Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Computer aided prediction and identification of potential epitopes in the receptor binding domain (RBD) of spike (S) glycoprotein of MERS-CoV

Identifieur interne : 000B27 ( Pmc/Corpus ); précédent : 000B26; suivant : 000B28

Computer aided prediction and identification of potential epitopes in the receptor binding domain (RBD) of spike (S) glycoprotein of MERS-CoV

Auteurs : Mohammad Tuhin Ali ; Mohammed Monzur Morshed ; Md. Amran Gazi ; Md. Abu Musa ; Md Golam Kibria ; Md Jashim Uddin ; Md. Anik Ashfaq Khan ; Shihab Hasan

Source :

RBID : PMC:4166774

Abstract

Middle East Respiratory Syndrome Coronavirus (MERS-CoV) belongs to the coronaviridae family. In spite of several outbreaks in the very recent years, no vaccine against this deadly virus is developed yet. In this study, the receptor binding domain (RBD) of Spike (S) glycoprotein of MERS-CoV was analyzed through Computational Immunology approach to identify the antigenic determinants (epitopes). In order to do so, the sequences of S glycoprotein that belong to different geographical regions were aligned to observe the conservancy of MERS-CoV RBD. The immune parameters of this region were determined using different in silico tools and Immune Epitope Database (IEDB). Molecular docking study was also employed to check the affinity of the potential epitope towards the binding cleft of the specific HLA allele. The N-terminus RBD (S367-S606) of S glycoprotein was found to be conserved among all the available strains of MERS-CoV. Based on the lower IC50 value, a total of eight potential T-cell epitopes and 19 major histocompatibility complex (MHC) class-I alleles were identified for this conserved region. A 9-mer epitope CYSSLILDY displayed interactions with the maximum number of MHC class-I molecules and projected the highest peak in the B-cell antigenicity plot which concludes that it could be a better choice for designing an epitope based peptide vaccine against MERSCoV considering that it must undergo further in vitro and in vivo experiments. Moreover, in molecular docking study, this epitope was found to have a significant binding affinity of -8.5 kcal/mol towards the binding cleft of the HLA-C*12:03 molecule.


Url:
DOI: 10.6026/97320630010533
PubMed: 25258490
PubMed Central: 4166774

Links to Exploration step

PMC:4166774

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Computer aided prediction and identification of potential epitopes in the receptor binding domain (RBD) of spike (S) glycoprotein of MERS-CoV</title>
<author>
<name sortKey="Ali, Mohammad Tuhin" sort="Ali, Mohammad Tuhin" uniqKey="Ali M" first="Mohammad Tuhin" last="Ali">Mohammad Tuhin Ali</name>
<affiliation>
<nlm:aff id="A1">Department of Biochemistry and Molecular Biology, University of Dhaka, Bangladesh</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Morshed, Mohammed Monzur" sort="Morshed, Mohammed Monzur" uniqKey="Morshed M" first="Mohammed Monzur" last="Morshed">Mohammed Monzur Morshed</name>
<affiliation>
<nlm:aff id="A1">Department of Biochemistry and Molecular Biology, University of Dhaka, Bangladesh</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Gazi, Md Amran" sort="Gazi, Md Amran" uniqKey="Gazi M" first="Md. Amran" last="Gazi">Md. Amran Gazi</name>
<affiliation>
<nlm:aff id="A2">Laboratory Science Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Musa, Md Abu" sort="Musa, Md Abu" uniqKey="Musa M" first="Md. Abu" last="Musa">Md. Abu Musa</name>
<affiliation>
<nlm:aff id="A2">Laboratory Science Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kibria, Md Golam" sort="Kibria, Md Golam" uniqKey="Kibria M" first="Md Golam" last="Kibria">Md Golam Kibria</name>
<affiliation>
<nlm:aff id="A2">Laboratory Science Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Uddin, Md Jashim" sort="Uddin, Md Jashim" uniqKey="Uddin M" first="Md Jashim" last="Uddin">Md Jashim Uddin</name>
<affiliation>
<nlm:aff id="A2">Laboratory Science Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Khan, Md Anik Ashfaq" sort="Khan, Md Anik Ashfaq" uniqKey="Khan M" first="Md. Anik Ashfaq" last="Khan">Md. Anik Ashfaq Khan</name>
<affiliation>
<nlm:aff id="A2">Laboratory Science Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hasan, Shihab" sort="Hasan, Shihab" uniqKey="Hasan S" first="Shihab" last="Hasan">Shihab Hasan</name>
<affiliation>
<nlm:aff id="A4">Bioinformatics Lab, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A5">School of Medicine, The University of Queensland (UQ), Brisbane, Queensland, Australia</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">25258490</idno>
<idno type="pmc">4166774</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4166774</idno>
<idno type="RBID">PMC:4166774</idno>
<idno type="doi">10.6026/97320630010533</idno>
<date when="2014">2014</date>
<idno type="wicri:Area/Pmc/Corpus">000B27</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000B27</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Computer aided prediction and identification of potential epitopes in the receptor binding domain (RBD) of spike (S) glycoprotein of MERS-CoV</title>
<author>
<name sortKey="Ali, Mohammad Tuhin" sort="Ali, Mohammad Tuhin" uniqKey="Ali M" first="Mohammad Tuhin" last="Ali">Mohammad Tuhin Ali</name>
<affiliation>
<nlm:aff id="A1">Department of Biochemistry and Molecular Biology, University of Dhaka, Bangladesh</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Morshed, Mohammed Monzur" sort="Morshed, Mohammed Monzur" uniqKey="Morshed M" first="Mohammed Monzur" last="Morshed">Mohammed Monzur Morshed</name>
<affiliation>
<nlm:aff id="A1">Department of Biochemistry and Molecular Biology, University of Dhaka, Bangladesh</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Gazi, Md Amran" sort="Gazi, Md Amran" uniqKey="Gazi M" first="Md. Amran" last="Gazi">Md. Amran Gazi</name>
<affiliation>
<nlm:aff id="A2">Laboratory Science Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Musa, Md Abu" sort="Musa, Md Abu" uniqKey="Musa M" first="Md. Abu" last="Musa">Md. Abu Musa</name>
<affiliation>
<nlm:aff id="A2">Laboratory Science Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kibria, Md Golam" sort="Kibria, Md Golam" uniqKey="Kibria M" first="Md Golam" last="Kibria">Md Golam Kibria</name>
<affiliation>
<nlm:aff id="A2">Laboratory Science Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Uddin, Md Jashim" sort="Uddin, Md Jashim" uniqKey="Uddin M" first="Md Jashim" last="Uddin">Md Jashim Uddin</name>
<affiliation>
<nlm:aff id="A2">Laboratory Science Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Khan, Md Anik Ashfaq" sort="Khan, Md Anik Ashfaq" uniqKey="Khan M" first="Md. Anik Ashfaq" last="Khan">Md. Anik Ashfaq Khan</name>
<affiliation>
<nlm:aff id="A2">Laboratory Science Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hasan, Shihab" sort="Hasan, Shihab" uniqKey="Hasan S" first="Shihab" last="Hasan">Shihab Hasan</name>
<affiliation>
<nlm:aff id="A4">Bioinformatics Lab, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A5">School of Medicine, The University of Queensland (UQ), Brisbane, Queensland, Australia</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Bioinformation</title>
<idno type="ISSN">0973-8894</idno>
<idno type="eISSN">0973-2063</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Middle East Respiratory Syndrome Coronavirus (MERS-CoV) belongs to the coronaviridae family. In spite of several outbreaks in the very recent years, no vaccine against this deadly virus is developed yet. In this study, the receptor binding domain (RBD) of Spike (S) glycoprotein of MERS-CoV was analyzed through Computational Immunology approach to identify the antigenic determinants (epitopes). In order to do so, the sequences of S glycoprotein that belong to different geographical regions were aligned to observe the conservancy of MERS-CoV RBD. The immune parameters of this region were determined using different
<italic>in silico</italic>
tools and Immune Epitope Database (IEDB). Molecular docking study was also employed to check the affinity of the potential epitope towards the binding cleft of the specific HLA allele. The N-terminus RBD (S367-S606) of S glycoprotein was found to be conserved among all the available strains of MERS-CoV. Based on the lower IC
<sub>50</sub>
value, a total of eight potential T-cell epitopes and 19 major histocompatibility complex (MHC) class-I alleles were identified for this conserved region. A 9-mer epitope CYSSLILDY displayed interactions with the maximum number of MHC class-I molecules and projected the highest peak in the B-cell antigenicity plot which concludes that it could be a better choice for designing an epitope based peptide vaccine against MERSCoV considering that it must undergo further
<italic>in vitro</italic>
and
<italic>in vivo</italic>
experiments. Moreover, in molecular docking study, this epitope was found to have a significant binding affinity of -8.5 kcal/mol towards the binding cleft of the HLA-C*12:03 molecule.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Coleman, Cm" uniqKey="Coleman C">CM Coleman</name>
</author>
<author>
<name sortKey="Frieman, Mb" uniqKey="Frieman M">MB Frieman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Assiri, A" uniqKey="Assiri A">A Assiri</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Petrovsky, N" uniqKey="Petrovsky N">N Petrovsky</name>
</author>
<author>
<name sortKey="Brusic, V" uniqKey="Brusic V">V Brusic</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rota, Pa" uniqKey="Rota P">PA Rota</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Spaan, W" uniqKey="Spaan W">W Spaan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Raj, Vs" uniqKey="Raj V">VS Raj</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jiang, S" uniqKey="Jiang S">S Jiang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Weiss, Sr" uniqKey="Weiss S">SR Weiss</name>
</author>
<author>
<name sortKey="Navas Martin, S" uniqKey="Navas Martin S">S Navas-Martin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Du, L" uniqKey="Du L">L Du</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, N" uniqKey="Wang N">N Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Du, L" uniqKey="Du L">L Du</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sievers, F" uniqKey="Sievers F">F Sievers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Larsen, Mv" uniqKey="Larsen M">MV Larsen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Larsen, Mv" uniqKey="Larsen M">MV Larsen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Peters, B" uniqKey="Peters B">B Peters</name>
</author>
<author>
<name sortKey="Sette, A" uniqKey="Sette A">A Sette</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tenzer, S" uniqKey="Tenzer S">S Tenzer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Peters, B" uniqKey="Peters B">B Peters</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bui, H H" uniqKey="Bui H">H-H Bui</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Singh, H" uniqKey="Singh H">H Singh</name>
</author>
<author>
<name sortKey="Raghava, G" uniqKey="Raghava G">G Raghava</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rammensee, H G" uniqKey="Rammensee H">H-G Rammensee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Morris, Gm" uniqKey="Morris G">GM Morris</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Trott, O" uniqKey="Trott O">O Trott</name>
</author>
<author>
<name sortKey="Olson, Aj" uniqKey="Olson A">AJ Olson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kolaskar, A" uniqKey="Kolaskar A">A Kolaskar</name>
</author>
<author>
<name sortKey="Tongaonkar, Pc" uniqKey="Tongaonkar P">PC Tongaonkar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhou, J" uniqKey="Zhou J">J Zhou</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Bioinformation</journal-id>
<journal-id journal-id-type="iso-abbrev">Bioinformation</journal-id>
<journal-id journal-id-type="publisher-id">Bioinformation</journal-id>
<journal-title-group>
<journal-title>Bioinformation</journal-title>
</journal-title-group>
<issn pub-type="ppub">0973-8894</issn>
<issn pub-type="epub">0973-2063</issn>
<publisher>
<publisher-name>Biomedical Informatics</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">25258490</article-id>
<article-id pub-id-type="pmc">4166774</article-id>
<article-id pub-id-type="publisher-id">97320630010533</article-id>
<article-id pub-id-type="doi">10.6026/97320630010533</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Hypothesis</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Computer aided prediction and identification of potential epitopes in the receptor binding domain (RBD) of spike (S) glycoprotein of MERS-CoV</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>ali</surname>
<given-names>Mohammad Tuhin</given-names>
</name>
<xref ref-type="aff" rid="A1">1</xref>
<xref ref-type="corresp" rid="COR1">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Morshed</surname>
<given-names>Mohammed Monzur</given-names>
</name>
<xref ref-type="aff" rid="A1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Gazi</surname>
<given-names>Md. Amran</given-names>
</name>
<xref ref-type="aff" rid="A2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Musa</surname>
<given-names>Md. Abu</given-names>
</name>
<xref ref-type="aff" rid="A2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kibria</surname>
<given-names>Md Golam</given-names>
</name>
<xref ref-type="aff" rid="A2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Uddin</surname>
<given-names>Md Jashim</given-names>
</name>
<xref ref-type="aff" rid="A2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Khan</surname>
<given-names>Md. Anik Ashfaq</given-names>
</name>
<xref ref-type="aff" rid="A2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Hasan</surname>
<given-names>Shihab</given-names>
</name>
<xref ref-type="aff" rid="A4">4</xref>
<xref ref-type="aff" rid="A5">5</xref>
<xref ref-type="corresp" rid="COR2">*</xref>
</contrib>
<aff id="A1">
<label>1</label>
Department of Biochemistry and Molecular Biology, University of Dhaka, Bangladesh</aff>
<aff id="A2">
<label>2</label>
Laboratory Science Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh</aff>
<aff id="A3">
<label>3</label>
Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh</aff>
<aff id="A4">
<label>4</label>
Bioinformatics Lab, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia</aff>
<aff id="A5">
<label>5</label>
School of Medicine, The University of Queensland (UQ), Brisbane, Queensland, Australia</aff>
</contrib-group>
<author-notes>
<corresp id="COR1">
<label>*</label>
Mohammad Tuhin Ali:
<email>m.tuhinali@gmail.com</email>
Phone: +8801747687885</corresp>
<corresp id="COR2">
<label>*</label>
Shihab Hasan:
<email>shihab.hasan@qimrberghofer.edu.au</email>
Phone: +61733620468, +61466097724</corresp>
</author-notes>
<pub-date pub-type="collection">
<year>2014</year>
</pub-date>
<pub-date pub-type="epub">
<day>30</day>
<month>8</month>
<year>2014</year>
</pub-date>
<volume>10</volume>
<issue>8</issue>
<fpage>533</fpage>
<lpage>538</lpage>
<history>
<date date-type="received">
<day>23</day>
<month>6</month>
<year>2014</year>
</date>
<date date-type="rev-recd">
<day>07</day>
<month>7</month>
<year>2014</year>
</date>
<date date-type="accepted">
<day>08</day>
<month>7</month>
<year>2014</year>
</date>
</history>
<permissions>
<copyright-statement>© 2014 Biomedical Informatics</copyright-statement>
<copyright-year>2014</copyright-year>
<license license-type="open-access">
<license-p>This is an open-access article, which permits unrestricted use, distribution, and reproduction in any medium, for non-commercial purposes, provided the original author and source are credited.</license-p>
</license>
</permissions>
<abstract>
<p>Middle East Respiratory Syndrome Coronavirus (MERS-CoV) belongs to the coronaviridae family. In spite of several outbreaks in the very recent years, no vaccine against this deadly virus is developed yet. In this study, the receptor binding domain (RBD) of Spike (S) glycoprotein of MERS-CoV was analyzed through Computational Immunology approach to identify the antigenic determinants (epitopes). In order to do so, the sequences of S glycoprotein that belong to different geographical regions were aligned to observe the conservancy of MERS-CoV RBD. The immune parameters of this region were determined using different
<italic>in silico</italic>
tools and Immune Epitope Database (IEDB). Molecular docking study was also employed to check the affinity of the potential epitope towards the binding cleft of the specific HLA allele. The N-terminus RBD (S367-S606) of S glycoprotein was found to be conserved among all the available strains of MERS-CoV. Based on the lower IC
<sub>50</sub>
value, a total of eight potential T-cell epitopes and 19 major histocompatibility complex (MHC) class-I alleles were identified for this conserved region. A 9-mer epitope CYSSLILDY displayed interactions with the maximum number of MHC class-I molecules and projected the highest peak in the B-cell antigenicity plot which concludes that it could be a better choice for designing an epitope based peptide vaccine against MERSCoV considering that it must undergo further
<italic>in vitro</italic>
and
<italic>in vivo</italic>
experiments. Moreover, in molecular docking study, this epitope was found to have a significant binding affinity of -8.5 kcal/mol towards the binding cleft of the HLA-C*12:03 molecule.</p>
</abstract>
<kwd-group>
<kwd>Epitope</kwd>
<kwd>HLA ligand</kwd>
<kwd>MERS-CoV</kwd>
<kwd>Receptor Binding Domain</kwd>
<kwd>Spike glycoprotein</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec id="s1">
<title>Background</title>
<p>MERS-CoV is an enveloped positive sense single stranded RNA virus from betacoronavirus genus. Its natural reservoir is still unidentified but similarity with other viruses suggested that it is of bat origin [
<xref rid="R01" ref-type="bibr">1</xref>
]. Infection with MERS-CoV is characterized mostly by severe acute respiratory syndrome (SARS). Clinical symptoms also include fever, fever with chills or rigours, cough, shortness of breath and in some cases renal failure. Gastrointestinal symptoms were also found in infected patients including diarrhoea, vomiting and abdominal pain [
<xref rid="R02" ref-type="bibr">2</xref>
]. The first official outbreak was recorded in Saudi Arabia on September 2012. Recurrent infections of MERS-CoV has been reported from 2012 to 2014 in Jordan, Kuwait, Oman, Qatar, Saudi Arabia (KSA), United Arab Emirates (UAE), Yemen, Egypt, Tunisia, France, Germany, Greece, Italy, and United Kingdom. According to the World Health Organization (WHO), till date a total of 536 laboratory-confirmed cases of MERS-CoV infections have been identified, 145 of which resulted in death (
<ext-link ext-link-type="uri" xlink:href="http://www.who.int/csr/disease/coronavirusinfections/archive_updates/en">http://www.who.int /csr/disease /coronavirus infections/archive_updates/en</ext-link>
). Though it has not hit the world population in a massive scale yet, its progressive invasiveness with concerning fatality rate raises the demand of therapeutic solutions or vaccination on an urgent basis.</p>
<p>The field of Computational Immunology is developing rapidly. Current tools enable us to predict potential epitopes from large protein antigens encoded by viral genomes. Identification of B- and T-cell epitopes and their respective MHC alleles is the crucial step for the very initial screening process of immunoinformatics approach [
<xref rid="R03" ref-type="bibr">3</xref>
].</p>
<p>Coronavirus possess a non-structural replicase polyprotein and several structural proteins including spike (S), envelope (E), membrane (M) and nucleocapsid (N) proteins [
<xref rid="R04" ref-type="bibr">4</xref>
,
<xref rid="R05" ref-type="bibr">5</xref>
]. Like other coronaviruses, the host cell recognition of MERS-CoV by CD26 receptor is mediated by its surface anchored S glycoprotein [
<xref rid="R06" ref-type="bibr">6</xref>
,
<xref rid="R07" ref-type="bibr">7</xref>
]. This S glycoprotein has S1 and S2 subunits. S1 subunit contains RBD which mediates initial host cell recognition whereas S2 subunit mediates membrane fusion [
<xref rid="R08" ref-type="bibr">8</xref>
,
<xref rid="R09" ref-type="bibr">9</xref>
].</p>
<p>Several recent studies have revealed that the N-terminal 367- 606 amino acid region of S glycoprotein of MERS-CoV is bound with human CD26 and produces significant immune response. This phenomenon suggests that the receptor binding capacity of MERS-CoV lies in this particular region of S glycoprotein [
<xref rid="R10" ref-type="bibr">10</xref>
,
<xref rid="R11" ref-type="bibr">11</xref>
]. Considering these facts, our approach was to choose this particular region of S glycoprotein for the prediction and identification of the potential T- and B-cell epitopes in this computational study.</p>
</sec>
<sec sec-type="methods" id="s2">
<title>Methodology</title>
<sec id="s2a">
<title>
<italic>Retrieving protein sequence</italic>
:</title>
<p>The sequences of S glycoprotein were retrieved from two databases: NCBI (National Center for Biotechnology Information) (
<ext-link ext-link-type="uri" xlink:href="http://www.ncbi.nlm.nih.gov/">http://www.ncbi.nlm.nih.gov/</ext-link>
) and uniprot (
<ext-link ext-link-type="uri" xlink:href="http://www.uniprot.org/">http://www.uniprot.org/</ext-link>
). These sequences belong to diverse demographic distributions like Saudi Arabia, England, Qatar, Spain, Germany, Jordan, and UAE with time ranges from 2012 to 2013.</p>
</sec>
<sec id="s2b">
<title>
<italic>Multiple sequence alignment</italic>
:</title>
<p>The Clustal Omega software (version 1.2.1) was utilized to generate multiple sequence alignment for retrieved sequences which was the basis for determining the conservancy of MERS CoV RBD [
<xref rid="R12" ref-type="bibr">12</xref>
].</p>
</sec>
<sec id="s2c">
<title>
<italic>Immunogenicity of conserved peptide</italic>
:</title>
<p>Different tools available from the IEDB analysis resource (
<ext-link ext-link-type="uri" xlink:href="http://tools.immuneepitope.org/main/index.html">http://tools.immuneepitope.org/main/index.html</ext-link>
) were used to evaluate the immunogenicity of MERS-CoV RBD. The NetCTL prediction method was utilized for identifying T-cell epitopes from this region [
<xref rid="R13" ref-type="bibr">13</xref>
,
<xref rid="R14" ref-type="bibr">14</xref>
]. The MHC class-I binding prediction tool was used to identify MHC class-I alleles for the final set of T-cell epitopes based on Stabilized Matrix Method (SMM) [
<xref rid="R15" ref-type="bibr">15</xref>
].</p>
<p>“Proteasomal cleavage/TAP transport/MHC class I combined predictor” was utilized for determining the overall score for each peptide's intrinsic capability to be considered as a T cell epitope (
<ext-link ext-link-type="uri" xlink:href="http://tools.immuneepitope.org/processing/">http://tools.immuneepitope.org/processing/</ext-link>
) [
<xref rid="R15" ref-type="bibr">15</xref>
<xref rid="R17" ref-type="bibr">17</xref>
]. The epitope conservancy analysis tool was utilized to calculate the conservancy of the final set of epitopes within the sequences of S glycoprotein [
<xref rid="R18" ref-type="bibr">18</xref>
]. In addition to this, The ProPred1 and SYFPEITHI databases were also employed to identify the anchoring residues of the epitopes [
<xref rid="R19" ref-type="bibr">19</xref>
,
<xref rid="R20" ref-type="bibr">20</xref>
].</p>
</sec>
<sec id="s2d">
<title>
<italic>3D structures of the predicted epitope and HLA-C*12:03</italic>
:</title>
<p>The 3D structure of MHC class-I molecule (HLA-C*12:03) was retrieved from the Protein Data Bank (PDB) (HLA-C*12:03; PDB ID: 2FSE) database (
<ext-link ext-link-type="uri" xlink:href="http://www.rcsb.org/pdb/home/home.do">http://www.rcsb.org /pdb/home/ home.do</ext-link>
). The 3D structure of the best epitope CYSSLILDY (see discussion section) was designed by using PEPstr peptide tertiary structure prediction server (
<ext-link ext-link-type="uri" xlink:href="http://www.imtech.res.in/raghava/pepstr/">http://www.imtech.res.in /raghava/pepstr/</ext-link>
).</p>
</sec>
<sec id="s2e">
<title>
<italic>Assessment of HLA-epitope interaction by molecular docking study</italic>
:</title>
<p>The AutoDock tools (ADT) from the MGL software package (version 1.5.6) and AutoDock vina (Vina, version 4.2) were used for molecular docking study [
<xref rid="R21" ref-type="bibr">21</xref>
,
<xref rid="R22" ref-type="bibr">22</xref>
]. At the beginning of the docking study, both the 3D structures of protein (HLAC* 12:03) and ligand (CYSSLILDY) were opened in ADT. For the epitope to be bound at the binding groove of HLA-C*12:03, the centre grid box parameter was set at 22.474, 5.416, 34.437 Å in x, y and z directions respectively with 1.0 Å spacing. The points were set at 40, 38, 52 Å in x, y and z directions respectively. AutoDock tool was utilized to set the above parameters whereas AutoDock vina was applied for conducting docking experiment. Output files were visualized by PyMOL molecular visualization system (version: 1.5.0.3). Along with this, the Immunodominant Determinant of human type-2 collagen (PDB ID: 2FSE) was used as ligand to run positive control maintaining all the parameters as same as initial docking of this study.</p>
</sec>
<sec id="s2f">
<title>
<italic>Prediction of B-cell epitope</italic>
:</title>
<p>The B-cell epitope prediction tool from IEDB was used to predict the B-cell antigenicity of MERS-CoV RBD. The Kolaskar and Tongaonkar method was employed for this prediction which can predict antigenic determinants with approximately 75% accuracy [
<xref rid="R23" ref-type="bibr">23</xref>
].</p>
</sec>
</sec>
<sec id="s3">
<title>Results</title>
<sec id="s3a">
<title>
<italic>Conservancy of MERS-CoV RBD</italic>
:</title>
<p>An illustration of the MERS-CoV RBD in complex with the human CD26 protein (DPP4) is given in
<xref ref-type="fig" rid="F1">Figure 1</xref>
. A total of 54 sequences of S glycoprotein were subjected to multiple sequence alignment. From the output of multiple sequence alignment of S glycoprotein, it was found that a peptide region of 367-606 amino acids remained conserved among all the given sequences (
<xref ref-type="fig" rid="F2">Figure 2A</xref>
). Thus the above finding gives a convincing affirmation that MERS-CoV RBD is a well conserved region.</p>
</sec>
<sec id="s3b">
<title>
<italic>Immunogenicity of MERS-CoV RBD</italic>
:</title>
<p>235 overlapping CTL peptides and 79 possible MHC-1 alleles were predicted by NetCTL and MHC class-I binding prediction tool, respectively. The final set of epitopes and their respective MHC class-I allele was generated on the basis of a total score ≥ 1 and the “half maximal inhibitory concentration (IC
<sub>50</sub>
)” value ≤ 100. This final set includes only eight T-cell epitopes and a total of 19 MHC class-I alleles (
<xref ref-type="fig" rid="F2">Figure 2A</xref>
&
<xref ref-type="fig" rid="F2">Figure 2B</xref>
). A graphical presentation of the result predicted by the NetCTL prediction tool is given in
<xref ref-type="fig" rid="F3">Figure 3</xref>
. The immunogenicity of final epitopes was also determined in terms of proteasome score, TAP score, MHC-I binding score and processing score. All of the eight T-cell epitopes demonstrated 100% sequence conservancy within the given sequences of S glycoprotein which is summarized in
<xref ref-type="supplementary-material" rid="SD1">Table 1</xref>
(See supplementary material).</p>
</sec>
<sec id="s3c">
<title>
<italic>HLA-epitope interactions</italic>
:</title>
<p>The designed epitope (CYSSLILDY) and experimental epitope (immunodominant determinant of human type-2 collagen; PDB ID: 2FSE) are displayed in
<xref ref-type="fig" rid="F3">Figure 3</xref>
. AutoDock vina predicted the best conformer of CYSSLILDY epitope based on the binding energy in kcal/mol unit. In our study, the best conformer of this epitope had the binding energy of -8.3 kcal/mol which was very similar with that of the positive control experiment (-7.5 kcal/mol). Among 9 residues in the epitope, only cysteine, serine and tyrosine (first, fourth and ninth residue, respectively) showed the anchoring capacity and other six residues remained at the binding groove of HLAC * 12:03 molecule. For both the designed and experimental epitopes at the binding groove of HLA-C*12:03, a comparative analysis of their binding pattern is illustrated in
<xref ref-type="fig" rid="F4">Figure 4</xref>
.</p>
</sec>
<sec id="s3d">
<title>
<italic>B-cell antigenicity</italic>
:</title>
<p>The graphical depiction of B-cell antigenicity of MERS-CoV RBD is in
<xref ref-type="fig" rid="F5">Figure 5</xref>
. Average antigenic propensity for this region is 1.050. Twelve antigenic determinants were found from this region which is presented in
<xref ref-type="supplementary-material" rid="SD1">Table 2</xref>
(See supplementary material).</p>
</sec>
</sec>
<sec id="s4">
<title>Discussion</title>
<p>In recent years,
<italic>in silico</italic>
approach has become handy in vaccine designing against deadly entities as it provides clue to select target protein sequence. Till date, there is no established therapeutic solution or vaccination against MERS-CoV infection. Several reports in recent years reveal that MERS-CoV produces strong T-cell mediated immune responses in human body, inspiring us to design T-cell epitope based peptide vaccine [
<xref rid="R24" ref-type="bibr">24</xref>
].</p>
<p>To be considered as a potent epitope, a peptide must contain several key properties like well conservancy, T- or B-cell processivity and good binding affinity for MHC alleles. In our study, the values for above mentioned parameters were found in favour of the finally chosen epitopes.</p>
<p>In this study we used NetCTL prediction tool for the primary screening of the RBD of S glycoprotein of MERS-CoV for T-cell epitope prediction which is based on neural network architecture. It predicts the epitopes on the basis of processing of peptide in vivo. It gives a total score for each epitopes by using an algorithm integrating MHC-I binding, Transporter of Antigenic peptides (TAP) transport efficiency and proteasomal cleavage prediction [
<xref rid="R13" ref-type="bibr">13</xref>
,
<xref rid="R14" ref-type="bibr">14</xref>
].</p>
<p>Among eight T-cell epitopes, CYSSLILDY was the most successful because it was found to have the maximum interactions with different MHC class-I alleles which is a principle prerequisite for a potential epitope. In addition to this, it was found that the peptide region of 408-452 amino acids “NYNLTKLLSLFSVNDFTCSQISPAAIASNCYSSLILDYFSYPL S” of S glycoprotein of MERS-CoV shows the highest B-cell antigenicity peak in antigenicity plot. Most importantly, we observed that the best successful T-cell epitope CYSSLILDY is also a part of the region which shows highest B-cell antigenicity peak, suggesting that it may stand as a competent choice to be a universal vaccine component against MERSCoV, the rapidly growing health concern.</p>
</sec>
<sec id="s5">
<title>Conclusion</title>
<p>The obtained results which identified the epitopes cover a significant number of strains with decent population coverage. To exert cellular and humoral immunity, the computer aided result has been found potential and expected to mount immune response upon further in vivo and in vitro validation. The step by step analysis and progression for maximum possible MHC coverage provides significant primary screening result against this fatal virus.</p>
</sec>
<sec id="s6">
<title>Conflict of interest</title>
<p>The authors declare that there is no conflict of interests.</p>
</sec>
<sec sec-type="supplementary-material">
<title>Supplementary material</title>
<supplementary-material content-type="local-data" id="SD1">
<caption>
<title>Data 1</title>
</caption>
<media mimetype="application" mime-subtype="pdf" xlink:href="97320630010533S1.pdf" xlink:type="simple" id="d35e464" position="anchor"></media>
</supplementary-material>
</sec>
</body>
<back>
<fn-group>
<fn id="FN1" fn-type="other">
<p>
<bold>Citation:</bold>
Tuhin ali
<italic>et al</italic>
, Bioinformation 10(8): 533-538 (2014)</p>
</fn>
</fn-group>
<ref-list>
<title>References</title>
<ref id="R01">
<label>1</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Coleman</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Frieman</surname>
<given-names>MB</given-names>
</name>
</person-group>
<source>PLoS pathogens</source>
<year>2013</year>
<volume>9</volume>
<fpage>e1003595</fpage>
<pub-id pub-id-type="pmid">24039577</pub-id>
</element-citation>
</ref>
<ref id="R02">
<label>2</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Assiri</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<source>Lancet infect Dis</source>
<year>2013</year>
<volume>13</volume>
<fpage>752</fpage>
<pub-id pub-id-type="pmid">23891402</pub-id>
</element-citation>
</ref>
<ref id="R03">
<label>3</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Petrovsky</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Brusic</surname>
<given-names>V</given-names>
</name>
</person-group>
<source>Immunol Cell Biol</source>
<year>2002</year>
<volume>80</volume>
<fpage>248</fpage>
<pub-id pub-id-type="pmid">12067412</pub-id>
</element-citation>
</ref>
<ref id="R04">
<label>4</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rota</surname>
<given-names>PA</given-names>
</name>
<etal></etal>
</person-group>
<source>Science</source>
<year>2003</year>
<volume>300</volume>
<fpage>1394</fpage>
<pub-id pub-id-type="pmid">12730500</pub-id>
</element-citation>
</ref>
<ref id="R05">
<label>5</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Spaan</surname>
<given-names>W</given-names>
</name>
<etal></etal>
</person-group>
<source>J Gen Virol</source>
<year>1988</year>
<volume>69</volume>
<fpage>2939</fpage>
<pub-id pub-id-type="pmid">3058868</pub-id>
</element-citation>
</ref>
<ref id="R06">
<label>6</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Raj</surname>
<given-names>VS</given-names>
</name>
<etal></etal>
</person-group>
<source>Nature</source>
<year>2013</year>
<volume>495</volume>
<fpage>251</fpage>
<pub-id pub-id-type="pmid">23486063</pub-id>
</element-citation>
</ref>
<ref id="R07">
<label>7</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jiang</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<source>J Infection</source>
<year>2013</year>
<volume>66</volume>
<fpage>464</fpage>
<pub-id pub-id-type="pmid">23266463</pub-id>
</element-citation>
</ref>
<ref id="R08">
<label>8</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Weiss</surname>
<given-names>SR</given-names>
</name>
<name>
<surname>Navas-Martin</surname>
<given-names>S</given-names>
</name>
</person-group>
<source>Microbiol Mol Biol Rev</source>
<year>2005</year>
<volume>69</volume>
<fpage>635</fpage>
<pub-id pub-id-type="pmid">16339739</pub-id>
</element-citation>
</ref>
<ref id="R09">
<label>9</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Du</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<source>Nat Rev Microbiol</source>
<year>2009</year>
<volume>7</volume>
<fpage>226</fpage>
<pub-id pub-id-type="pmid">19198616</pub-id>
</element-citation>
</ref>
<ref id="R10">
<label>10</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>N</given-names>
</name>
<etal></etal>
</person-group>
<source>Cell Res</source>
<year>2013</year>
<volume>23</volume>
<fpage>986</fpage>
<pub-id pub-id-type="pmid">23835475</pub-id>
</element-citation>
</ref>
<ref id="R11">
<label>11</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Du</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<source>J Virol</source>
<year>2013</year>
<volume>87</volume>
<fpage>9939</fpage>
<pub-id pub-id-type="pmid">23824801</pub-id>
</element-citation>
</ref>
<ref id="R12">
<label>12</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sievers</surname>
<given-names>F</given-names>
</name>
<etal></etal>
</person-group>
<source>Mol Syst Biol</source>
<year>2011</year>
<volume>7</volume>
<fpage>539</fpage>
<pub-id pub-id-type="pmid">21988835</pub-id>
</element-citation>
</ref>
<ref id="R13">
<label>13</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Larsen</surname>
<given-names>MV</given-names>
</name>
<etal></etal>
</person-group>
<source>BMC Bioinformatics</source>
<year>2007</year>
<volume>8</volume>
<fpage>424</fpage>
<pub-id pub-id-type="pmid">17973982</pub-id>
</element-citation>
</ref>
<ref id="R14">
<label>14</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Larsen</surname>
<given-names>MV</given-names>
</name>
<etal></etal>
</person-group>
<source>Eur J Immunol</source>
<year>2005</year>
<volume>35</volume>
<fpage>2295</fpage>
<pub-id pub-id-type="pmid">15997466</pub-id>
</element-citation>
</ref>
<ref id="R15">
<label>15</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Peters</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Sette</surname>
<given-names>A</given-names>
</name>
</person-group>
<source>BMC Bioinformatics</source>
<year>2005</year>
<volume>6</volume>
<fpage>132</fpage>
<pub-id pub-id-type="pmid">15927070</pub-id>
</element-citation>
</ref>
<ref id="R16">
<label>16</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tenzer</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<source>Cell Mol Life Sci</source>
<year>2005</year>
<volume>62</volume>
<fpage>1025</fpage>
<pub-id pub-id-type="pmid">15868101</pub-id>
</element-citation>
</ref>
<ref id="R17">
<label>17</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Peters</surname>
<given-names>B</given-names>
</name>
<etal></etal>
</person-group>
<source>J Immunol</source>
<year>2003</year>
<volume>171</volume>
<fpage>1741</fpage>
<pub-id pub-id-type="pmid">12902473</pub-id>
</element-citation>
</ref>
<ref id="R18">
<label>18</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bui</surname>
<given-names>H-H</given-names>
</name>
<etal></etal>
</person-group>
<source>BMC Bioinformatics</source>
<year>2007</year>
<volume>8</volume>
<fpage>361</fpage>
<pub-id pub-id-type="pmid">17897458</pub-id>
</element-citation>
</ref>
<ref id="R19">
<label>19</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Singh</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Raghava</surname>
<given-names>G</given-names>
</name>
</person-group>
<source>Bioinformatics</source>
<year>2003</year>
<volume>19</volume>
<fpage>1009</fpage>
<pub-id pub-id-type="pmid">12761064</pub-id>
</element-citation>
</ref>
<ref id="R20">
<label>20</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rammensee</surname>
<given-names>H-G</given-names>
</name>
<etal></etal>
</person-group>
<source>Immunogenetics</source>
<year>1999</year>
<volume>50</volume>
<fpage>213</fpage>
<pub-id pub-id-type="pmid">10602881</pub-id>
</element-citation>
</ref>
<ref id="R21">
<label>21</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Morris</surname>
<given-names>GM</given-names>
</name>
<etal></etal>
</person-group>
<source>J Comput Chem</source>
<year>2009</year>
<volume>30</volume>
<fpage>2785</fpage>
<pub-id pub-id-type="pmid">19399780</pub-id>
</element-citation>
</ref>
<ref id="R22">
<label>22</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Trott</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Olson</surname>
<given-names>AJ</given-names>
</name>
</person-group>
<source>J Comput Chem</source>
<year>2010</year>
<volume>31</volume>
<fpage>455</fpage>
<pub-id pub-id-type="pmid">19499576</pub-id>
</element-citation>
</ref>
<ref id="R23">
<label>23</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kolaskar</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Tongaonkar</surname>
<given-names>PC</given-names>
</name>
</person-group>
<source>FEBS Lett</source>
<year>1990</year>
<volume>276</volume>
<fpage>172</fpage>
<pub-id pub-id-type="pmid">1702393</pub-id>
</element-citation>
</ref>
<ref id="R24">
<label>24</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhou</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<source>J Infect Dis</source>
<year>2014</year>
<volume>209</volume>
<fpage>1331</fpage>
<pub-id pub-id-type="pmid">24065148</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
<floats-group>
<fig id="F1" position="float">
<label>Figure 1</label>
<caption>
<p>Complex of MERS-CoV RBD in conjugation with its host cell surface receptor CD26 (PDB ID: 4KR0). The molecular visualization software PyMol (version 1.5.0.3) was utilized to produce this figure. The aquamarine surface represents the MERS-CoV RBD whereas the green surface represents CD26.</p>
</caption>
<graphic xlink:href="97320630010533F1"></graphic>
</fig>
<fig id="F2" position="float">
<label>Figure 2</label>
<caption>
<p>(A) Each potential T- cell epitope of the conserved region is identified with a blue underline. Their respective residual position and total score predicted by NetCTL prediction tool are also provided. (B) Each potential epitope and their corresponding HLA alleles are represented. Among the epitopes, CYSSLILDY interacts with the highest number of 11 alleles.</p>
</caption>
<graphic xlink:href="97320630010533F2"></graphic>
</fig>
<fig id="F3" position="float">
<label>Figure 3</label>
<caption>
<p>The T-cell epitopes predicted by NetCTL prediction tool. Most of the epitopes failed to cross threshold level (1.0). Green coloured sharp points indicate the epitopes that crossed the threshold level. In this graph, x-axis represents the residue positions of predicted epitope whereas y-axis represents their score.</p>
</caption>
<graphic xlink:href="97320630010533F3"></graphic>
</fig>
<fig id="F4" position="float">
<label>Figure 4</label>
<caption>
<p>Interactions between the HLA C*1203 allele and the epitopes. (A) Experimental epitope (Immuno dominant determinant of human type-2 collagen) bound at the binding groove of HLA C*1203 allele. (B) Designed epitope CYSSLILDY bound at the binding groove of HLA C*1203 allele. Cartoon represents the HLA C*1203 allele whereas sticks represent the epitopes.</p>
</caption>
<graphic xlink:href="97320630010533F4"></graphic>
</fig>
<fig id="F5" position="float">
<label>Figure 5</label>
<caption>
<p>B-cell anteginic propensity of the RBD predicted by the Kolaskar and Tongaonkar prediction method. Twelve potential B-cell antigenic regions are represented by the yellow colour whereas the regions represented by the green colour failed to cross threshold level of 1.0.</p>
</caption>
<graphic xlink:href="97320630010533F5"></graphic>
</fig>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B27 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000B27 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:4166774
   |texte=   Computer aided prediction and identification of potential epitopes in the receptor binding domain (RBD) of spike (S) glycoprotein of MERS-CoV
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:25258490" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021