibr">2008</xref>
). The inherent difficulty in studying rare pathogens prior to noticeable outbreaks is understated, but greater recognition that outbreaks are the zenith of longer-term, possibly cryptic transmission dynamics may allow improved insights into a pathogen's persistence and dynamics by motivating the monitoring and surveillance of wildlife populations prior to outbreaks.</p>
<p>Traditionally, because of plague's high lethality, prairie dog die-offs were believed to follow
<italic>Y. pestis</italic>
’ introduction to a colony from a disease-resistant alternative host species, such as deer mice (Cully and Williams
<xref rid="bib14" ref-type="bibr">2001</xref>
, Gage and Kosoy
<xref rid="bib19" ref-type="bibr">2005</xref>
). However, field research has failed to indubitably identify a nonprairie dog reservoir host on our field sites on the PNG—that is, a host species that is able to maintain the pathogen within its population and also possess transmission routes that allow the pathogen the opportunity to be introduced to the highly susceptible prairie dog population (Salkeld and Stapp
<xref rid="bib44" ref-type="bibr">2008</xref>
). Although deer mice and other rodents occasionally are seropositive on the PNG, their seroconversion normally occurs in the wake of the prairie dog die-off (Salkeld and Stapp
<xref rid="bib44" ref-type="bibr">2008</xref>
). Under the hypothesis that plague may persist solely in prairie dog metapopulations, the requirement for an alternate reservoir host could be moot.</p>
</sec>
<sec id="sec11">
<title>Disease outbreaks and community ecology of alternate hosts</title>
<p>Nonetheless,
<italic>Y. pestis</italic>
’ ability to infect multiple species of hosts and vectors means that other animals are still important in
<italic>Y. pestis</italic>
transmission dynamics in the prairie dog–plague system. On the PNG, the northern grasshopper mouse (
<italic>Onychomys leucogaster</italic>
) has been implicated as an important component in the ecology of plague outbreaks. Grasshopper mice are common residents of prairie dog colonies, have large active ranges that may encompass multiple coterie territories, and regularly visit multiple prairie dog burrows each night, which, in effect, functionally connects prairie dog coteries despite prairie dog territorial behavior (Kraft and Stapp
<xref rid="bib31" ref-type="bibr">2013</xref>
). Plague outbreaks tend to occur on prairie dog colonies with high numbers of grasshopper mice or during periods when these mice are abundant (figure
<xref ref-type="fig" rid="fig2">2</xref>
; Stapp et al.
<xref rid="bib54" ref-type="bibr">2009</xref>
). Grasshopper mouse populations decline by approximately two-thirds during prairie dog die-offs, but they exhibit some degree of plague resistance because they frequently seroconvert (Stapp et al.
<xref rid="bib53" ref-type="bibr">2008</xref>
). During plague outbreaks grasshopper mice become infested and bitten by
<italic>O. hirsute</italic>
—a flea normally host specific to prairie dogs (Stapp et al.
<xref rid="bib54" ref-type="bibr">2009</xref>
, Franklin et al.
<xref rid="bib18" ref-type="bibr">2010</xref>
). Both
<italic>O. hirsuta</italic>
and
<italic>Pleochaetis exilis</italic>
—the latter a flea specific to grasshopper mice—have been found infected with
<italic>Y. pestis</italic>
while infesting grasshopper mice, suggesting that grasshopper mice can be infectious hosts (Stapp et al.
<xref rid="bib54" ref-type="bibr">2009</xref>
). A spatially explicit agent-based model that incorporated grasshopper mouse movements, their ability to harbor prairie dog fleas, prairie dog social structure, and early-phase transmission suggested that higher grasshopper mouse density may increase the rate of spread of plague between coteries that would otherwise be socially isolated (Salkeld et al.
<xref rid="bib46" ref-type="bibr">2010</xref>
).</p>
<p>Although grasshopper mice and prairie dogs closely interact (figure
<xref ref-type="fig" rid="fig6">6</xref>
) and plague activity occurs simultaneously in both species, it is currently impossible to discern whether plague is introduced from grasshopper mouse populations to prairie dog populations or vice versa—or indeed from some other source. No seropositive grasshopper mice have been found away from prairie dog colonies or on colonies without recent plague, although one grasshopper mouse was found harboring
<italic>O. hirsuta</italic>
several kilometers from the nearest active colony (Stapp et al.
<xref rid="bib54" ref-type="bibr">2009</xref>
). In the absence of additional evidence, it seems likely that the role of grasshopper mice is to amplify the rate of
<italic>Y. pestis</italic>
transmission within prairie dog populations.</p>
<fig id="fig6" orientation="portrait" position="float">
<label>Figure 6.</label>
<caption>
<p>Prairie dogs and grasshopper mice interact closely on prairie dog colonies. Left: Grasshopper mouse running into prairie dog burrow (photograph: Kim Pollard). Right: Evidence of grasshopper mouse interactions with prairie dog carcasses. The prairie dog carcass (roadkill) had been previously intact and had been placed on a prairie dog colony to estimate rates of removal by carnivores (see Boone et al. 2006). Simultaneously, grasshopper mice on the prairie dog colony were being tracked by marking with fluorescent powder. The ring of pink fluorescent powder around the gaping hole in the prairie dog reveals that a grasshopper mouse scavenged this prairie dog's entrails (photograph: John Kraft).</p>
</caption>
<graphic xlink:href="biv179fig6"></graphic>
</fig>
<p>Importantly, the roles of alternate hosts and multispecies interactions most likely vary across time and space; therefore, the dynamics of plague outbreaks are dependent on the local species assemblages of fleas and their hosts. Illustrative of this is the absence of grasshopper mice in study sites in Boulder County, Colorado—approximately 200 km from the PNG—but where plague outbreaks also occur in prairie dog colonies (Collinge et al.
<xref rid="bib13" ref-type="bibr">2005</xref>
, Cully et al.
<xref rid="bib15" ref-type="bibr">2010</xref>
). It is therefore advisable for disease ecology studies to investigate the local host community even when the pathogen appears to target a single animal species. This may lead to insights on previously unsuspected species roles—whether as species susceptible to the pathogen, species that affect the abundance of the main reservoir, or species that can inhibit transmission dynamics.</p>
<p>Disease ecologists must wrestle with the interpretation of available field data. Like the prairie dog–plague system, previous arguments about Ebola virus dynamics have suggested that the high lethality of Ebola virus in nonhuman primate populations indicates the need for a nonprimate reservoir host (Olival and Hayman
<xref rid="bib39" ref-type="bibr">2014</xref>
). Also like prairie dog plague, most surveys of possible Ebola virus–reservoir species have occurred in the wake of observed outbreaks, which can lead to false interpretations of seropositive species post-outbreak as being integral in Ebola virus ecology prior to the outbreak. If, as in prairie dog systems, host carcasses can be hard to find, there may also be a bias in determining which species are affected by the Ebola virus. The putative Ebola virus reservoir is a fruit bat species, on the basis of experimental inoculations of the virus into bats, similar geographic distributions between Ebola virus outbreaks and bats, and the identification of nucleotide and antibody presence in wild-caught bats (Olival and Hayman
<xref rid="bib39" ref-type="bibr">2014</xref>
). Some fruit bat species may have reservoir potential, but it is important to remember that this may be only one facet in Ebola virus ecology and that surveys identifying seropositive fruit bats after human outbreaks may have biased subsequent investigations toward bat–Ebola virus ecology, with the consequence that the potential role of nonhuman primates or other ungulates in Ebola virus circulation may have been neglected.</p>
</sec>
<sec id="sec12">
<title>Environmental persistence and vector species</title>
<p>The absence of a smoking gun that implicates a specific vertebrate reservoir host for
<italic>Y. pestis</italic>
has shifted attention to other potential reservoir mechanisms. Recent hypotheses have advocated for new frameworks for plague transmission and maintenance and remain controversial. For example, a growing body of work suggests that
<italic>Y. pestis</italic>
may persist in soil. Viable plague bacteria have been isolated from natural soil samples collected three weeks after contamination by the death of mountain lion (
<italic>Felis concolor</italic>
) from plague (Eisen et al.
<xref rid="bib17" ref-type="bibr">2008</xref>
). Transmission of
<italic>Y. pestis</italic>
was demonstrated in lab experiments that allowed mice to burrow through plague-inoculated soil, although very rarely (Boegler et al.
<xref rid="bib7" ref-type="bibr">2012</xref>
). Colonizing prairie dogs often reuse abandoned burrow systems, and the re-excavation of sealed burrows containing infected carcasses may expose prairie dogs to infected soils or tissues. However, the importance of persistence in soil is unclear: Does a demonstrated three-week persistence of
<italic>Y. pestis</italic>
in soil in the case of the mountain lion have implications for longer-term
<italic>Y. pestis</italic>
persistence?</p>
<p>Infected fleas may also act as long-term (several months) reservoirs if they can persist postdie-off and infect immigrating prairie dogs, which would then enable a new generation of fleas to become infected. Although
<italic>Y. pestis</italic>
-positive fleas have been found remaining on sites several months after the prairie dog die-off, their presence can be rare (Holmes et al.
<xref rid="bib24" ref-type="bibr">2006</xref>
, Hanson et al.
<xref rid="bib23" ref-type="bibr">2007</xref>
, St. Romain et al.
<xref rid="bib51" ref-type="bibr">2013</xref>
), and their infectiousness is unknown, because transmission efficiency of
<italic>O. hirsuta</italic>
declines rapidly postinfection (Wilder et al.
<xref rid="bib58" ref-type="bibr">2008</xref>
). Transmission efficiency by fleas may be temperature-dependent, with higher transmission efficiency at lower temperatures (Williams et al.
<xref rid="bib59" ref-type="bibr">2013</xref>
), which suggests a re-evaluation of
<italic>Y. pestis</italic>
dynamics in the context of the host's burrow environments.</p>
<p>The evidence for nonvertebrate persistence mechanisms for
<italic>Y. pestis</italic>
remains equivocal. However, entertaining these developing hypotheses and accruing evidence for and against the role of these phenomena in the wild may allow for breakthroughs in our understanding of plague disease ecology.</p>
</sec>
<sec sec-type="conclusions" id="sec13">
<title>Conclusions</title>
<p>Despite its importance to public health and conservation, we still are making only educated guesses as to
<italic>Y. pestis</italic>
’ persistence and spread and movement at the landscape scale. However, ecological studies of plague outbreaks in wildlife have resulted in important lessons that can be applied to zoonotic disease dynamics and persistence in general. For instance, we know that the ecological community surrounding the putative reservoir hosts is important; that transmission rates and mechanisms can vary over time and space; that our understanding of the pathogen's ecology may often be biased by post-outbreak surveillance; the local context; and that pathogens may persist in host populations even when they cause near-certain death of their hosts. These insights—sometimes still controversial—have required us to challenge conventional wisdoms and dogmas in
<italic>Y. pestis</italic>
ecology and epidemiology.</p>
<p>To be successful, the surveillance and control of zoonotic pathogens must accurately capture the dynamics of disease risk and spread—and do so at a local scale. A misplaced focus on a single animal host species may nullify efforts to create useful early warning monitoring programs, especially if the chosen sentinel species is more indicative of post-outbreak exposure as opposed to preoutbreak transmission dynamics. For example, are fruit bats that are seropositive for Ebola virus evidence of heightened disease risk for human populations because fruit bats can be infectious and demonstrate local Ebola virus activity? Or are seropositive fruit bats simply indicative of recent Ebola virus transmission in an unidentified reservoir host some months prior? Without directly addressing these questions, precious public health resources may be misdirected into inappropriate monitoring and surveillance programs. We recognize that an ecological understanding of rare pathogens that cause sporadic outbreaks in wildlife and human populations is no trivial undertaking. We nonetheless encourage the development of integrated surveillance programs for zoonotic diseases within wildlife populations that recognize ecological context before, during, and after outbreaks that occur in humans or animal species of conservation concern.</p>
</sec>
</body>
<back>
<ack>
<p>Long-term prairie dog town size and location data were generously provided by the Ranger District for the Pawnee National Grasslands, with special thanks to Mark Ball, Steve Curry, Richard Hill, Beth Humphrey, and Kristen Philbrook. We are grateful to Robert Flynn for GIS support, Kelly Pierce for R expertise, and Mark Lindquist in general. Many thanks to the field crews for their excellent work. The original research was predominantly supported by Short Grass Steppe Long Term Ecological Research Grants (nos. DEB-0217631, 0823405) and Ecology of Infectious Diseases programs (nos. DEB 0224328, EID 0327052).</p>
</ack>
<ref-list>
<title>References cited</title>
<ref id="bib1">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Antolin</surname>
<given-names>MF</given-names>
</name>
<name>
<surname>Gober</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Luce</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Biggins</surname>
<given-names>DE</given-names>
</name>
<name>
<surname>Van Pelt</surname>
<given-names>WE</given-names>
</name>
<name>
<surname>Seery</surname>
<given-names>DB</given-names>
</name>
<name>
<surname>Lockhart</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ml</surname>
<given-names>Ball</given-names>
</name>
</person-group>
<article-title>The influence of sylvatic plague on North American wildlife at the landscape level, with special emphasis on black-footed ferret and prairie dog conservation</article-title>
<source>Transactions of the North American Wildlife and Natural Resources Conference</source>
<year>2002</year>
<volume>67</volume>
<fpage>104</fpage>
<lpage>127</lpage>
</element-citation>
</ref>
<ref id="bib2">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Augustine</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Matchett</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Toombs</surname>
<given-names>TP</given-names>
</name>
<name>
<surname>Cully</surname>
<given-names>JF</given-names>
<suffix>Jr.</suffix>
</name>
<name>
<surname>Johnson</surname>
<given-names>TL</given-names>
</name>
<name>
<surname>Sidle</surname>
<given-names>JG</given-names>
</name>
</person-group>
<article-title>Spatiotemporal dynamics of black-tailed prairie dog colonies affected by plague</article-title>
<source>Landscape Ecology</source>
<year>2008</year>
<volume>23</volume>
<fpage>255</fpage>
<lpage>267</lpage>
</element-citation>
</ref>
<ref id="bib3">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Azhar</surname>
<given-names>EI</given-names>
</name>
<name>
<surname>El-Kafrawy</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Farraj</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Hassan</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Al-Saeed</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Hashem</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Madani</surname>
<given-names>TA</given-names>
</name>
</person-group>
<article-title>Evidence for camel-to-human transmission of MERS coronavirus</article-title>
<source>New England Journal of Medicine</source>
<year>2014</year>
<volume>370</volume>
<fpage>2499</fpage>
<lpage>2505</lpage>
<pub-id pub-id-type="pmid">24896817</pub-id>
</element-citation>
</ref>
<ref id="bib4">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bacot</surname>
<given-names>AW</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>CJ</given-names>
</name>
</person-group>
<article-title>Observations on the mechanism of the transmission of plague by fleas</article-title>
<source>Journal of Hygiene (Plague Supplement III)</source>
<year>1914</year>
<volume>13</volume>
<fpage>423</fpage>
<lpage>439</lpage>
</element-citation>
</ref>
<ref id="bib5">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ben Ari</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Neerinckx</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Gage</surname>
<given-names>KL</given-names>
</name>
<name>
<surname>Kreppel</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Laudisoit</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Leirs</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Stenseth</surname>
<given-names>NC</given-names>
</name>
</person-group>
<article-title>Plague and climate: Scales matter</article-title>
<source>PLOS Pathogens</source>
<year>2011</year>
<volume>7</volume>
<comment>(art. e1002160). doi:10.1371/journal.ppat.1002160</comment>
</element-citation>
</ref>
<ref id="bib6">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Biggins</surname>
<given-names>DE</given-names>
</name>
<name>
<surname>Godbey</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Gage</surname>
<given-names>KL</given-names>
</name>
<name>
<surname>Carter</surname>
<given-names>LG</given-names>
</name>
<name>
<surname>Montenieri</surname>
<given-names>JA</given-names>
</name>
</person-group>
<article-title>Vector control improves survival of three species of prairie dogs (
<italic>Cynomys</italic>
) in areas considered enzootic for plague</article-title>
<source>Vector-Borne and Zoonotic Diseases</source>
<year>2010</year>
<volume>10</volume>
<fpage>17</fpage>
<lpage>26</lpage>
<pub-id pub-id-type="pmid">20158328</pub-id>
</element-citation>
</ref>
<ref id="bib7">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Boegler</surname>
<given-names>KA</given-names>
</name>
<name>
<surname>Graham</surname>
<given-names>CB</given-names>
</name>
<name>
<surname>Montenieri</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>MacMillan</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Holmes</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Petersen</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Gage</surname>
<given-names>KL</given-names>
</name>
<name>
<surname>Eisen</surname>
<given-names>RJ</given-names>
</name>
</person-group>
<article-title>Evaluation of the infectiousness to mice of soil contaminated with
<italic>Yersinia pestis</italic>
-infected blood</article-title>
<source>Vector-Borne and Zoonotic Diseases</source>
<year>2012</year>
<volume>12</volume>
<fpage>948</fpage>
<lpage>952</lpage>
<pub-id pub-id-type="pmid">22925020</pub-id>
</element-citation>
</ref>
<ref id="bib8">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Boone</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Kraft</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Stapp</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Scavenging by mammalian carnivores on prairie dog colonies: Implications for the spread of plague</article-title>
<source>Vector-Borne and Zoonotic Diseases</source>
<year>2009</year>
<volume>9</volume>
<fpage>185</fpage>
<lpage>189</lpage>
<pub-id pub-id-type="pmid">18945188</pub-id>
</element-citation>
</ref>
<ref id="bib9">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brinkerhoff</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Markeson</surname>
<given-names>AB</given-names>
</name>
<name>
<surname>Knouft</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Gage</surname>
<given-names>KL</given-names>
</name>
<name>
<surname>Montinieri</surname>
<given-names>JA</given-names>
</name>
</person-group>
<article-title>Abundance patterns of two
<italic>Oropsylla</italic>
(Ceratophyllidae: Siphonaptera) species on black-tailed prairie dog (
<italic>Cynomys ludovicianus</italic>
) hosts</article-title>
<source>Journal of Vector Ecology</source>
<year>2006</year>
<volume>31</volume>
<fpage>355</fpage>
<lpage>363</lpage>
<pub-id pub-id-type="pmid">17249353</pub-id>
</element-citation>
</ref>
<ref id="bib10">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brinkerhoff</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Collinge</surname>
<given-names>SK</given-names>
</name>
<name>
<surname>Bai</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Ray</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Are carnivores universally good sentinels of plague?</article-title>
<source>Vector-Borne and Zoonotic Diseases</source>
<year>2009</year>
<volume>9</volume>
<fpage>491</fpage>
<lpage>497</lpage>
<pub-id pub-id-type="pmid">18973449</pub-id>
</element-citation>
</ref>
<ref id="bib11">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brinkerhoff</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>AP</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>RT</given-names>
</name>
<name>
<surname>Collinge</surname>
<given-names>SK</given-names>
</name>
</person-group>
<article-title>Population genetic structure of the prairie dog flea and plague vector,
<italic>Oropsylla hirsuta</italic>
</article-title>
<source>Parasitology</source>
<year>2011</year>
<volume>138</volume>
<fpage>71</fpage>
<lpage>79</lpage>
<pub-id pub-id-type="pmid">20696095</pub-id>
</element-citation>
</ref>
<ref id="bib12">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Buhnerkempe</surname>
<given-names>MG</given-names>
</name>
<name>
<surname>Eisen</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Goodell</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Gage</surname>
<given-names>KL</given-names>
</name>
<name>
<surname>Antolin</surname>
<given-names>MF</given-names>
</name>
<name>
<surname>Webb</surname>
<given-names>CT</given-names>
</name>
</person-group>
<article-title>Transmission shifts underlie variability in population responses to
<italic>Yersinia pestis</italic>
infection</article-title>
<source>PLOS ONE</source>
<year>2011</year>
<volume>6</volume>
<comment>(art. e22498). doi:10.1371/journal.pone.0022498</comment>
</element-citation>
</ref>
<ref id="bib13">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Collinge</surname>
<given-names>SK</given-names>
</name>
<name>
<surname>Johnson</surname>
<given-names>WC</given-names>
</name>
<name>
<surname>Ray</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Matchett</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Grensten</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Cully</surname>
<given-names>JF</given-names>
</name>
<name>
<surname>Gage</surname>
<given-names>KL</given-names>
</name>
<name>
<surname>Kosoy</surname>
<given-names>MY</given-names>
</name>
<name>
<surname>Loye</surname>
<given-names>JE</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>AP</given-names>
</name>
</person-group>
<article-title>Landscape structure and plague occurrence in black-tailed prairie dogs on grasslands of the western USA</article-title>
<source>Landscape Ecology</source>
<year>2005</year>
<volume>20</volume>
<fpage>941</fpage>
<lpage>955</lpage>
</element-citation>
</ref>
<ref id="bib14">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cully</surname>
<given-names>JF</given-names>
<suffix>Jr</suffix>
</name>
<name>
<surname>Williams</surname>
<given-names>ES</given-names>
</name>
</person-group>
<article-title>Interspecific comparisons of sylvatic plague in prairie dogs</article-title>
<source>Journal of Mammalogy</source>
<year>2001</year>
<volume>82</volume>
<fpage>894</fpage>
<lpage>905</lpage>
</element-citation>
</ref>
<ref id="bib15">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cully</surname>
<given-names>JF</given-names>
<suffix>Jr</suffix>
</name>
<name>
<surname>Collinge</surname>
<given-names>SK</given-names>
</name>
<name>
<surname>VanNimwegen</surname>
<given-names>RE</given-names>
</name>
<name>
<surname>Ray</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Johnson</surname>
<given-names>WC</given-names>
</name>
<name>
<surname>Thiagarajan</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Conlin</surname>
<given-names>DB</given-names>
</name>
<name>
<surname>Holmes</surname>
<given-names>BE</given-names>
</name>
</person-group>
<article-title>Spatial variation in keystone effects: Small mammal diversity associated with black-tailed prairie dog colonies</article-title>
<source>Ecography</source>
<year>2010</year>
<volume>33</volume>
<fpage>667</fpage>
<lpage>677</lpage>
</element-citation>
</ref>
<ref id="bib16">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Eisen</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Bearden</surname>
<given-names>SW</given-names>
</name>
<name>
<surname>Ap</surname>
<given-names>Wilder</given-names>
</name>
<name>
<surname>Montenieri</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Antolin</surname>
<given-names>MF</given-names>
</name>
<name>
<surname>Gage</surname>
<given-names>KL</given-names>
</name>
</person-group>
<article-title>Early-phase transmission of
<italic>Yersinia pestis</italic>
by unblocked fleas as a mechanism explaining rapidly spreading plague epizootics</article-title>
<source>Proceedings of the National Academy of Sciences</source>
<year>2006</year>
<volume>103</volume>
<fpage>15380</fpage>
<lpage>15385</lpage>
</element-citation>
</ref>
<ref id="bib17">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Eisen</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Petersen</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Higgins</surname>
<given-names>CL</given-names>
</name>
<name>
<surname>Wong</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Levy</surname>
<given-names>CE</given-names>
</name>
<name>
<surname>Mead</surname>
<given-names>PS</given-names>
</name>
<name>
<surname>Schreifer</surname>
<given-names>ME</given-names>
</name>
<name>
<surname>Griffith</surname>
<given-names>KS</given-names>
</name>
<name>
<surname>Gage</surname>
<given-names>KL</given-names>
</name>
<name>
<surname>Beard</surname>
<given-names>CB</given-names>
</name>
</person-group>
<article-title>Persistence of
<italic>Yersinia pestis</italic>
in soil under natural conditions</article-title>
<source>Emerging Infectious Diseases</source>
<year>2008</year>
<volume>14</volume>
<fpage>941</fpage>
<lpage>943</lpage>
<pub-id pub-id-type="pmid">18507908</pub-id>
</element-citation>
</ref>
<ref id="bib18">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Franklin</surname>
<given-names>HA</given-names>
</name>
<name>
<surname>Stapp</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Cohen</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Polymerase chain reaction (PCR) identification of rodent blood meals confirms host sharing by flea vectors of plague</article-title>
<source>Journal of Vector Ecology</source>
<year>2010</year>
<volume>35</volume>
<fpage>363</fpage>
<lpage>371</lpage>
<pub-id pub-id-type="pmid">21175944</pub-id>
</element-citation>
</ref>
<ref id="bib19">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gage</surname>
<given-names>KL</given-names>
</name>
<name>
<surname>Kosoy</surname>
<given-names>MY</given-names>
</name>
</person-group>
<article-title>Natural history of the plague: Perspectives from more than a century of research</article-title>
<source>Annual Review of Entomology</source>
<year>2005</year>
<volume>50</volume>
<fpage>505</fpage>
<lpage>528</lpage>
</element-citation>
</ref>
<ref id="bib20">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Garrett</surname>
<given-names>MG</given-names>
</name>
<name>
<surname>Franklin</surname>
<given-names>WL</given-names>
</name>
</person-group>
<article-title>Behavioral ecology of dispersal in the black-tailed prairie dog</article-title>
<source>Journal of Mammalogy</source>
<year>1988</year>
<volume>69</volume>
<fpage>236</fpage>
<lpage>250</lpage>
</element-citation>
</ref>
<ref id="bib21">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>George</surname>
<given-names>DB</given-names>
</name>
<name>
<surname>Webb</surname>
<given-names>CT</given-names>
</name>
<name>
<surname>Pepin</surname>
<given-names>KM</given-names>
</name>
<name>
<surname>Savage</surname>
<given-names>LT</given-names>
</name>
<name>
<surname>Antolin</surname>
<given-names>MF</given-names>
</name>
</person-group>
<article-title>Persistence of black-tailed prairie dog populations affected by plague in northern Colorado</article-title>
<source>USA. Ecology</source>
<year>2013</year>
<volume>94</volume>
<fpage>1572</fpage>
<lpage>1583</lpage>
<pub-id pub-id-type="pmid">23951717</pub-id>
</element-citation>
</ref>
<ref id="bib22">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Girard</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Wagner</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Vogler</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Keys</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Allender</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Drickamer</surname>
<given-names>LC</given-names>
</name>
<name>
<surname>Keim</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Differential plague-transmission dynamics determine
<italic>Yersinia pestis</italic>
population genetic structure on local, regional, and global scales</article-title>
<source>Proceedings of the National Sciences</source>
<year>2004</year>
<volume>101</volume>
<fpage>8408</fpage>
<lpage>8413</lpage>
</element-citation>
</ref>
<ref id="bib23">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hanson</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Britten</surname>
<given-names>HB</given-names>
</name>
<name>
<surname>Restani</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Washburn</surname>
<given-names>LR</given-names>
</name>
</person-group>
<article-title>High prevalence of
<italic>Yersinia pestis</italic>
in black-tailed prairie dog colonies during an apparent enzootic phase of sylvatic plague</article-title>
<source>Conservation Genetics</source>
<year>2007</year>
<volume>8</volume>
<fpage>789</fpage>
<lpage>795</lpage>
</element-citation>
</ref>
<ref id="bib24">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Holmes</surname>
<given-names>BE</given-names>
</name>
<name>
<surname>Foresman</surname>
<given-names>KR</given-names>
</name>
<name>
<surname>Matchett</surname>
<given-names>MR</given-names>
</name>
</person-group>
<article-title>No evidence of persistent
<italic>Yersinia pestis</italic>
infection at prairie dog colonies in north–central Montana</article-title>
<source>Journal of Wildlife Diseases</source>
<year>2006</year>
<volume>42</volume>
<fpage>164</fpage>
<lpage>169</lpage>
<pub-id pub-id-type="pmid">16699160</pub-id>
</element-citation>
</ref>
<ref id="bib25">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Hoogland</surname>
<given-names>JL.</given-names>
</name>
</person-group>
<source>The Black-tailed Prairie Dog</source>
<year>1995</year>
<publisher-name>University of Chicago Press</publisher-name>
</element-citation>
</ref>
<ref id="bib26">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hoogland</surname>
<given-names>JL.</given-names>
</name>
</person-group>
<article-title>Prairie dogs disperse when all close kin have disappeared</article-title>
<source>Science</source>
<year>2013</year>
<volume>339</volume>
<fpage>1205</fpage>
<lpage>1207</lpage>
<pub-id pub-id-type="pmid">23471407</pub-id>
</element-citation>
</ref>
<ref id="bib27">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jones</surname>
<given-names>PH</given-names>
</name>
<name>
<surname>Britten</surname>
<given-names>HB</given-names>
</name>
</person-group>
<article-title>The absence of concordant population genetic structure in the black-tailed prairie dog and the flea,
<italic>Oropsylla hirsuta</italic>
, with implications for the spread of
<italic>Yersinia pestis</italic>
</article-title>
<source>Molecular Ecology</source>
<year>2010</year>
<volume>19</volume>
<fpage>2038</fpage>
<lpage>2049</lpage>
<pub-id pub-id-type="pmid">20550633</pub-id>
</element-citation>
</ref>
<ref id="bib28">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Johnson</surname>
<given-names>TL</given-names>
</name>
<name>
<surname>Cully</surname>
<given-names>JF</given-names>
<suffix>Jr</suffix>
</name>
<name>
<surname>Collinge</surname>
<given-names>SK</given-names>
</name>
<name>
<surname>Ray</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Frey</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Sandercock</surname>
<given-names>BK</given-names>
</name>
</person-group>
<article-title>Spread of plague among black-tailed prairie dogs is associated with colony spatial characteristics</article-title>
<source>Journal of Wildlife Management</source>
<year>2011</year>
<volume>75</volume>
<fpage>357</fpage>
<lpage>368</lpage>
</element-citation>
</ref>
<ref id="bib29">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Knowles</surname>
<given-names>CJ.</given-names>
</name>
</person-group>
<article-title>Observations on prairie dog dispersal in Montana</article-title>
<source>Prairie Naturalist</source>
<year>1985</year>
<volume>17</volume>
<fpage>33</fpage>
<lpage>40</lpage>
</element-citation>
</ref>
<ref id="bib30">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Kotliar</surname>
<given-names>NB</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>BJ</given-names>
</name>
<name>
<surname>Reading</surname>
<given-names>RR</given-names>
</name>
<name>
<surname>Clark</surname>
<given-names>TW</given-names>
</name>
</person-group>
<person-group person-group-type="editor">
<name>
<surname>Hoogland</surname>
<given-names>JL</given-names>
</name>
</person-group>
<article-title>The prairie dog as a keystone species</article-title>
<source>Conservation of the Black-tailed Prairie Dog</source>
<year>2006</year>
<publisher-name>Island Press</publisher-name>
<fpage>53</fpage>
<lpage>64</lpage>
</element-citation>
</ref>
<ref id="bib31">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kraft</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Stapp</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Movements and burrow use by northern grasshopper mice as a possible mechanism of plague spread in prairie dog colonies</article-title>
<source>Journal of Mammalogy</source>
<year>2013</year>
<volume>94</volume>
<fpage>1087</fpage>
<lpage>1093</lpage>
</element-citation>
</ref>
<ref id="bib32">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>LaDeau</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Kilpatrick</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Marra</surname>
<given-names>PP</given-names>
</name>
</person-group>
<article-title>West Nile virus emergence and large-scale declines of North American bird populations</article-title>
<source>Nature</source>
<year>2007</year>
<volume>447</volume>
<fpage>710</fpage>
<lpage>713</lpage>
<pub-id pub-id-type="pmid">17507930</pub-id>
</element-citation>
</ref>
<ref id="bib33">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Leroy</surname>
<given-names>EM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Multiple Ebola virus transmission events and rapid decline of central African wildlife</article-title>
<source>Science</source>
<year>2004</year>
<volume>303</volume>
<fpage>387</fpage>
<lpage>390</lpage>
<pub-id pub-id-type="pmid">14726594</pub-id>
</element-citation>
</ref>
<ref id="bib34">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lloyd-Smith</surname>
<given-names>JO</given-names>
</name>
<name>
<surname>George</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Pepin</surname>
<given-names>KM</given-names>
</name>
<name>
<surname>Pitzer</surname>
<given-names>VE</given-names>
</name>
<name>
<surname>Pulliam</surname>
<given-names>JRC</given-names>
</name>
<name>
<surname>Dobson</surname>
<given-names>AP</given-names>
</name>
<name>
<surname>Hudosn</surname>
<given-names>PJ</given-names>
</name>
<name>
<surname>Grenfell</surname>
<given-names>BT</given-names>
</name>
</person-group>
<article-title>Epidemic dynamics at the human–animal interface</article-title>
<source>Science</source>
<year>2009</year>
<volume>326</volume>
<fpage>1362</fpage>
<lpage>1367</lpage>
<pub-id pub-id-type="pmid">19965751</pub-id>
</element-citation>
</ref>
<ref id="bib35">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lowell</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Antolin</surname>
<given-names>MF</given-names>
</name>
<name>
<surname>Andersen</surname>
<given-names>GL</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Stowkowski</surname>
<given-names>RP</given-names>
</name>
<name>
<surname>Gage</surname>
<given-names>KL</given-names>
</name>
</person-group>
<article-title>Single nucleotide polymorphisms reveal spatial diversity among clones of
<italic>Yersinia pestis</italic>
during plague outbreaks in Colorado and the western United States</article-title>
<source>Vector-Borne Zoonotic Diseases</source>
<year>2015</year>
<volume>15</volume>
<fpage>291</fpage>
<lpage>302</lpage>
<pub-id pub-id-type="pmid">25988438</pub-id>
</element-citation>
</ref>
<ref id="bib36">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Matchett</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Biggins</surname>
<given-names>DE</given-names>
</name>
<name>
<surname>Carlson</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Powell</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Rocke</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Enzootic plague reduces black-footed ferret (
<italic>Mustela nigripes</italic>
) survival in Montana</article-title>
<source>Vector-Borne and Zoonotic Diseases</source>
<year>2010</year>
<volume>10</volume>
<fpage>27</fpage>
<lpage>35</lpage>
<pub-id pub-id-type="pmid">20158329</pub-id>
</element-citation>
</ref>
<ref id="bib37">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>McGee</surname>
<given-names>BK</given-names>
</name>
<name>
<surname>Butler</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Pence</surname>
<given-names>DB</given-names>
</name>
<name>
<surname>Alexander</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Nissen</surname>
<given-names>JB</given-names>
</name>
<name>
<surname>Ballard</surname>
<given-names>WB</given-names>
</name>
<name>
<surname>Nicholson</surname>
<given-names>KL</given-names>
</name>
</person-group>
<article-title>Possible vector dissemination by swift foxs following a plague epizootic in black-tailed prairie dogs in northwestern Texas</article-title>
<source>Journal of Wildlife Diseases</source>
<year>2006</year>
<volume>42</volume>
<fpage>415</fpage>
<lpage>420</lpage>
<pub-id pub-id-type="pmid">16870868</pub-id>
</element-citation>
</ref>
<ref id="bib38">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Meyer</surname>
<given-names>B</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Antibodies against MERS coronavirus in dromedaries, United Arab Emirates, 2003 and 2013</article-title>
<source>Emerging Infectious Diseases</source>
<year>2014</year>
<volume>20</volume>
<fpage>552</fpage>
<lpage>559</lpage>
<pub-id pub-id-type="pmid">24655412</pub-id>
</element-citation>
</ref>
<ref id="bib39">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Olival</surname>
<given-names>KJ</given-names>
</name>
<name>
<surname>Hayman</surname>
<given-names>DTS</given-names>
</name>
</person-group>
<article-title>Filoviruses in bats: Current knowledge and future directions</article-title>
<source>Viruses</source>
<year>2014</year>
<volume>6</volume>
<fpage>1759</fpage>
<lpage>1788</lpage>
<pub-id pub-id-type="pmid">24747773</pub-id>
</element-citation>
</ref>
<ref id="bib40">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pauli</surname>
<given-names>JN</given-names>
</name>
<name>
<surname>Buskirk</surname>
<given-names>SW</given-names>
</name>
<name>
<surname>Williams</surname>
<given-names>ES</given-names>
</name>
<name>
<surname>Edwards</surname>
<given-names>WHA</given-names>
</name>
</person-group>
<article-title>A plague epizootic in the black-tailed prairie dog (
<italic>Cynomys ludovicianus</italic>
)</article-title>
<source>Journal of Wildlife Diseases</source>
<year>2006</year>
<volume>42</volume>
<fpage>74</fpage>
<lpage>80</lpage>
<pub-id pub-id-type="pmid">16699150</pub-id>
</element-citation>
</ref>
<ref id="bib41">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rasmussen</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Gerber</surname>
<given-names>SI</given-names>
</name>
<name>
<surname>Swerdlow</surname>
<given-names>DL</given-names>
</name>
</person-group>
<article-title>Middle East respiratory syndrome coronavirus (MERS-CoV): CDC update for clinicians</article-title>
<source>Clinical Infectious Diseases</source>
<year>2015</year>
<volume>60</volume>
<fpage>1686</fpage>
<lpage>1689</lpage>
<pub-id pub-id-type="pmid">25701855</pub-id>
</element-citation>
</ref>
<ref id="bib42">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Roach</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Stapp</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Van Horne</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Antolin</surname>
<given-names>MF</given-names>
</name>
</person-group>
<article-title>Genetic structure of a metapopulation of black-tailed prairie dogs</article-title>
<source>Journal of Mammalogy</source>
<year>2001</year>
<volume>82</volume>
<fpage>946</fpage>
<lpage>959</lpage>
</element-citation>
</ref>
<ref id="bib43">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Salkeld</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Stapp</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Seroprevalence rates and transmission of plague (
<italic>Yersinia pestis</italic>
) in mammalian carnivores</article-title>
<source>Vector-Borne and Zoonotic Diseases</source>
<year>2006</year>
<volume>6</volume>
<fpage>231</fpage>
<lpage>239</lpage>
<pub-id pub-id-type="pmid">16989561</pub-id>
</element-citation>
</ref>
<ref id="bib44">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Salkeld</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Stapp</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>No evidence of deer mouse involvement in plague (
<italic>Yersinia pestis</italic>
) epizootics of prairie dogs</article-title>
<source>Vector-Borne and Zoonotic Diseases</source>
<year>2008</year>
<volume>8</volume>
<fpage>331</fpage>
<lpage>337</lpage>
<pub-id pub-id-type="pmid">18447619</pub-id>
</element-citation>
</ref>
<ref id="bib45">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Salkeld</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Eisen</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Stapp</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Wilder</surname>
<given-names>AP</given-names>
</name>
<name>
<surname>Lowell</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Tripp</surname>
<given-names>DW</given-names>
</name>
<name>
<surname>Albertson</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Antolin</surname>
<given-names>MF</given-names>
</name>
</person-group>
<article-title>The potential role of swift foxes (
<italic>Vulpes velox</italic>
) and their fleas in plague outbreaks in prairie dogs</article-title>
<source>Journal of Wildlife Diseases</source>
<year>2007</year>
<volume>43</volume>
<fpage>425</fpage>
<lpage>431</lpage>
<pub-id pub-id-type="pmid">17699080</pub-id>
</element-citation>
</ref>
<ref id="bib46">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Salkeld</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Salathe</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Stapp</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>JH</given-names>
</name>
</person-group>
<article-title>Plague outbreaks in prairie dog populations explained by percolation thresholds of alternate host abundance</article-title>
<source>Proceedings of the National Academy of Sciences</source>
<year>2010</year>
<volume>107</volume>
<fpage>14247</fpage>
<lpage>14250</lpage>
</element-citation>
</ref>
<ref id="bib47">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Savage</surname>
<given-names>LT</given-names>
</name>
<name>
<surname>Reich</surname>
<given-names>RM</given-names>
</name>
<name>
<surname>Hartley</surname>
<given-names>LM</given-names>
</name>
<name>
<surname>Stapp</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Antolin</surname>
<given-names>MF</given-names>
</name>
</person-group>
<article-title>Climate, soils, and connectivity predict plague epizootics in black-tailed prairie dogs (
<italic>Cynomys ludovicianus</italic>
)</article-title>
<source>Ecological Applications</source>
<year>2011</year>
<volume>21</volume>
<fpage>2933</fpage>
<lpage>2943</lpage>
</element-citation>
</ref>
<ref id="bib48">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Seery</surname>
<given-names>DB</given-names>
</name>
<name>
<surname>Biggins</surname>
<given-names>DE</given-names>
</name>
<name>
<surname>Montenieri</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Enscore</surname>
<given-names>RE</given-names>
</name>
<name>
<surname>Tanda</surname>
<given-names>DT</given-names>
</name>
<name>
<surname>Gage</surname>
<given-names>KL</given-names>
</name>
</person-group>
<article-title>Treatment of black-tailed prairie dog burrows with deltamethrin to control fleas (Insecta: Siphonaptera) and plague</article-title>
<source>Journal of Medical Entomology</source>
<year>2003</year>
<volume>40</volume>
<fpage>718</fpage>
<lpage>722</lpage>
<pub-id pub-id-type="pmid">14596288</pub-id>
</element-citation>
</ref>
<ref id="bib49">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Smith</surname>
<given-names>GJD</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic</article-title>
<source>Nature</source>
<year>2009</year>
<volume>459</volume>
<fpage>1122</fpage>
<lpage>1125</lpage>
<pub-id pub-id-type="pmid">19516283</pub-id>
</element-citation>
</ref>
<ref id="bib50">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Snall</surname>
<given-names>T</given-names>
</name>
<name>
<surname>O'Hara</surname>
<given-names>RB</given-names>
</name>
<name>
<surname>Ray</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Collinge</surname>
<given-names>SK</given-names>
</name>
</person-group>
<article-title>Climate-driven spatial dynamics of plague among prairie dog colonies</article-title>
<source>American Naturalist</source>
<year>2008</year>
<volume>171</volume>
<fpage>238</fpage>
<lpage>248</lpage>
</element-citation>
</ref>
<ref id="bib51">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Romain</surname>
<given-names>K</given-names>
<prefix>St.</prefix>
</name>
<name>
<surname>Tripp</surname>
<given-names>DW</given-names>
</name>
<name>
<surname>Salkeld</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Antolin</surname>
<given-names>MF.</given-names>
</name>
</person-group>
<article-title>Duration of plague (
<italic>Yersinia pestis</italic>
) outbreaksin black-tailed prairie dog (
<italic>Cynomys ludovicianus</italic>
) colonies of northern Colorado</article-title>
<source>EcoHealth</source>
<year>2013</year>
<volume>10</volume>
<fpage>241</fpage>
<lpage>245</lpage>
<pub-id pub-id-type="pmid">24057801</pub-id>
</element-citation>
</ref>
<ref id="bib52">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stapp</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Antolin</surname>
<given-names>MF</given-names>
</name>
<name>
<surname>Ball</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Patterns of extinction in prairie dog metapopulations: Plague outbreaks follow El Niño events</article-title>
<source>Frontiers in Ecology and the Environment</source>
<year>2004</year>
<volume>2</volume>
<fpage>235</fpage>
<lpage>240</lpage>
</element-citation>
</ref>
<ref id="bib53">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stapp</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Salkeld</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Eisen</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Pappert</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Young</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Carter</surname>
<given-names>LG</given-names>
</name>
<name>
<surname>Gage</surname>
<given-names>KL</given-names>
</name>
<name>
<surname>Tripp</surname>
<given-names>DW</given-names>
</name>
<name>
<surname>Antolin</surname>
<given-names>MF</given-names>
</name>
</person-group>
<article-title>Exposure of small rodents to plague during epizootics in black-tailed prairie dogs</article-title>
<source>Journal of Wildlife Diseases</source>
<year>2008</year>
<volume>44</volume>
<fpage>724</fpage>
<lpage>730</lpage>
<pub-id pub-id-type="pmid">18689662</pub-id>
</element-citation>
</ref>
<ref id="bib54">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stapp</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Salkeld</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Franklin</surname>
<given-names>HA</given-names>
</name>
<name>
<surname>Kraft</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Tripp</surname>
<given-names>DW</given-names>
</name>
<name>
<surname>Antolin</surname>
<given-names>MF</given-names>
</name>
<name>
<surname>Gage</surname>
<given-names>KL</given-names>
</name>
</person-group>
<article-title>Evidence for the involvement of an alternative rodent host in the dynamics of introduced plague in prairie dog colonies</article-title>
<source>Journal of Animal Ecology</source>
<year>2009</year>
<volume>78</volume>
<fpage>807</fpage>
<lpage>817</lpage>
<pub-id pub-id-type="pmid">19302321</pub-id>
</element-citation>
</ref>
<ref id="bib55">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Thomas</surname>
<given-names>RE</given-names>
</name>
<name>
<surname>Beard</surname>
<given-names>ML</given-names>
</name>
<name>
<surname>Quan</surname>
<given-names>TJ</given-names>
</name>
<name>
<surname>Carter</surname>
<given-names>LG</given-names>
</name>
<name>
<surname>Barnes</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Hopla</surname>
<given-names>CE</given-names>
</name>
</person-group>
<article-title>Experimentally induced plague infection in the northern grasshopper mouse (
<italic>Onychomys leucogaster</italic>
) acquired by consumption of infected prey</article-title>
<source>Journal of Wildlife Diseases</source>
<year>1989</year>
<volume>25</volume>
<fpage>477</fpage>
<lpage>480</lpage>
<pub-id pub-id-type="pmid">2810547</pub-id>
</element-citation>
</ref>
<ref id="bib56">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tripp</surname>
<given-names>DW</given-names>
</name>
<name>
<surname>Gage</surname>
<given-names>KL</given-names>
</name>
<name>
<surname>Montenieri</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Antolin</surname>
<given-names>MF</given-names>
</name>
</person-group>
<article-title>Flea abundance on black-tailed prairie dogs (
<italic>Cynomys ludovicianus</italic>
) increases during plague epizootics</article-title>
<source>Vector-borne and Zoonotic Diseases</source>
<year>2009</year>
<volume>9</volume>
<fpage>313</fpage>
<lpage>321</lpage>
<pub-id pub-id-type="pmid">19492944</pub-id>
</element-citation>
</ref>
<ref id="bib57">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Webb</surname>
<given-names>CT</given-names>
</name>
<name>
<surname>Brooks</surname>
<given-names>CP</given-names>
</name>
<name>
<surname>Gage</surname>
<given-names>KL</given-names>
</name>
<name>
<surname>Antolin</surname>
<given-names>MF</given-names>
</name>
</person-group>
<article-title>Classic flea-borne transmission does not drive plague epizootics in prairie dogs</article-title>
<source>Proceedings of the National Academy of Sciences</source>
<year>2006</year>
<volume>103</volume>
<fpage>6236</fpage>
<lpage>6241</lpage>
</element-citation>
</ref>
<ref id="bib58">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wilder</surname>
<given-names>AP</given-names>
</name>
<name>
<surname>Eisen</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Bearden</surname>
<given-names>SW</given-names>
</name>
<name>
<surname>Montenieri</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Tripp</surname>
<given-names>DW</given-names>
</name>
<name>
<surname>Brinkerhoff</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Gage</surname>
<given-names>KL</given-names>
</name>
<name>
<surname>Antolin</surname>
<given-names>MF</given-names>
</name>
</person-group>
<article-title>Transmission efficiency of two flea species (
<italic>Oropsylla tuberculata cynomuris</italic>
and
<italic>Oropsylla hirsuta</italic>
) involved in plague epizootics among prairie dogs</article-title>
<source>EcoHealth</source>
<year>2008</year>
<volume>5</volume>
<fpage>205</fpage>
<lpage>212</lpage>
<pub-id pub-id-type="pmid">18787922</pub-id>
</element-citation>
</ref>
<ref id="bib59">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Williams</surname>
<given-names>SK</given-names>
</name>
<name>
<surname>Schotthoeffer</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Montenieri</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Holmes</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Vetter</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Gage</surname>
<given-names>KL</given-names>
</name>
<name>
<surname>Bearden</surname>
<given-names>SW</given-names>
</name>
</person-group>
<article-title>Effects of low-temperature flea maintenance on the transmission of
<italic>Yersinia pestis</italic>
by
<italic>Oropsylla montana</italic>
</article-title>
<source>Vector-borne and Zoonotic Diseases</source>
<year>2013</year>
<volume>13</volume>
<fpage>468</fpage>
<lpage>478</lpage>
<pub-id pub-id-type="pmid">23590319</pub-id>
</element-citation>
</ref>
<ref id="bib60">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wong</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Primary pneumonic plague contracted from a mountain lion carcass</article-title>
<source>Clinical Infectious Diseases</source>
<year>2009</year>
<volume>49</volume>
<fpage>e33</fpage>
<lpage>e38</lpage>
<pub-id pub-id-type="pmid">19555287</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B418 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000B418 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021