Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Performance Evaluation of the PowerChek MERS (upE & ORF1a) Real-Time PCR Kit for the Detection of Middle East Respiratory Syndrome Coronavirus RNA

Identifieur interne : 000A52 ( Pmc/Corpus ); précédent : 000A51; suivant : 000A53

Performance Evaluation of the PowerChek MERS (upE & ORF1a) Real-Time PCR Kit for the Detection of Middle East Respiratory Syndrome Coronavirus RNA

Auteurs : Hee Jae Huh ; Ji-Youn Kim ; Hyeon Jeong Kwon ; Sun Ae Yun ; Myoung-Keun Lee ; Chang-Seok Ki ; Nam Yong Lee ; Jong-Won Kim

Source :

RBID : PMC:5587821

Abstract

Background

Molecular detection of Middle East respiratory syndrome coronavirus (MERS-CoV) using real-time reverse transcription (rRT)-PCR assays is the method of choice for diagnosis of MERS. We evaluated the performance of the PowerChek MERS (upE & ORF1a) real-time PCR Kit (PowerChek MERS assay; Kogene Biotech, Korea) a one-step rRT-PCR assay for the qualitative detection of MERS-CoV.

Methods

We evaluated PowerChek MERS assay performance in comparison with nested RT-PCR and sequencing of the RNA-dependent RNA polymerase (RdRp) and N genes. To evaluate diagnostic sensitivity and specificity, 100 clinical specimens (50 positive and 50 negative for MERS-CoV) were simultaneously tested by using the PowerChek MERS and sequencing assays. Assay performance, including limit of detection and precision, was evaluated in vitro by using MERS-CoV RNA transcripts. Analytical specificity was evaluated with a diverse collection of 16 respiratory virus–positive clinical specimens and 14 respiratory bacterial isolates.

Results

The 95% limits of detection of the PowerChek MERS assay for the upE and the open rading frame (ORF)1a were 16.2 copies/µL and 8.2 copies/µL, respectively. No cross-reactivity was observed. The diagnostic sensitivity and specificity of the PowerChek MERS assay were both 100% (95% confidence interval, 91.1–100%).

Conclusions

The PowerChek MERS assay is a straightforward and accurate assay for detecting MERS-CoV RNA. The assay will be a useful tool for the rapid diagnosis of MERS and could prove especially important for MERS outbreak control.


Url:
DOI: 10.3343/alm.2017.37.6.494
PubMed: 28840986
PubMed Central: 5587821

Links to Exploration step

PMC:5587821

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Performance Evaluation of the PowerChek MERS (upE & ORF1a) Real-Time PCR Kit for the Detection of Middle East Respiratory Syndrome Coronavirus RNA</title>
<author>
<name sortKey="Huh, Hee Jae" sort="Huh, Hee Jae" uniqKey="Huh H" first="Hee Jae" last="Huh">Hee Jae Huh</name>
<affiliation>
<nlm:aff id="A1">Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kim, Ji Youn" sort="Kim, Ji Youn" uniqKey="Kim J" first="Ji-Youn" last="Kim">Ji-Youn Kim</name>
<affiliation>
<nlm:aff id="A2">Center for Clinical Medicine, Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kwon, Hyeon Jeong" sort="Kwon, Hyeon Jeong" uniqKey="Kwon H" first="Hyeon Jeong" last="Kwon">Hyeon Jeong Kwon</name>
<affiliation>
<nlm:aff id="A2">Center for Clinical Medicine, Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yun, Sun Ae" sort="Yun, Sun Ae" uniqKey="Yun S" first="Sun Ae" last="Yun">Sun Ae Yun</name>
<affiliation>
<nlm:aff id="A2">Center for Clinical Medicine, Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lee, Myoung Keun" sort="Lee, Myoung Keun" uniqKey="Lee M" first="Myoung-Keun" last="Lee">Myoung-Keun Lee</name>
<affiliation>
<nlm:aff id="A1">Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ki, Chang Seok" sort="Ki, Chang Seok" uniqKey="Ki C" first="Chang-Seok" last="Ki">Chang-Seok Ki</name>
<affiliation>
<nlm:aff id="A1">Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lee, Nam Yong" sort="Lee, Nam Yong" uniqKey="Lee N" first="Nam Yong" last="Lee">Nam Yong Lee</name>
<affiliation>
<nlm:aff id="A1">Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kim, Jong Won" sort="Kim, Jong Won" uniqKey="Kim J" first="Jong-Won" last="Kim">Jong-Won Kim</name>
<affiliation>
<nlm:aff id="A1">Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">28840986</idno>
<idno type="pmc">5587821</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5587821</idno>
<idno type="RBID">PMC:5587821</idno>
<idno type="doi">10.3343/alm.2017.37.6.494</idno>
<date when="2017">2017</date>
<idno type="wicri:Area/Pmc/Corpus">000A52</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000A52</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Performance Evaluation of the PowerChek MERS (upE & ORF1a) Real-Time PCR Kit for the Detection of Middle East Respiratory Syndrome Coronavirus RNA</title>
<author>
<name sortKey="Huh, Hee Jae" sort="Huh, Hee Jae" uniqKey="Huh H" first="Hee Jae" last="Huh">Hee Jae Huh</name>
<affiliation>
<nlm:aff id="A1">Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kim, Ji Youn" sort="Kim, Ji Youn" uniqKey="Kim J" first="Ji-Youn" last="Kim">Ji-Youn Kim</name>
<affiliation>
<nlm:aff id="A2">Center for Clinical Medicine, Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kwon, Hyeon Jeong" sort="Kwon, Hyeon Jeong" uniqKey="Kwon H" first="Hyeon Jeong" last="Kwon">Hyeon Jeong Kwon</name>
<affiliation>
<nlm:aff id="A2">Center for Clinical Medicine, Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yun, Sun Ae" sort="Yun, Sun Ae" uniqKey="Yun S" first="Sun Ae" last="Yun">Sun Ae Yun</name>
<affiliation>
<nlm:aff id="A2">Center for Clinical Medicine, Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lee, Myoung Keun" sort="Lee, Myoung Keun" uniqKey="Lee M" first="Myoung-Keun" last="Lee">Myoung-Keun Lee</name>
<affiliation>
<nlm:aff id="A1">Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ki, Chang Seok" sort="Ki, Chang Seok" uniqKey="Ki C" first="Chang-Seok" last="Ki">Chang-Seok Ki</name>
<affiliation>
<nlm:aff id="A1">Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lee, Nam Yong" sort="Lee, Nam Yong" uniqKey="Lee N" first="Nam Yong" last="Lee">Nam Yong Lee</name>
<affiliation>
<nlm:aff id="A1">Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kim, Jong Won" sort="Kim, Jong Won" uniqKey="Kim J" first="Jong-Won" last="Kim">Jong-Won Kim</name>
<affiliation>
<nlm:aff id="A1">Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Annals of Laboratory Medicine</title>
<idno type="ISSN">2234-3806</idno>
<idno type="eISSN">2234-3814</idno>
<imprint>
<date when="2017">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<sec>
<title>Background</title>
<p>Molecular detection of Middle East respiratory syndrome coronavirus (MERS-CoV) using real-time reverse transcription (rRT)-PCR assays is the method of choice for diagnosis of MERS. We evaluated the performance of the PowerChek MERS (upE & ORF1a) real-time PCR Kit (PowerChek MERS assay; Kogene Biotech, Korea) a one-step rRT-PCR assay for the qualitative detection of MERS-CoV.</p>
</sec>
<sec>
<title>Methods</title>
<p>We evaluated PowerChek MERS assay performance in comparison with nested RT-PCR and sequencing of the RNA-dependent RNA polymerase (RdRp) and N genes. To evaluate diagnostic sensitivity and specificity, 100 clinical specimens (50 positive and 50 negative for MERS-CoV) were simultaneously tested by using the PowerChek MERS and sequencing assays. Assay performance, including limit of detection and precision, was evaluated in vitro by using MERS-CoV RNA transcripts. Analytical specificity was evaluated with a diverse collection of 16 respiratory virus–positive clinical specimens and 14 respiratory bacterial isolates.</p>
</sec>
<sec>
<title>Results</title>
<p>The 95% limits of detection of the PowerChek MERS assay for the upE and the open rading frame (ORF)1a were 16.2 copies/µL and 8.2 copies/µL, respectively. No cross-reactivity was observed. The diagnostic sensitivity and specificity of the PowerChek MERS assay were both 100% (95% confidence interval, 91.1–100%).</p>
</sec>
<sec>
<title>Conclusions</title>
<p>The PowerChek MERS assay is a straightforward and accurate assay for detecting MERS-CoV RNA. The assay will be a useful tool for the rapid diagnosis of MERS and could prove especially important for MERS outbreak control.</p>
</sec>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Chan, Jf" uniqKey="Chan J">JF Chan</name>
</author>
<author>
<name sortKey="Lau, Sk" uniqKey="Lau S">SK Lau</name>
</author>
<author>
<name sortKey="To, Kk" uniqKey="To K">KK To</name>
</author>
<author>
<name sortKey="Cheng, Vc" uniqKey="Cheng V">VC Cheng</name>
</author>
<author>
<name sortKey="Woo, Pc" uniqKey="Woo P">PC Woo</name>
</author>
<author>
<name sortKey="Yuen, Ky" uniqKey="Yuen K">KY Yuen</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Corman, Vm" uniqKey="Corman V">VM Corman</name>
</author>
<author>
<name sortKey="Eckerle, I" uniqKey="Eckerle I">I Eckerle</name>
</author>
<author>
<name sortKey="Bleicker, T" uniqKey="Bleicker T">T Bleicker</name>
</author>
<author>
<name sortKey="Zaki, A" uniqKey="Zaki A">A Zaki</name>
</author>
<author>
<name sortKey="Landt, O" uniqKey="Landt O">O Landt</name>
</author>
<author>
<name sortKey="Eschbach Bludau, M" uniqKey="Eschbach Bludau M">M Eschbach-Bludau</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Corman, Vm" uniqKey="Corman V">VM Corman</name>
</author>
<author>
<name sortKey="Muller, Ma" uniqKey="Muller M">MA Müller</name>
</author>
<author>
<name sortKey="Costabel, U" uniqKey="Costabel U">U Costabel</name>
</author>
<author>
<name sortKey="Timm, J" uniqKey="Timm J">J Timm</name>
</author>
<author>
<name sortKey="Binger, T" uniqKey="Binger T">T Binger</name>
</author>
<author>
<name sortKey="Meyer, B" uniqKey="Meyer B">B Meyer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Corman, Vm" uniqKey="Corman V">VM Corman</name>
</author>
<author>
<name sortKey="Olschl Ger, S" uniqKey="Olschl Ger S">S Ölschläger</name>
</author>
<author>
<name sortKey="Wendtner, Cm" uniqKey="Wendtner C">CM Wendtner</name>
</author>
<author>
<name sortKey="Drexler, Jf" uniqKey="Drexler J">JF Drexler</name>
</author>
<author>
<name sortKey="Hess, M" uniqKey="Hess M">M Hess</name>
</author>
<author>
<name sortKey="Drosten, C" uniqKey="Drosten C">C Drosten</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, Mn" uniqKey="Kim M">MN Kim</name>
</author>
<author>
<name sortKey="Ko, Yj" uniqKey="Ko Y">YJ Ko</name>
</author>
<author>
<name sortKey="Seong, Mw" uniqKey="Seong M">MW Seong</name>
</author>
<author>
<name sortKey="Kim, Js" uniqKey="Kim J">JS Kim</name>
</author>
<author>
<name sortKey="Shin, Bm" uniqKey="Shin B">BM Shin</name>
</author>
<author>
<name sortKey="Sung, H" uniqKey="Sung H">H Sung</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lu, X" uniqKey="Lu X">X Lu</name>
</author>
<author>
<name sortKey="Whitaker, B" uniqKey="Whitaker B">B Whitaker</name>
</author>
<author>
<name sortKey="Sakthivel, Sk" uniqKey="Sakthivel S">SK Sakthivel</name>
</author>
<author>
<name sortKey="Kamili, S" uniqKey="Kamili S">S Kamili</name>
</author>
<author>
<name sortKey="Rose, Le" uniqKey="Rose L">LE Rose</name>
</author>
<author>
<name sortKey="Lowe, L" uniqKey="Lowe L">L Lowe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chan, Jf" uniqKey="Chan J">JF Chan</name>
</author>
<author>
<name sortKey="Choi, Gk" uniqKey="Choi G">GK Choi</name>
</author>
<author>
<name sortKey="Tsang, Ak" uniqKey="Tsang A">AK Tsang</name>
</author>
<author>
<name sortKey="Tee, Km" uniqKey="Tee K">KM Tee</name>
</author>
<author>
<name sortKey="Lam, Hy" uniqKey="Lam H">HY Lam</name>
</author>
<author>
<name sortKey="Yip, Cc" uniqKey="Yip C">CC Yip</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shirato, K" uniqKey="Shirato K">K Shirato</name>
</author>
<author>
<name sortKey="Yano, T" uniqKey="Yano T">T Yano</name>
</author>
<author>
<name sortKey="Senba, S" uniqKey="Senba S">S Senba</name>
</author>
<author>
<name sortKey="Akachi, S" uniqKey="Akachi S">S Akachi</name>
</author>
<author>
<name sortKey="Kobayashi, T" uniqKey="Kobayashi T">T Kobayashi</name>
</author>
<author>
<name sortKey="Nishinaka, T" uniqKey="Nishinaka T">T Nishinaka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Seong, Mw" uniqKey="Seong M">MW Seong</name>
</author>
<author>
<name sortKey="Lee, Sj" uniqKey="Lee S">SJ Lee</name>
</author>
<author>
<name sortKey="Cho, Si" uniqKey="Cho S">SI Cho</name>
</author>
<author>
<name sortKey="Ko, K" uniqKey="Ko K">K Ko</name>
</author>
<author>
<name sortKey="Kim, Mn" uniqKey="Kim M">MN Kim</name>
</author>
<author>
<name sortKey="Sung, H" uniqKey="Sung H">H Sung</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jung, Yj" uniqKey="Jung Y">YJ Jung</name>
</author>
<author>
<name sortKey="Kwon, Hj" uniqKey="Kwon H">HJ Kwon</name>
</author>
<author>
<name sortKey="Huh, Hj" uniqKey="Huh H">HJ Huh</name>
</author>
<author>
<name sortKey="Ki, Cs" uniqKey="Ki C">CS Ki</name>
</author>
<author>
<name sortKey="Lee, Ny" uniqKey="Lee N">NY Lee</name>
</author>
<author>
<name sortKey="Kim, Jw" uniqKey="Kim J">JW Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bibby, Df" uniqKey="Bibby D">DF Bibby</name>
</author>
<author>
<name sortKey="Mcelarney, I" uniqKey="Mcelarney I">I McElarney</name>
</author>
<author>
<name sortKey="Breuer, J" uniqKey="Breuer J">J Breuer</name>
</author>
<author>
<name sortKey="Clark, Da" uniqKey="Clark D">DA Clark</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Modjarrad, K" uniqKey="Modjarrad K">K Modjarrad</name>
</author>
<author>
<name sortKey="Moorthy, Vs" uniqKey="Moorthy V">VS Moorthy</name>
</author>
<author>
<name sortKey="Ben Embarek, P" uniqKey="Ben Embarek P">P Ben Embarek</name>
</author>
<author>
<name sortKey="Van Kerkhove, M" uniqKey="Van Kerkhove M">M Van Kerkhove</name>
</author>
<author>
<name sortKey="Kim, J" uniqKey="Kim J">J Kim</name>
</author>
<author>
<name sortKey="Kieny, Mp" uniqKey="Kieny M">MP Kieny</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Drosten, C" uniqKey="Drosten C">C Drosten</name>
</author>
<author>
<name sortKey="Doerr, Hw" uniqKey="Doerr H">HW Doerr</name>
</author>
<author>
<name sortKey="Lim, W" uniqKey="Lim W">W Lim</name>
</author>
<author>
<name sortKey="Stohr, K" uniqKey="Stohr K">K Stöhr</name>
</author>
<author>
<name sortKey="Niedrig, M" uniqKey="Niedrig M">M Niedrig</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Ann Lab Med</journal-id>
<journal-id journal-id-type="iso-abbrev">Ann Lab Med</journal-id>
<journal-id journal-id-type="publisher-id">ALM</journal-id>
<journal-title-group>
<journal-title>Annals of Laboratory Medicine</journal-title>
</journal-title-group>
<issn pub-type="ppub">2234-3806</issn>
<issn pub-type="epub">2234-3814</issn>
<publisher>
<publisher-name>The Korean Society for Laboratory Medicine</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">28840986</article-id>
<article-id pub-id-type="pmc">5587821</article-id>
<article-id pub-id-type="doi">10.3343/alm.2017.37.6.494</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Original Article</subject>
<subj-group subj-group-type="subheading">
<subject>Clinical Microbiology</subject>
</subj-group>
</subj-group>
</article-categories>
<title-group>
<article-title>Performance Evaluation of the PowerChek MERS (upE & ORF1a) Real-Time PCR Kit for the Detection of Middle East Respiratory Syndrome Coronavirus RNA</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Huh</surname>
<given-names>Hee Jae</given-names>
</name>
<degrees>M.D.</degrees>
<xref ref-type="aff" rid="A1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kim</surname>
<given-names>Ji-Youn</given-names>
</name>
<degrees>M.T.</degrees>
<xref ref-type="aff" rid="A2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kwon</surname>
<given-names>Hyeon Jeong</given-names>
</name>
<degrees>M.T.</degrees>
<xref ref-type="aff" rid="A2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Yun</surname>
<given-names>Sun Ae</given-names>
</name>
<degrees>M.T.</degrees>
<xref ref-type="aff" rid="A2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Lee</surname>
<given-names>Myoung-Keun</given-names>
</name>
<degrees>M.T.</degrees>
<xref ref-type="aff" rid="A1">1</xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Ki</surname>
<given-names>Chang-Seok</given-names>
</name>
<degrees>M.D.</degrees>
<xref ref-type="aff" rid="A1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Lee</surname>
<given-names>Nam Yong</given-names>
</name>
<degrees>M.D.</degrees>
<xref ref-type="aff" rid="A1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kim</surname>
<given-names>Jong-Won</given-names>
</name>
<degrees>M.D.</degrees>
<xref ref-type="aff" rid="A1">1</xref>
</contrib>
</contrib-group>
<aff id="A1">
<label>1</label>
Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.</aff>
<aff id="A2">
<label>2</label>
Center for Clinical Medicine, Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea.</aff>
<author-notes>
<corresp>Corresponding author: Chang-Seok Ki. Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea. Tel: +82-2-3410-2709, Fax: +82-2-3410-2719,
<email>changski@skku.edu</email>
</corresp>
</author-notes>
<pub-date pub-type="ppub">
<month>11</month>
<year>2017</year>
</pub-date>
<pub-date pub-type="epub">
<day>16</day>
<month>8</month>
<year>2017</year>
</pub-date>
<volume>37</volume>
<issue>6</issue>
<fpage>494</fpage>
<lpage>498</lpage>
<history>
<date date-type="received">
<day>03</day>
<month>2</month>
<year>2017</year>
</date>
<date date-type="rev-recd">
<day>26</day>
<month>3</month>
<year>2017</year>
</date>
<date date-type="accepted">
<day>12</day>
<month>7</month>
<year>2017</year>
</date>
</history>
<permissions>
<copyright-statement>© The Korean Society for Laboratory Medicine</copyright-statement>
<copyright-year>2017</copyright-year>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by-nc/4.0/">
<license-p>This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by-nc/4.0/">http://creativecommons.org/licenses/by-nc/4.0/</ext-link>
) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.</license-p>
</license>
</permissions>
<abstract>
<sec>
<title>Background</title>
<p>Molecular detection of Middle East respiratory syndrome coronavirus (MERS-CoV) using real-time reverse transcription (rRT)-PCR assays is the method of choice for diagnosis of MERS. We evaluated the performance of the PowerChek MERS (upE & ORF1a) real-time PCR Kit (PowerChek MERS assay; Kogene Biotech, Korea) a one-step rRT-PCR assay for the qualitative detection of MERS-CoV.</p>
</sec>
<sec>
<title>Methods</title>
<p>We evaluated PowerChek MERS assay performance in comparison with nested RT-PCR and sequencing of the RNA-dependent RNA polymerase (RdRp) and N genes. To evaluate diagnostic sensitivity and specificity, 100 clinical specimens (50 positive and 50 negative for MERS-CoV) were simultaneously tested by using the PowerChek MERS and sequencing assays. Assay performance, including limit of detection and precision, was evaluated in vitro by using MERS-CoV RNA transcripts. Analytical specificity was evaluated with a diverse collection of 16 respiratory virus–positive clinical specimens and 14 respiratory bacterial isolates.</p>
</sec>
<sec>
<title>Results</title>
<p>The 95% limits of detection of the PowerChek MERS assay for the upE and the open rading frame (ORF)1a were 16.2 copies/µL and 8.2 copies/µL, respectively. No cross-reactivity was observed. The diagnostic sensitivity and specificity of the PowerChek MERS assay were both 100% (95% confidence interval, 91.1–100%).</p>
</sec>
<sec>
<title>Conclusions</title>
<p>The PowerChek MERS assay is a straightforward and accurate assay for detecting MERS-CoV RNA. The assay will be a useful tool for the rapid diagnosis of MERS and could prove especially important for MERS outbreak control.</p>
</sec>
</abstract>
<kwd-group>
<kwd>MERS-CoV</kwd>
<kwd>Real-time reverse-transcription PCR</kwd>
<kwd>Performance</kwd>
</kwd-group>
<funding-group>
<award-group>
<funding-source>
<institution-wrap>
<institution>Korea Centers for Disease Control and Prevention</institution>
<institution-id institution-id-type="CrossRef">http://dx.doi.org/10.13039/501100003669</institution-id>
</institution-wrap>
</funding-source>
<award-id>HD15A3232</award-id>
</award-group>
</funding-group>
</article-meta>
</front>
<body>
<sec sec-type="intro">
<title>INTRODUCTION</title>
<p>For effective control of potential outbreaks of Middle East respiratory syndrome (MERS), highly sensitive and specific laboratory diagnostic tests are needed. Nucleic acid amplification assays are the method most widely used to provide laboratory confirmation of MERS [
<xref rid="B1" ref-type="bibr">1</xref>
]. MERS cases are routinely confirmed based on the detection of unique MERS coronavirus (MERS-CoV) RNA sequences by real-time reverse-transcription (rRT)-PCR, with confirmation by nucleic acid sequencing when necessary [
<xref rid="B2" ref-type="bibr">2</xref>
]. The WHO recently published updated interim recommendations for MERS-CoV laboratory testing and recommends an rRT-PCR assay targeting the envelope (upE) gene for screening, followed by confirmation with an assay for the regions encoding either the open reading frame (ORF)1a, ORF1b, or the nucleocapsid protein (N). For sequencing, two target sites on the MERS-CoV genome, the RNA-dependent RNA polymerase (RdRp) and N genes, are suggested [
<xref rid="B2" ref-type="bibr">2</xref>
<xref rid="B3" ref-type="bibr">3</xref>
<xref rid="B4" ref-type="bibr">4</xref>
].</p>
<p>Although commercial rRT-PCR assays for MERS-CoV detection have been developed by several manufacturers, including Altona Diagnostics, Fast Track Diagnostics, and Primerdesign Ltd., studies validating diagnostic performance using authentic specimens are lacking [
<xref rid="B5" ref-type="bibr">5</xref>
<xref rid="B6" ref-type="bibr">6</xref>
].</p>
<p>We evaluated the analytical performance and clinical applicability of the PowerChek MERS (upE & ORF1a) real-time PCR Kit (PowerChek MERS assay; Kogene Biotech, Seoul, Korea). The PowerChek MERS assay is a recently developed one-step rRT-PCR assay for the qualitative detection of MERS-CoV-specific RNA that has received Conformity Europe-
<italic>In Vitro</italic>
Diagnostic (CE-IVD) and the Ministry of Food and Drug Safety (MFDS) of Korea approval. Probes specific for the upE, ORF1a, and internal control regions are labeled with the carboxy-fluorescein (FAM), 6-carboxy-4′,5′-dichloro-2′,7′-dimethoxy-fluorescein (JOE), and indodicarbocyanine (Cy5) fluorophores, respectively. This assay has been previously evaluated with only small number of clinical specimens [
<xref rid="B6" ref-type="bibr">6</xref>
]. This report presents the results of a performance evaluation of the PowerChek MERS assay using clinical respiratory specimens.</p>
</sec>
<sec sec-type="methods">
<title>METHODS</title>
<sec>
<title>1. Clinical specimens</title>
<p>The Institutional Review Board of the Samsung Medical Center, Seoul, Korea, approved this study. For analysis, 100 clinical respiratory specimens (90 sputa and 10 nasopharyngeal swabs) were collected from 100 different individuals from June to July 2015. Fifty specimens were obtained from symptomatic MERS-positive patients, and the remaining 50 were obtained from asymptomatic MERS-negative healthcare workers who were under active monitoring.</p>
<p>Total nucleic acid was extracted by using the QIAamp DSP Viral RNA Mini kit (Qiagen, Hilden, Germany), according to the manufacturer's instructions. A total of 140 µL of specimen was used, and the RNA was eluted in 50 µL and stored at −70℃ until testing with the PowerChek MERS and sequencing assays.</p>
</sec>
<sec>
<title>2. PowerChek MERS (upE and ORF1a) real-time PCR, RdRp, and N gene sequencing assays</title>
<p>MERS-CoV RNA was detected by using the PowerChek MERS assay for amplification of upE and ORF1a. The primers and probes were used according to the previous study [
<xref rid="B3" ref-type="bibr">3</xref>
]. All rRT-PCR reactions were performed by using the 7500 Fast Real-Time PCR System (Applied Biosystems, Foster City, CA, USA). The PCR reaction was performed in a total volume of 20 µL (15 µL PCR reaction mixture and 5 µL template RNA). Thermocycling conditions were as follows: 50℃ for 30 min, followed by 95℃ for 10 min, and then 40 cycles of 15 sec at 95℃ and 60 sec at 60℃. Viral template–positive controls and no-template controls were included in each run. The glyceraldehyde-3-phosphate dehydrogenase (
<italic>GAPDH</italic>
) gene was amplified simultaneously as a heterologous endogenous internal control to monitor PCR inhibition and specimen quality. A positive test result was defined as a well-defined exponential fluorescence curve that crossed the threshold ≤37 cycles, ≤38 cycles, and ≤35 cycles for the upE, ORF1a, and
<italic>GAPDH</italic>
genes, respectively.</p>
<p>Nested RT-PCR and sequencing targeting the RdRp and N genes were performed for confirmation, according to the previous protocols [
<xref rid="B4" ref-type="bibr">4</xref>
]. Briefly, the first round of RT-PCR for the two genes was performed by using the primer sets described in the previous report. A second round was conducted if no product was visible by agarose gel electrophoresis after the first round [
<xref rid="B4" ref-type="bibr">4</xref>
]. PCR products were sequenced by using a 3730 DNA analyzer (Applied Biosystems).</p>
</sec>
<sec>
<title>3. Analytical performance of the PowerChek MERS (upE and ORF1a) real-time PCR Kit</title>
<p>MERS-CoV RNA transcripts were synthesized
<italic>in vitro</italic>
from the T7 promoter, as previously reported [
<xref rid="B7" ref-type="bibr">7</xref>
] and were used for analytical performance evaluation. The limit of detection (LOD), the point at which 95% of the replicates of a given viral load are detected, was determined by using
<italic>in vitro</italic>
RNA transcripts diluted in nuclease-free water. Serial dilutions were analyzed, with 20 replicates per dilution. Probit analysis was used to determine the 95% LOD. Reproducibility, repeatability, and lot-to-lot precision were determined by using three concentrations (50, 150, and 300 copies/µL). Reproducibility was calculated by testing duplicates of each concentration in a single run for five days at two different test sites. Repeatability was calculated by testing duplicates of each concentration in a single run for 20 days. Lot-to-lot precision was accessed by testing duplicates of each concentration in a single run for five days using three different lots. Assay specificity was evaluated with nucleic acids obtained from a diverse collection of 16 respiratory virus-positive clinical specimens and 14 other respiratory bacterial isolates (13 reference strains and one clinical isolate;
<xref ref-type="table" rid="T1">Table 1</xref>
).</p>
</sec>
<sec>
<title>4. Diagnostic sensitivity and specificity of the PowerChek MERS (upE and ORF1a) real-time PCR Kit</title>
<p>The diagnostic performance of the PowerChek MERS assay and the RdRp and N gene sequencing assay was compared by measuring the positive percent agreement (PPA) and negative percent agreement (NPA) values and kappa coefficients. The RdRp and N gene sequencing assay was considered the reference standard method, and the diagnostic sensitivity and specificity of the PowerChek MERS assay were calculated.</p>
</sec>
<sec>
<title>5. Statistical analysis</title>
<p>Statistical analyses were performed by using the VassarStats website (
<ext-link ext-link-type="uri" xlink:href="http://vassarstats.net/">http://vassarstats.net/</ext-link>
) and the SPSS software, version 23.0 (SPSS Inc., Chicago, IL, USA). A
<italic>P</italic>
value <0.05 was considered statistically significant.</p>
</sec>
</sec>
<sec sec-type="results">
<title>RESULTS</title>
<p>
<xref ref-type="table" rid="T2">Table 2</xref>
shows the analytical sensitivity of the PowerChek MERS assay. The 95% LOD of the upE and ORF1a regions was 16.2 copies/µL (81 copies/reaction) and 8.2 copies/µL (41 copies/reaction), respectively.
<xref ref-type="table" rid="T3">Table 3</xref>
shows the precision results for the PowerChek MERS assay. In the reproducibility study, the CV ranged from 0.54 to 2.10%. The assay showed acceptable repeatability, with CV results ranging from 0.54 to 2.11%. The lot-to-lot variation was acceptably low for all concentrations (CV range: 0.49–2.1%). No false-positive test results were obtained for any of these viral or bacterial isolates, but positive controls were readily detected (
<xref ref-type="table" rid="T1">Table 1</xref>
).</p>
<p>A comparison of the results of the PowerChek MERS and RdRp and N gene sequencing assays is shown in
<xref ref-type="table" rid="T4">Table 4</xref>
. Both methods gave positive results for all 50 clinical specimens obtained from the symptomatic MERS-positive patients. For all 50 specimens, the PowerChek MERS assay yielded positive reactions for both the upE and ORF1a targets. The range of Ct values for the upE, ORF1a, and
<italic>GAPDH</italic>
targets was 17.69–32.63, 19.22–34.27, and 18.51–31.17, respectively. Both methods gave negative results for all 50 specimens obtained from asymptomatic MERS-negative individuals. The two assays produced concordant results for all 100 specimens, with a kappa value of 1.00. The diagnostic sensitivity and specificity of the PowerChek MERS assay were both 100% (95% confidence interval, 91.1–100%).</p>
</sec>
<sec sec-type="discussion">
<title>DISCUSSION</title>
<p>To date, various reports have been published on the efficacy of rRT-PCR assays for detection of MERS-CoV-specific RNA that target various regions, including the upE, ORF1a, ORF1b, and N genes [
<xref rid="B3" ref-type="bibr">3</xref>
<xref rid="B4" ref-type="bibr">4</xref>
<xref rid="B5" ref-type="bibr">5</xref>
<xref rid="B7" ref-type="bibr">7</xref>
<xref rid="B8" ref-type="bibr">8</xref>
<xref rid="B9" ref-type="bibr">9</xref>
]. The interim recommendations published by the WHO suggest that the upE assay be used for screening, followed by confirmation with one of the ORF1a, ORF1b, or N gene assays [
<xref rid="B2" ref-type="bibr">2</xref>
]. Similarly, the US Centers for Disease Control and Prevention (CDC) developed and use an rRT-PCR assay composed of two independent PCR reactions; one assay (N2) combined with upE testing for screening, and a second assay (N3) for confirmation of positive results [
<xref rid="B7" ref-type="bibr">7</xref>
<xref rid="B9" ref-type="bibr">9</xref>
]. Previous evaluations of the rRT-PCR assay used mock specimens spiked with cultured MERS-CoV or a small number of clinical specimens from MERS-infected patients [
<xref rid="B3" ref-type="bibr">3</xref>
<xref rid="B4" ref-type="bibr">4</xref>
<xref rid="B5" ref-type="bibr">5</xref>
<xref rid="B7" ref-type="bibr">7</xref>
<xref rid="B8" ref-type="bibr">8</xref>
<xref rid="B10" ref-type="bibr">10</xref>
<xref rid="B11" ref-type="bibr">11</xref>
]; this study used a total of 50 authentic clinical specimens from MERS-positive patients with various viral loads.</p>
<p>The PowerChek MERS assay could prevent misjudgment from sampling error, since it uses an endogenous internal control. The use of endogenous internal control would be helpful than that of artificial targets, since the endogenous internal control enables monitoring of not only the RNA extraction and reverse transcription steps but specimen quality as well [
<xref rid="B12" ref-type="bibr">12</xref>
<xref rid="B13" ref-type="bibr">13</xref>
]. Monitoring specimen quality is important because assay performance for detection of MERS-CoV is dependent on specimen quality [
<xref rid="B14" ref-type="bibr">14</xref>
].</p>
<p>The PowerChek MERS assay is both simple and efficient, reducing the workload required for diagnosis. For rRT-PCR, the assay requires mixing of only the premix and RNA, which reduces the hands-on time and the risk of technical errors [
<xref rid="B5" ref-type="bibr">5</xref>
<xref rid="B15" ref-type="bibr">15</xref>
]. The turnaround time from RNA extraction to final result is 3 hr. This rapid and simple testing technique would be especially useful in managing a large MERS outbreak.</p>
<p>Our study has several limitations. First, the PowerChek MERS assay was validated with only upper and lower respiratory specimens. Furthermore, the 50 clinical specimens from MERS-confirmed patients were all sputum specimens. Although lower respiratory specimens are the preferred specimen type for initial MERS diagnosis because of their higher MERS-CoV load, rRT-PCR testing using other specimen types, including serum, urine, and stool specimens, is required in MERS-confirmed cases [
<xref rid="B2" ref-type="bibr">2</xref>
<xref rid="B16" ref-type="bibr">16</xref>
<xref rid="B17" ref-type="bibr">17</xref>
]. Thus, further study to evaluate performance using other specimen types is needed. Second, we did not compare assay performance across different real-time PCR platforms. The PowerChek MERS assay was developed to allow flexibility in the choice of real-time PCR platforms, and can be used with the 7500 Fast Real-Time PCR System, CFX96 real-time PCR detection system (Bio-Rad, Hercules, CA, USA), LightCycler 480 (Roche, Mannheim, Germany), Rotor-gene Q (Qiagen, Hilden, Germany), or Mx3005P thermocycler (Agilent Technologies, CA, USA); however, we evaluated the performance using only the 7500 Fast Real-Time PCR system.</p>
<p>In conclusion, the PowerChek MERS assay has good diagnostic performance for detecting MERS-CoV RNA. This straightforward and accurate assay is a useful tool for the rapid diagnosis of MERS and could be especially important in control of a MERS outbreak.</p>
</sec>
</body>
<back>
<ack>
<title>Acknowledgments</title>
<p>This research was supported by a grant (grant number: HD15A3232) from the Korea Centers for Disease Control and Prevention.</p>
</ack>
<fn-group>
<fn fn-type="COI-statement">
<p>
<bold>Authors' Disclosures of Potential Conflicts of Interest:</bold>
No potential conflicts of interest relevant to this article were reported.</p>
</fn>
</fn-group>
<ref-list>
<ref id="B1">
<label>1</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chan</surname>
<given-names>JF</given-names>
</name>
<name>
<surname>Lau</surname>
<given-names>SK</given-names>
</name>
<name>
<surname>To</surname>
<given-names>KK</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>VC</given-names>
</name>
<name>
<surname>Woo</surname>
<given-names>PC</given-names>
</name>
<name>
<surname>Yuen</surname>
<given-names>KY</given-names>
</name>
</person-group>
<article-title>Middle East respiratory syndrome coronavirus: another zoonotic betacoronavirus causing SARS-like disease</article-title>
<source>Clin Microbiol Rev</source>
<year>2015</year>
<volume>28</volume>
<fpage>465</fpage>
<lpage>522</lpage>
<pub-id pub-id-type="pmid">25810418</pub-id>
</element-citation>
</ref>
<ref id="B2">
<label>2</label>
<element-citation publication-type="webpage">
<collab>World Health Organization</collab>
<source>Laboratory testing for Middle East respiratory syndrome coronavirus (MERT-CoV). Interim guidance</source>
<date-in-citation content-type="updated">Updated on June 2015</date-in-citation>
<comment>
<ext-link ext-link-type="uri" xlink:href="http://www.who.int/csr/disease/coronavirus_infections/mers-laboratory-testing/en/">http://www.who.int/csr/disease/coronavirus_infections/mers-laboratory-testing/en/</ext-link>
</comment>
</element-citation>
</ref>
<ref id="B3">
<label>3</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Corman</surname>
<given-names>VM</given-names>
</name>
<name>
<surname>Eckerle</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Bleicker</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Zaki</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Landt</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Eschbach-Bludau</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction</article-title>
<source>Euro Surveill</source>
<year>2012</year>
<volume>17</volume>
<fpage>pii:20285</fpage>
</element-citation>
</ref>
<ref id="B4">
<label>4</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Corman</surname>
<given-names>VM</given-names>
</name>
<name>
<surname>Müller</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Costabel</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Timm</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Binger</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Meyer</surname>
<given-names>B</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Assays for laboratory confirmation of novel human coronavirus (hCoV-EMC) infections</article-title>
<source>Euro Surveill</source>
<year>2012</year>
<volume>17</volume>
<fpage>pii:20334</fpage>
</element-citation>
</ref>
<ref id="B5">
<label>5</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Corman</surname>
<given-names>VM</given-names>
</name>
<name>
<surname>Ölschläger</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Wendtner</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Drexler</surname>
<given-names>JF</given-names>
</name>
<name>
<surname>Hess</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Drosten</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Performance and clinical validation of the RealStar MERS-CoV Kit for detection of Middle East respiratory syndrome coronavirus RNA</article-title>
<source>J Clin Virol</source>
<year>2014</year>
<volume>60</volume>
<fpage>168</fpage>
<lpage>171</lpage>
<pub-id pub-id-type="pmid">24726679</pub-id>
</element-citation>
</ref>
<ref id="B6">
<label>6</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>MN</given-names>
</name>
<name>
<surname>Ko</surname>
<given-names>YJ</given-names>
</name>
<name>
<surname>Seong</surname>
<given-names>MW</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Shin</surname>
<given-names>BM</given-names>
</name>
<name>
<surname>Sung</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Analytical and clinical validation of six commercial Middle East Respiratory Syndrome coronavirus RNA detection kits based on real-time reverse-transcription PCR</article-title>
<source>Ann Lab Med</source>
<year>2016</year>
<volume>36</volume>
<fpage>450</fpage>
<lpage>456</lpage>
<pub-id pub-id-type="pmid">27374710</pub-id>
</element-citation>
</ref>
<ref id="B7">
<label>7</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lu</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Whitaker</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Sakthivel</surname>
<given-names>SK</given-names>
</name>
<name>
<surname>Kamili</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Rose</surname>
<given-names>LE</given-names>
</name>
<name>
<surname>Lowe</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Real-time reverse transcription-PCR assay panel for Middle East respiratory syndrome coronavirus</article-title>
<source>J Clin Microbiol</source>
<year>2014</year>
<volume>52</volume>
<fpage>67</fpage>
<lpage>75</lpage>
<pub-id pub-id-type="pmid">24153118</pub-id>
</element-citation>
</ref>
<ref id="B8">
<label>8</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chan</surname>
<given-names>JF</given-names>
</name>
<name>
<surname>Choi</surname>
<given-names>GK</given-names>
</name>
<name>
<surname>Tsang</surname>
<given-names>AK</given-names>
</name>
<name>
<surname>Tee</surname>
<given-names>KM</given-names>
</name>
<name>
<surname>Lam</surname>
<given-names>HY</given-names>
</name>
<name>
<surname>Yip</surname>
<given-names>CC</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Development and evaluation of novel real-time reverse transcription-PCR assays with locked nucleic acid probes targeting leader sequences of human-pathogenic coronaviruses</article-title>
<source>J Clin Microbiol</source>
<year>2015</year>
<volume>53</volume>
<fpage>2722</fpage>
<lpage>2726</lpage>
<pub-id pub-id-type="pmid">26019210</pub-id>
</element-citation>
</ref>
<ref id="B9">
<label>9</label>
<element-citation publication-type="webpage">
<collab>Centers for Disease Control and Prevention</collab>
<source>Novel coronavirus 2012 real-time RT-PCR assay</source>
<date-in-citation content-type="updated">Updated on June 10, 2014</date-in-citation>
<comment>
<ext-link ext-link-type="uri" xlink:href="http://www.fda.gov/downloads/MedicalDevices/Safety/EmergencySituations/UCM355572.pdf">http://www.fda.gov/downloads/MedicalDevices/Safety/EmergencySituations/UCM355572.pdf</ext-link>
</comment>
</element-citation>
</ref>
<ref id="B10">
<label>10</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shirato</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Yano</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Senba</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Akachi</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kobayashi</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Nishinaka</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Detection of Middle East respiratory syndrome coronavirus using reverse transcription loop-mediated isothermal amplification (RT-LAMP)</article-title>
<source>Virol J</source>
<year>2014</year>
<volume>11</volume>
<fpage>139</fpage>
<pub-id pub-id-type="pmid">25103205</pub-id>
</element-citation>
</ref>
<ref id="B11">
<label>11</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Seong</surname>
<given-names>MW</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Cho</surname>
<given-names>SI</given-names>
</name>
<name>
<surname>Ko</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>MN</given-names>
</name>
<name>
<surname>Sung</surname>
<given-names>H</given-names>
</name>
<etal></etal>
</person-group>
<article-title>External quality assessment of MERS-CoV molecular diagnostics during the 2015 korean outbreak</article-title>
<source>Ann Lab Med</source>
<year>2016</year>
<volume>36</volume>
<fpage>230</fpage>
<lpage>234</lpage>
<pub-id pub-id-type="pmid">26915611</pub-id>
</element-citation>
</ref>
<ref id="B12">
<label>12</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jung</surname>
<given-names>YJ</given-names>
</name>
<name>
<surname>Kwon</surname>
<given-names>HJ</given-names>
</name>
<name>
<surname>Huh</surname>
<given-names>HJ</given-names>
</name>
<name>
<surname>Ki</surname>
<given-names>CS</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>NY</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>JW</given-names>
</name>
</person-group>
<article-title>Comparison of the AdvanSure real-time RT-PCR and Seeplex(®) RV12 ACE assay for the detection of respiratory viruses</article-title>
<source>J Virol Methods</source>
<year>2015</year>
<volume>224</volume>
<fpage>42</fpage>
<lpage>46</lpage>
<pub-id pub-id-type="pmid">26277911</pub-id>
</element-citation>
</ref>
<ref id="B13">
<label>13</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bibby</surname>
<given-names>DF</given-names>
</name>
<name>
<surname>McElarney</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Breuer</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Clark</surname>
<given-names>DA</given-names>
</name>
</person-group>
<article-title>Comparative evaluation of the Seegene Seeplex RV15 and real-time PCR for respiratory virus detection</article-title>
<source>J Med Virol</source>
<year>2011</year>
<volume>83</volume>
<fpage>1469</fpage>
<lpage>1475</lpage>
<pub-id pub-id-type="pmid">21678451</pub-id>
</element-citation>
</ref>
<ref id="B14">
<label>14</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Modjarrad</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Moorthy</surname>
<given-names>VS</given-names>
</name>
<name>
<surname>Ben Embarek</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Van Kerkhove</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Kieny</surname>
<given-names>MP</given-names>
</name>
</person-group>
<article-title>A roadmap for MERS-CoV research and product development: report from a World Health Organization consultation</article-title>
<source>Nat Med</source>
<year>2016</year>
<volume>22</volume>
<fpage>701</fpage>
<lpage>705</lpage>
<pub-id pub-id-type="pmid">27387881</pub-id>
</element-citation>
</ref>
<ref id="B15">
<label>15</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Drosten</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Doerr</surname>
<given-names>HW</given-names>
</name>
<name>
<surname>Lim</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Stöhr</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Niedrig</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>SARS molecular detection external quality assurance</article-title>
<source>Emerg Infect Dis</source>
<year>2004</year>
<volume>10</volume>
<fpage>2200</fpage>
<lpage>2203</lpage>
<pub-id pub-id-type="pmid">15663861</pub-id>
</element-citation>
</ref>
<ref id="B16">
<label>16</label>
<element-citation publication-type="webpage">
<collab>Centers for Disease Control and Prevention</collab>
<source>Interim guidelines for collecting, handling, and testing clinical specimens from patients under investigation (PUIs) for Middle East Respiratory Syndrome Coronavirus (MERS-CoV). V2.1</source>
<date-in-citation content-type="updated">Updated on June 16, 2015</date-in-citation>
<comment>
<ext-link ext-link-type="uri" xlink:href="http://www.cdc.gov/coronavirus/mers/guidelines-clinical-specimens.html">http://www.cdc.gov/coronavirus/mers/guidelines-clinical-specimens.html</ext-link>
</comment>
</element-citation>
</ref>
<ref id="B17">
<label>17</label>
<element-citation publication-type="webpage">
<collab>Korea Ministry of Health and Welfare and Center for Disease Control and Prevention</collab>
<source>Guidelins for MERS-CoV control. 4-1ed</source>
<comment>
<ext-link ext-link-type="uri" xlink:href="http://cdc.go.kr/CDC/info/CdcKrHealth0289.jsp?menuIds=HOME001-MNU2374-MNU2375-MNU1509-MNU1913&fid=5742&q_type=&q_value=&cid=73196&pageNum=">http://cdc.go.kr/CDC/info/CdcKrHealth0289.jsp?menuIds=HOME001-MNU2374-MNU2375-MNU1509-MNU1913&fid=5742&q_type=&q_value=&cid=73196&pageNum=</ext-link>
</comment>
</element-citation>
</ref>
</ref-list>
</back>
<floats-group>
<table-wrap id="T1" orientation="portrait" position="float">
<label>Table 1</label>
<caption>
<title>Analytical specificity of the PowerChek MERS (upE and ORF1a) real-time PCR Kit</title>
</caption>
<alternatives>
<graphic xlink:href="alm-37-494-i001"></graphic>
<table frame="hsides" rules="rows">
<col width="35%" span="1"></col>
<col width="45%" span="1"></col>
<col width="20%" span="1"></col>
<thead>
<tr>
<th valign="middle" align="left" rowspan="1" colspan="1" style="background-color:rgb(218,227,244)">Microorganism</th>
<th valign="middle" align="center" rowspan="1" colspan="1" style="background-color:rgb(218,227,244)">Source</th>
<th valign="middle" align="center" rowspan="1" colspan="1" style="background-color:rgb(218,227,244)">PowerChek MERS assay</th>
</tr>
</thead>
<tbody>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Viruses</td>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1"> Adenovirus</td>
<td valign="top" align="left" rowspan="1" colspan="1">Clinical specimen
<sup>*</sup>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Negative</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1"> Bocavirus</td>
<td valign="top" align="left" rowspan="1" colspan="1">Clinical specimen
<sup>*</sup>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Negative</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1"> Coronavirus 229E</td>
<td valign="top" align="left" rowspan="1" colspan="1">Clinical specimen
<sup>*</sup>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Negative</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1"> Coronavirus OC43</td>
<td valign="top" align="left" rowspan="1" colspan="1">Clinical specimen
<sup>*</sup>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Negative</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1"> Coronavirus HKU1</td>
<td valign="top" align="left" rowspan="1" colspan="1">Clinical specimen
<sup>*</sup>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Negative</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1"> Coronavirus NL63</td>
<td valign="top" align="left" rowspan="1" colspan="1">Clinical specimen
<sup>*</sup>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Negative</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1"> Human enterovirus</td>
<td valign="top" align="left" rowspan="1" colspan="1">Clinical specimen
<sup>*</sup>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Negative</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1"> Human metapneumovirus</td>
<td valign="top" align="left" rowspan="1" colspan="1">Clinical specimen
<sup>*</sup>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Negative</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1"> Human rhinovirus</td>
<td valign="top" align="left" rowspan="1" colspan="1">Clinical specimen
<sup>*</sup>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Negative</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1"> Influenza A</td>
<td valign="top" align="left" rowspan="1" colspan="1">Clinical specimen
<sup>*</sup>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Negative</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1"> Influenza B</td>
<td valign="top" align="left" rowspan="1" colspan="1">Clinical specimen
<sup>*</sup>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Negative</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1"> Parainfluenza 1</td>
<td valign="top" align="left" rowspan="1" colspan="1">Clinical specimen
<sup>*</sup>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Negative</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1"> Parainfluenza 2</td>
<td valign="top" align="left" rowspan="1" colspan="1">Clinical specimen
<sup>*</sup>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Negative</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1"> Parainfluenza 3</td>
<td valign="top" align="left" rowspan="1" colspan="1">Clinical specimen
<sup>*</sup>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Negative</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1"> Respiratory syncytial virus A</td>
<td valign="top" align="left" rowspan="1" colspan="1">Clinical specimen
<sup>*</sup>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Negative</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1"> Respiratory syncytial virus B</td>
<td valign="top" align="left" rowspan="1" colspan="1">Clinical specimen
<sup>*</sup>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Negative</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)">Bacteria</td>
<td valign="top" align="left" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)"></td>
<td valign="top" align="left" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)"></td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)"> Acinetobacter baumannii</td>
<td valign="top" align="left" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)">Reference strain (ATCC 19606)</td>
<td valign="top" align="left" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)">Negative</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)"> Escherichia coli</td>
<td valign="top" align="left" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)">Reference strain (ATCC 25922)</td>
<td valign="top" align="left" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)">Negative</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)"> Haemophilus influenza</td>
<td valign="top" align="left" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)">Reference strain (ATCC 9007)</td>
<td valign="top" align="left" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)">Negative</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)"> Klebsiella pneumoniae</td>
<td valign="top" align="left" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)">Reference strain (ATCC 900603)</td>
<td valign="top" align="left" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)">Negative</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)"> Legionella pneumophila</td>
<td valign="top" align="left" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)">Reference strain (ATCC 33156)</td>
<td valign="top" align="left" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)">Negative</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)"> Mycoplasma pneumoniae</td>
<td valign="top" align="left" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)">Clinical specimen
<sup></sup>
</td>
<td valign="top" align="left" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)">Negative</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)"> Mycobacterium tuberculosis</td>
<td valign="top" align="left" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)">Reference strain (ATCC 27294)</td>
<td valign="top" align="left" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)">Negative</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)"> Mycobacterium avium</td>
<td valign="top" align="left" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)">Reference strain (KMRC 00136-41011)</td>
<td valign="top" align="left" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)">Negative</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)"> Mycobacterium abscessus</td>
<td valign="top" align="left" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)">Reference strain (ATCC 19977)</td>
<td valign="top" align="left" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)">Negative</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)"> Pseudomonas aeruginosa</td>
<td valign="top" align="left" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)">Reference strain (ATCC 27853)</td>
<td valign="top" align="left" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)">Negative</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)"> Staphylococcus aureus</td>
<td valign="top" align="left" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)">Reference strain (ATCC 25923)</td>
<td valign="top" align="left" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)">Negative</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)"> Staphylococcus epidermidis</td>
<td valign="top" align="left" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)">Reference strain (ATCC 12228)</td>
<td valign="top" align="left" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)">Negative</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)"> Streptococcus pneumoniae</td>
<td valign="top" align="left" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)">Reference strain (ATCC 49619)</td>
<td valign="top" align="left" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)">Negative</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)"> Streptococcus pyogenes</td>
<td valign="top" align="left" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)">Reference strain (ATCC 19615)</td>
<td valign="top" align="left" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)">Negative</td>
</tr>
</tbody>
</table>
</alternatives>
<table-wrap-foot>
<fn>
<p>
<sup>*</sup>
Specimens that yielded positive results in two respiratory virus panel assays: the AdvanSure RV real-time PCR Kit (LG chem, Seoul, Korea) and the Allplex Respiratory Panel 1, 2, and 3 (Seegene, Seoul, Korea);
<sup></sup>
Specimens confirmed by sequencing analysis.</p>
<p>Abbreviation: KMRC, Korea Mycobacterium Resource Center.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="T2" orientation="portrait" position="float">
<label>Table 2</label>
<caption>
<title>Analytical sensitivity of the PowerChek MERS (upE and ORF1a) real-time PCR Kit</title>
</caption>
<alternatives>
<graphic xlink:href="alm-37-494-i002"></graphic>
<table frame="hsides" rules="rows">
<col width="40%" span="1"></col>
<col width="30%" span="1"></col>
<col width="30%" span="1"></col>
<thead>
<tr>
<th valign="middle" align="left" rowspan="2" colspan="1" style="background-color:rgb(218,227,244)">Concentration (copies/µL)</th>
<th valign="middle" align="center" rowspan="1" colspan="2" style="background-color:rgb(218,227,244)">N of detections/N of replicates (%)</th>
</tr>
<tr>
<th valign="middle" align="center" rowspan="1" colspan="1" style="background-color:rgb(218,227,244)">upE</th>
<th valign="middle" align="center" rowspan="1" colspan="1" style="background-color:rgb(218,227,244)">ORF1a</th>
</tr>
</thead>
<tbody>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">100</td>
<td valign="top" align="center" rowspan="1" colspan="1">20/20 (100)</td>
<td valign="top" align="center" rowspan="1" colspan="1">20/20 (100)</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)">50</td>
<td valign="top" align="center" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)">20/20 (100)</td>
<td valign="top" align="center" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)">20/20 (100)</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">25</td>
<td valign="top" align="center" rowspan="1" colspan="1">20/20 (100)</td>
<td valign="top" align="center" rowspan="1" colspan="1">20/20 (100)</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)">12.5</td>
<td valign="top" align="center" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)">17/20 (85)</td>
<td valign="top" align="center" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)">20/20 (100)</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">10</td>
<td valign="top" align="center" rowspan="1" colspan="1">18/20 (90)</td>
<td valign="top" align="center" rowspan="1" colspan="1">19/20 (95)</td>
</tr>
</tbody>
</table>
</alternatives>
</table-wrap>
<table-wrap id="T3" orientation="portrait" position="float">
<label>Table 3</label>
<caption>
<title>Precision of the PowerChek MERS (upE and ORF1a) real-time PCR Kit</title>
</caption>
<alternatives>
<graphic xlink:href="alm-37-494-i003"></graphic>
<table frame="hsides" rules="rows">
<col width="9.12%" span="1"></col>
<col width="9.12%" span="1"></col>
<col width="8.95%" span="1"></col>
<col width="8.95%" span="1"></col>
<col width="8.95%" span="1"></col>
<col width="8.95%" span="1"></col>
<col width="8.95%" span="1"></col>
<col width="8.95%" span="1"></col>
<thead>
<tr>
<th valign="middle" align="left" rowspan="3" colspan="1" style="background-color:rgb(218,227,244)">Target</th>
<th valign="middle" align="center" rowspan="3" colspan="1" style="background-color:rgb(218,227,244)">Concentration (copies/µL)</th>
<th valign="middle" align="center" rowspan="1" colspan="6" style="background-color:rgb(218,227,244)">Mean Ct (% coefficient of variation)</th>
</tr>
<tr>
<th valign="middle" align="center" rowspan="1" colspan="2" style="background-color:rgb(218,227,244)">Reproducibility</th>
<th valign="middle" align="center" rowspan="2" colspan="1" style="background-color:rgb(218,227,244)">Repeatability</th>
<th valign="middle" align="center" rowspan="1" colspan="3" style="background-color:rgb(218,227,244)">Lot-to-lot variation</th>
</tr>
<tr>
<th valign="middle" align="center" rowspan="1" colspan="1" style="background-color:rgb(218,227,244)">Site 1</th>
<th valign="middle" align="center" rowspan="1" colspan="1" style="background-color:rgb(218,227,244)">Site 2</th>
<th valign="middle" align="center" rowspan="1" colspan="1" style="background-color:rgb(218,227,244)">Lot 1</th>
<th valign="middle" align="center" rowspan="1" colspan="1" style="background-color:rgb(218,227,244)">Lot 2</th>
<th valign="middle" align="center" rowspan="1" colspan="1" style="background-color:rgb(218,227,244)">Lot 3</th>
</tr>
</thead>
<tbody>
<tr>
<td valign="middle" align="left" rowspan="3" colspan="1">upE</td>
<td valign="middle" align="right" rowspan="1" colspan="1">50</td>
<td valign="middle" align="center" rowspan="1" colspan="1">34.40 (2.10)</td>
<td valign="middle" align="center" rowspan="1" colspan="1">34.40 (1.32)</td>
<td valign="middle" align="center" rowspan="1" colspan="1">34.74 (2.11)</td>
<td valign="middle" align="center" rowspan="1" colspan="1">34.40 (2.10)</td>
<td valign="middle" align="center" rowspan="1" colspan="1">34.45 (3.36)</td>
<td valign="middle" align="center" rowspan="1" colspan="1">34.40 (2.10)</td>
</tr>
<tr>
<td valign="middle" align="right" rowspan="1" colspan="1">150</td>
<td valign="top" align="center" rowspan="1" colspan="1">32.68 (0.89)</td>
<td valign="top" align="center" rowspan="1" colspan="1">32.85 (1.19)</td>
<td valign="top" align="center" rowspan="1" colspan="1">32.92 (1.06)</td>
<td valign="top" align="center" rowspan="1" colspan="1">32.68 (0.89)</td>
<td valign="top" align="center" rowspan="1" colspan="1">32.82 (0.97)</td>
<td valign="top" align="center" rowspan="1" colspan="1">32.68 (0.89)</td>
</tr>
<tr>
<td valign="middle" align="right" rowspan="1" colspan="1">300</td>
<td valign="top" align="center" rowspan="1" colspan="1">31.91 (0.54)</td>
<td valign="top" align="center" rowspan="1" colspan="1">31.99 (0.88)</td>
<td valign="top" align="center" rowspan="1" colspan="1">31.97 (0.77)</td>
<td valign="top" align="center" rowspan="1" colspan="1">31.91 (0.54)</td>
<td valign="top" align="center" rowspan="1" colspan="1">31.98 (0.68)</td>
<td valign="top" align="center" rowspan="1" colspan="1">31.91 (0.54)</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="3" colspan="1" style="background-color:rgb(238,242,249)">ORF1a</td>
<td valign="middle" align="right" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)">50</td>
<td valign="top" align="center" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)">33.93 (1.30)</td>
<td valign="top" align="center" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)">33.90 (0.86)</td>
<td valign="top" align="center" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)">34.07 (1.53)</td>
<td valign="top" align="center" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)">33.93 (1.30)</td>
<td valign="top" align="center" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)">34.14 (1.34)</td>
<td valign="top" align="center" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)">34.04 (1.21)</td>
</tr>
<tr>
<td valign="middle" align="right" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)">150</td>
<td valign="top" align="center" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)">32.16 (0.79)</td>
<td valign="top" align="center" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)">32.11 (0.63)</td>
<td valign="top" align="center" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)">32.23 (0.77)</td>
<td valign="top" align="center" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)">32.16 (0.79)</td>
<td valign="top" align="center" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)">32.31 (0.77)</td>
<td valign="top" align="center" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)">32.27 (0.49)</td>
</tr>
<tr>
<td valign="middle" align="right" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)">300</td>
<td valign="top" align="center" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)">30.88 (0.62)</td>
<td valign="top" align="center" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)">30.78 (0.62)</td>
<td valign="top" align="center" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)">30.91 (0.54)</td>
<td valign="top" align="center" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)">30.88 (0.62)</td>
<td valign="top" align="center" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)">30.85 (1.15)</td>
<td valign="top" align="center" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)">30.98 (0.70)</td>
</tr>
</tbody>
</table>
</alternatives>
<table-wrap-foot>
<fn>
<p>Abbreviation: Ct, Cycle threshold.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="T4" orientation="portrait" position="float">
<label>Table 4</label>
<caption>
<title>Comparison of the PowerChek MERS (upE and ORF1a) real-time PCR Kit and the sequencing assay for the detection of MERS-CoV</title>
</caption>
<alternatives>
<graphic xlink:href="alm-37-494-i004"></graphic>
<table frame="hsides" rules="rows">
<col width="40%" span="1"></col>
<col width="10%" span="1"></col>
<col width="20%" span="1"></col>
<col width="20%" span="1"></col>
<col width="10%" span="1"></col>
<thead>
<tr>
<th valign="middle" align="left" rowspan="2" colspan="1" style="background-color:rgb(218,227,244)">Detection method</th>
<th valign="middle" align="center" rowspan="2" colspan="1" style="background-color:rgb(218,227,244)">Result</th>
<th valign="middle" align="center" rowspan="1" colspan="2" style="background-color:rgb(218,227,244)">Subject characteristics</th>
<th valign="middle" align="center" rowspan="2" colspan="1" style="background-color:rgb(218,227,244)">Total</th>
</tr>
<tr>
<th valign="middle" align="center" rowspan="1" colspan="1" style="background-color:rgb(218,227,244)">Symptomatic
<break></break>
MERS-confirmed patients</th>
<th valign="middle" align="center" rowspan="1" colspan="1" style="background-color:rgb(218,227,244)">Asymptomatic
<break></break>
MERS-negative individuals</th>
</tr>
</thead>
<tbody>
<tr>
<td valign="top" align="left" rowspan="2" colspan="1">PowerChek MERS (upE and ORF1a) real-time PCR Kit</td>
<td valign="top" align="left" rowspan="1" colspan="1">Positive</td>
<td valign="top" align="right" rowspan="1" colspan="1">50</td>
<td valign="top" align="right" rowspan="1" colspan="1">0</td>
<td valign="top" align="right" rowspan="1" colspan="1">50</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Negative</td>
<td valign="top" align="right" rowspan="1" colspan="1">0</td>
<td valign="top" align="right" rowspan="1" colspan="1">50</td>
<td valign="top" align="right" rowspan="1" colspan="1">50</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="2" colspan="1" style="background-color:rgb(238,242,249)">RdRp and N gene sequencing assay</td>
<td valign="top" align="left" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)">Positive</td>
<td valign="top" align="right" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)">50</td>
<td valign="top" align="right" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)">0</td>
<td valign="top" align="right" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)">50</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)">Negative</td>
<td valign="top" align="right" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)">0</td>
<td valign="top" align="right" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)">50</td>
<td valign="top" align="right" rowspan="1" colspan="1" style="background-color:rgb(238,242,249)">50</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">Total</td>
<td valign="top" align="right" rowspan="1" colspan="1">50</td>
<td valign="top" align="right" rowspan="1" colspan="1">50</td>
<td valign="top" align="right" rowspan="1" colspan="1">100</td>
</tr>
</tbody>
</table>
</alternatives>
<table-wrap-foot>
<fn>
<p>Positive percent agreement, 100% (91.1–100%).</p>
<p>Negative percent agreement, 100% (91.1–100%).</p>
<p>Kappa coefficient, 1.00.</p>
<p>Abbreviations: MERS, Middle East respiratory syndrome; RdRp, RNA-dependent RNA polymerase.</p>
</fn>
</table-wrap-foot>
</table-wrap>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A52 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000A52 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:5587821
   |texte=   Performance Evaluation of the PowerChek MERS (upE & ORF1a) Real-Time PCR Kit for the Detection of Middle East Respiratory Syndrome Coronavirus RNA
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:28840986" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021