Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 000A299 ( Pmc/Corpus ); précédent : 000A298; suivant : 000A300 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Peptide-Protein Interaction Studies of Antimicrobial Peptides Targeting Middle East Respiratory Syndrome Coronavirus Spike Protein: An In Silico Approach</title>
<author>
<name sortKey="Mustafa, Sabeena" sort="Mustafa, Sabeena" uniqKey="Mustafa S" first="Sabeena" last="Mustafa">Sabeena Mustafa</name>
<affiliation>
<nlm:aff id="I1">Department of Biostatistics and Bioinformatics, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Balkhy, Hanan" sort="Balkhy, Hanan" uniqKey="Balkhy H" first="Hanan" last="Balkhy">Hanan Balkhy</name>
<affiliation>
<nlm:aff id="I2">Infection Prevention and Control Department at the Ministry of National Guard, Department of Infectious Diseases, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Gabere, Musa" sort="Gabere, Musa" uniqKey="Gabere M" first="Musa" last="Gabere">Musa Gabere</name>
<affiliation>
<nlm:aff id="I1">Department of Biostatistics and Bioinformatics, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">31354813</idno>
<idno type="pmc">6634063</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6634063</idno>
<idno type="RBID">PMC:6634063</idno>
<idno type="doi">10.1155/2019/6815105</idno>
<date when="2019">2019</date>
<idno type="wicri:Area/Pmc/Corpus">000A29</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000A29</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Peptide-Protein Interaction Studies of Antimicrobial Peptides Targeting Middle East Respiratory Syndrome Coronavirus Spike Protein: An In Silico Approach</title>
<author>
<name sortKey="Mustafa, Sabeena" sort="Mustafa, Sabeena" uniqKey="Mustafa S" first="Sabeena" last="Mustafa">Sabeena Mustafa</name>
<affiliation>
<nlm:aff id="I1">Department of Biostatistics and Bioinformatics, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Balkhy, Hanan" sort="Balkhy, Hanan" uniqKey="Balkhy H" first="Hanan" last="Balkhy">Hanan Balkhy</name>
<affiliation>
<nlm:aff id="I2">Infection Prevention and Control Department at the Ministry of National Guard, Department of Infectious Diseases, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Gabere, Musa" sort="Gabere, Musa" uniqKey="Gabere M" first="Musa" last="Gabere">Musa Gabere</name>
<affiliation>
<nlm:aff id="I1">Department of Biostatistics and Bioinformatics, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Advances in Bioinformatics</title>
<idno type="ISSN">1687-8027</idno>
<idno type="eISSN">1687-8035</idno>
<imprint>
<date when="2019">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>There is no effective therapeutic or vaccine for Middle East Respiratory Syndrome and this study attempts to find therapy using peptide by establishing a basis for the peptide-protein interactions through in silico docking studies for the spike protein of MERS-CoV. The antimicrobial peptides (AMPs) were retrieved from the antimicrobial peptide database (APD3) and shortlisted based on certain important physicochemical properties. The binding mode of the shortlisted peptides was measured based on the number of clusters which forms in a protein-peptide docking using Piper. As a result, we identified a list of putative AMPs which binds to the spike protein of MERS-CoV, which may be crucial in providing the inhibitory action. It is observed that seven putative peptides have good binding score based on cluster size cutoff of 208. We conclude that seven peptides, namely, AP00225, AP00180, AP00549, AP00744, AP00729, AP00764, and AP00223, could possibly have binding with the active site of the MERS-CoV spike protein. These seven AMPs could serve as a therapeutic option for MERS and enhance its treatment outcome.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Milne Price, S" uniqKey="Milne Price S">S. Milne-Price</name>
</author>
<author>
<name sortKey="Miazgowicz, K L" uniqKey="Miazgowicz K">K. L. Miazgowicz</name>
</author>
<author>
<name sortKey="Munster, V J" uniqKey="Munster V">V. J. Munster</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mohd, H A" uniqKey="Mohd H">H. A. Mohd</name>
</author>
<author>
<name sortKey="Al Tawfiq, J A" uniqKey="Al Tawfiq J">J. A. Al-Tawfiq</name>
</author>
<author>
<name sortKey="Memish, Z A" uniqKey="Memish Z">Z. A. Memish</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Melnik, L I" uniqKey="Melnik L">L. I. Melnik</name>
</author>
<author>
<name sortKey="Garry, R F" uniqKey="Garry R">R. F. Garry</name>
</author>
<author>
<name sortKey="Morris, C A" uniqKey="Morris C">C. A. Morris</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Koehler, J W" uniqKey="Koehler J">J. W. Koehler</name>
</author>
<author>
<name sortKey="Smith, J M" uniqKey="Smith J">J. M. Smith</name>
</author>
<author>
<name sortKey="Ripoll, D R" uniqKey="Ripoll D">D. R. Ripoll</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hrobowski, Y M" uniqKey="Hrobowski Y">Y. M. Hrobowski</name>
</author>
<author>
<name sortKey="Garry, R F" uniqKey="Garry R">R. F. Garry</name>
</author>
<author>
<name sortKey="Michael, S F" uniqKey="Michael S">S. F. Michael</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sainz, B" uniqKey="Sainz B">B. Sainz</name>
</author>
<author>
<name sortKey="Mossel, E C" uniqKey="Mossel E">E. C. Mossel</name>
</author>
<author>
<name sortKey="Gallaher, W R" uniqKey="Gallaher W">W. R. Gallaher</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Badani, H" uniqKey="Badani H">H. Badani</name>
</author>
<author>
<name sortKey="Garry, R F" uniqKey="Garry R">R. F. Garry</name>
</author>
<author>
<name sortKey="Wimley, W C" uniqKey="Wimley W">W. C. Wimley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chia, T J" uniqKey="Chia T">T.-J. Chia</name>
</author>
<author>
<name sortKey="Wu, Y C" uniqKey="Wu Y">Y.-C. Wu</name>
</author>
<author>
<name sortKey="Chen, J Y" uniqKey="Chen J">J.-Y. Chen</name>
</author>
<author>
<name sortKey="Chi, S C" uniqKey="Chi S">S.-C. Chi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lu, L" uniqKey="Lu L">L. Lu</name>
</author>
<author>
<name sortKey="Liu, Q" uniqKey="Liu Q">Q. Liu</name>
</author>
<author>
<name sortKey="Zhu, Y" uniqKey="Zhu Y">Y. Zhu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Channappanavar, R" uniqKey="Channappanavar R">R. Channappanavar</name>
</author>
<author>
<name sortKey="Lu, L" uniqKey="Lu L">L. Lu</name>
</author>
<author>
<name sortKey="Xia, S" uniqKey="Xia S">S. Xia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gao, J" uniqKey="Gao J">J. Gao</name>
</author>
<author>
<name sortKey="Lu, G" uniqKey="Lu G">G. Lu</name>
</author>
<author>
<name sortKey="Qi, J" uniqKey="Qi J">J. Qi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhao, H" uniqKey="Zhao H">H. Zhao</name>
</author>
<author>
<name sortKey="Zhou, J" uniqKey="Zhou J">J. Zhou</name>
</author>
<author>
<name sortKey="Zhang, K" uniqKey="Zhang K">K. Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Du, L" uniqKey="Du L">L. Du</name>
</author>
<author>
<name sortKey="Yang, Y" uniqKey="Yang Y">Y. Yang</name>
</author>
<author>
<name sortKey="Zhou, Y" uniqKey="Zhou Y">Y. Zhou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, G" uniqKey="Wang G">G. Wang</name>
</author>
<author>
<name sortKey="Li, X" uniqKey="Li X">X. Li</name>
</author>
<author>
<name sortKey="Wang, Z" uniqKey="Wang Z">Z. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ciemny, M" uniqKey="Ciemny M">M. Ciemny</name>
</author>
<author>
<name sortKey="Kurcinski, M" uniqKey="Kurcinski M">M. Kurcinski</name>
</author>
<author>
<name sortKey="Kamel, K" uniqKey="Kamel K">K. Kamel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hoojghan, A V" uniqKey="Hoojghan A">A. V. Hoojghan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhao, F" uniqKey="Zhao F">F. Zhao</name>
</author>
<author>
<name sortKey="Zeng, H" uniqKey="Zeng H">H. Zeng</name>
</author>
<author>
<name sortKey="Li, X" uniqKey="Li X">X. Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Valencia, A" uniqKey="Valencia A">A. Valencia</name>
</author>
<author>
<name sortKey="Ezkurdia, I" uniqKey="Ezkurdia I">I. Ezkurdia</name>
</author>
<author>
<name sortKey="Bartoli, L" uniqKey="Bartoli L">L. Bartoli</name>
</author>
<author>
<name sortKey="Tress, M L" uniqKey="Tress M">M. L. Tress</name>
</author>
<author>
<name sortKey="Fariselli, P" uniqKey="Fariselli P">P. Fariselli</name>
</author>
<author>
<name sortKey="Casadio, R" uniqKey="Casadio R">R. Casadio</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Berman, H M" uniqKey="Berman H">H. M. Berman</name>
</author>
<author>
<name sortKey="Westbrook, J" uniqKey="Westbrook J">J. Westbrook</name>
</author>
<author>
<name sortKey="Feng, Z" uniqKey="Feng Z">Z. Feng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, G" uniqKey="Wang G">G. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Roy, A" uniqKey="Roy A">A. Roy</name>
</author>
<author>
<name sortKey="Kucukural, A" uniqKey="Kucukural A">A. Kucukural</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y. Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lovell, S C" uniqKey="Lovell S">S. C. Lovell</name>
</author>
<author>
<name sortKey="Davis, I W" uniqKey="Davis I">I. W. Davis</name>
</author>
<author>
<name sortKey="Arendall, W B" uniqKey="Arendall W">W. B. Arendall</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chuang, G" uniqKey="Chuang G">G. Chuang</name>
</author>
<author>
<name sortKey="Kozakov, D" uniqKey="Kozakov D">D. Kozakov</name>
</author>
<author>
<name sortKey="Brenke, R" uniqKey="Brenke R">R. Brenke</name>
</author>
<author>
<name sortKey="Comeau, S R" uniqKey="Comeau S">S. R. Comeau</name>
</author>
<author>
<name sortKey="Vajda, S" uniqKey="Vajda S">S. Vajda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kozakov, D" uniqKey="Kozakov D">D. Kozakov</name>
</author>
<author>
<name sortKey="Brenke, R" uniqKey="Brenke R">R. Brenke</name>
</author>
<author>
<name sortKey="Comeau, S R" uniqKey="Comeau S">S. R. Comeau</name>
</author>
<author>
<name sortKey="Vajda, S" uniqKey="Vajda S">S. Vajda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kozakov, D" uniqKey="Kozakov D">D. Kozakov</name>
</author>
<author>
<name sortKey="Hall, D R" uniqKey="Hall D">D. R. Hall</name>
</author>
<author>
<name sortKey="Xia, B" uniqKey="Xia B">B. Xia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tina, K G" uniqKey="Tina K">K. G. Tina</name>
</author>
<author>
<name sortKey="Bhadra, R" uniqKey="Bhadra R">R. Bhadra</name>
</author>
<author>
<name sortKey="Srinivasan, N" uniqKey="Srinivasan N">N. Srinivasan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Adedeji, A O" uniqKey="Adedeji A">A. O. Adedeji</name>
</author>
<author>
<name sortKey="Singh, K" uniqKey="Singh K">K. Singh</name>
</author>
<author>
<name sortKey="Kassim, A" uniqKey="Kassim A">A. Kassim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Teissier, E" uniqKey="Teissier E">E. Teissier</name>
</author>
<author>
<name sortKey="Penin, F" uniqKey="Penin F">F. Penin</name>
</author>
<author>
<name sortKey="Pecheur, E I" uniqKey="Pecheur E">E.-I. Pécheur</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ramachandran, G N" uniqKey="Ramachandran G">G. N. Ramachandran</name>
</author>
<author>
<name sortKey="Ramakrishnan, C" uniqKey="Ramakrishnan C">C. Ramakrishnan</name>
</author>
<author>
<name sortKey="Sasisekharan, V" uniqKey="Sasisekharan V">V. Sasisekharan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rothan, H A" uniqKey="Rothan H">H. A. Rothan</name>
</author>
<author>
<name sortKey="Mohamed, Z" uniqKey="Mohamed Z">Z. Mohamed</name>
</author>
<author>
<name sortKey="Suhaeb, A M" uniqKey="Suhaeb A">A. M. Suhaeb</name>
</author>
<author>
<name sortKey="Rahman, N A" uniqKey="Rahman N">N. A. Rahman</name>
</author>
<author>
<name sortKey="Yusof, R" uniqKey="Yusof R">R. Yusof</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Haspel, N" uniqKey="Haspel N">N. Haspel</name>
</author>
<author>
<name sortKey="Jagodzinski, F" uniqKey="Jagodzinski F">F. Jagodzinski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eisenhauer, P B" uniqKey="Eisenhauer P">P. B. Eisenhauer</name>
</author>
<author>
<name sortKey="Harwig, S S L" uniqKey="Harwig S">S. S. L. Harwig</name>
</author>
<author>
<name sortKey="Szklarek, D" uniqKey="Szklarek D">D. Szklarek</name>
</author>
<author>
<name sortKey="Ganz, T" uniqKey="Ganz T">T. Ganz</name>
</author>
<author>
<name sortKey="Selsted, M E" uniqKey="Selsted M">M. E. Selsted</name>
</author>
<author>
<name sortKey="Lehrer, R I" uniqKey="Lehrer R">R. I. Lehrer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dugan, A S" uniqKey="Dugan A">A. S. Dugan</name>
</author>
<author>
<name sortKey="Maginnis, M S" uniqKey="Maginnis M">M. S. Maginnis</name>
</author>
<author>
<name sortKey="Jordan, J A" uniqKey="Jordan J">J. A. Jordan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Milona, P" uniqKey="Milona P">P. Milona</name>
</author>
<author>
<name sortKey="Townes, C L" uniqKey="Townes C">C. L. Townes</name>
</author>
<author>
<name sortKey="Bevan, R M" uniqKey="Bevan R">R. M. Bevan</name>
</author>
<author>
<name sortKey="Hall, J" uniqKey="Hall J">J. Hall</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gould, A" uniqKey="Gould A">A. Gould</name>
</author>
<author>
<name sortKey="Ji, Y" uniqKey="Ji Y">Y. Ji</name>
</author>
<author>
<name sortKey="Aboye, T L" uniqKey="Aboye T">T. L. Aboye</name>
</author>
<author>
<name sortKey="Camarero, J A" uniqKey="Camarero J">J. A. Camarero</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shi, D" uniqKey="Shi D">D. Shi</name>
</author>
<author>
<name sortKey="Hou, X" uniqKey="Hou X">X. Hou</name>
</author>
<author>
<name sortKey="Wang, L" uniqKey="Wang L">L. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Iijima, N" uniqKey="Iijima N">N. Iijima</name>
</author>
<author>
<name sortKey="Tanimoto, N" uniqKey="Tanimoto N">N. Tanimoto</name>
</author>
<author>
<name sortKey="Emoto, Y" uniqKey="Emoto Y">Y. Emoto</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mustafa, S" uniqKey="Mustafa S">S. Mustafa</name>
</author>
<author>
<name sortKey="Balkhy, H" uniqKey="Balkhy H">H. Balkhy</name>
</author>
<author>
<name sortKey="Gabere, M N" uniqKey="Gabere M">M. N. Gabere</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Adv Bioinformatics</journal-id>
<journal-id journal-id-type="iso-abbrev">Adv Bioinformatics</journal-id>
<journal-id journal-id-type="publisher-id">ABI</journal-id>
<journal-title-group>
<journal-title>Advances in Bioinformatics</journal-title>
</journal-title-group>
<issn pub-type="ppub">1687-8027</issn>
<issn pub-type="epub">1687-8035</issn>
<publisher>
<publisher-name>Hindawi</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">31354813</article-id>
<article-id pub-id-type="pmc">6634063</article-id>
<article-id pub-id-type="doi">10.1155/2019/6815105</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Peptide-Protein Interaction Studies of Antimicrobial Peptides Targeting Middle East Respiratory Syndrome Coronavirus Spike Protein: An In Silico Approach</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Mustafa</surname>
<given-names>Sabeena</given-names>
</name>
<xref ref-type="aff" rid="I1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Balkhy</surname>
<given-names>Hanan</given-names>
</name>
<xref ref-type="aff" rid="I2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<contrib-id contrib-id-type="orcid" authenticated="false">https://orcid.org/0000-0001-6773-9828</contrib-id>
<name>
<surname>Gabere</surname>
<given-names>Musa</given-names>
</name>
<email>mgabere@gmail.com</email>
<xref ref-type="aff" rid="I1">
<sup>1</sup>
</xref>
</contrib>
</contrib-group>
<aff id="I1">
<sup>1</sup>
Department of Biostatistics and Bioinformatics, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia</aff>
<aff id="I2">
<sup>2</sup>
Infection Prevention and Control Department at the Ministry of National Guard, Department of Infectious Diseases, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia</aff>
<author-notes>
<fn fn-type="other">
<p>Academic Editor: Nurit Haspel</p>
</fn>
</author-notes>
<pub-date pub-type="collection">
<year>2019</year>
</pub-date>
<pub-date pub-type="epub">
<day>1</day>
<month>7</month>
<year>2019</year>
</pub-date>
<volume>2019</volume>
<elocation-id>6815105</elocation-id>
<history>
<date date-type="received">
<day>6</day>
<month>1</month>
<year>2019</year>
</date>
<date date-type="accepted">
<day>8</day>
<month>5</month>
<year>2019</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2019 Sabeena Mustafa et al.</copyright-statement>
<copyright-year>2019</copyright-year>
<license xlink:href="https://creativecommons.org/licenses/by/4.0/">
<license-p>This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</license-p>
</license>
</permissions>
<abstract>
<p>There is no effective therapeutic or vaccine for Middle East Respiratory Syndrome and this study attempts to find therapy using peptide by establishing a basis for the peptide-protein interactions through in silico docking studies for the spike protein of MERS-CoV. The antimicrobial peptides (AMPs) were retrieved from the antimicrobial peptide database (APD3) and shortlisted based on certain important physicochemical properties. The binding mode of the shortlisted peptides was measured based on the number of clusters which forms in a protein-peptide docking using Piper. As a result, we identified a list of putative AMPs which binds to the spike protein of MERS-CoV, which may be crucial in providing the inhibitory action. It is observed that seven putative peptides have good binding score based on cluster size cutoff of 208. We conclude that seven peptides, namely, AP00225, AP00180, AP00549, AP00744, AP00729, AP00764, and AP00223, could possibly have binding with the active site of the MERS-CoV spike protein. These seven AMPs could serve as a therapeutic option for MERS and enhance its treatment outcome.</p>
</abstract>
<funding-group>
<award-group>
<funding-source>King Abdullah International Medical Research Center</funding-source>
<award-id>RC16/089</award-id>
</award-group>
</funding-group>
</article-meta>
</front>
<body>
<sec id="sec1">
<title>1. Introduction</title>
<p>Middle East Respiratory Syndrome-Coronavirus (MERS-CoV) was identified in Saudi Arabia in 2012 and it belongs to Coronaviridae family and mostly reported among the Middle Eastern people. This virus causes the respiratory illness called the Middle East Respiratory Syndrome (MERS) [
<xref rid="B1" ref-type="bibr">1</xref>
]. Phylogenetic studies show that bats are the reservoir of this virus and camel is the only host through which the virus spreads to humans [
<xref rid="B2" ref-type="bibr">2</xref>
].</p>
<p>According to the World Health Organization (WHO), at the end of November 2018, a total of 2274 laboratory-confirmed cases of Middle East Respiratory Syndrome (MERS), including 806 associated deaths, were reported globally, where the majority of these cases were reported from Saudi Arabia (1896 cases, including 732 related deaths). Although different classes of treatment trials are ongoing, no effective treatment or vaccine is available for this disease, which causes the necessity of the effective therapeutic treatments. In this scenario, peptides can serve as potential treatment option for MERS. It has been shown that peptides act as modulators in viral diseases. For example, Melnik et al. [
<xref rid="B3" ref-type="bibr">3</xref>
] shortlisted nine peptides based on the Wimley-White interfacial hydrophobicity scale (WWIHS), where four of these peptides (WWIHS = 3.5) had greater than 50% inhibition of human cytomegalovirus. In another study, it was shown that several peptides with WWIHS = 5.2 inhibited multiple strains of influenza with IC
<sub>50</sub>
≤1
<italic>μ</italic>
M [
<xref rid="B4" ref-type="bibr">4</xref>
]. By and large, other peptides with positive WWIHS values have been shown to inhibit various viruses such as Rift Valley Fever [
<xref rid="B5" ref-type="bibr">5</xref>
], Dengue, White Nile [
<xref rid="B6" ref-type="bibr">6</xref>
], and SARS [
<xref rid="B7" ref-type="bibr">7</xref>
] and the mechanism of action is by interfering with fusion of host cellular and viral glycoprotein membranes [
<xref rid="B8" ref-type="bibr">8</xref>
]. It is for these reasons we propose that antimicrobial peptides (AMPs) can be used as an effective therapeutic agents against MERS. Several peptides have been extensively studied and identified as anti-MERS-CoV peptides [
<xref rid="B9" ref-type="bibr">9</xref>
<xref rid="B12" ref-type="bibr">12</xref>
] and anti-MERS-CoV AMPs in the past few years [
<xref rid="B13" ref-type="bibr">13</xref>
].</p>
<p>In order to target MERS-CoV, the knowledge of structural and nonstructural proteins is important. In this work, we focus on the structural protein of MERS-CoV spike (S) protein. Understanding the S protein structure is useful in the drug discovery for developing anti-MERS-CoV components. The S protein consists of S1 and S2 regions and it is a type I transmembrane glycoprotein, which is located at the viral envelope surface in a trimer state. The S1 and S2 subunits play a role in viral entry, binding, and fusion [
<xref rid="B14" ref-type="bibr">14</xref>
]. The S1 subunit has a receptor-binding domain (RBD) which binds to the receptor dipeptidyl peptidase 4 (DPP4). The S2 subunit consists of heptad repeats 1 and 2 (HR1 and HR2), which forms a complex called the fusion core, and represents a key membrane fusion architecture [
<xref rid="B14" ref-type="bibr">14</xref>
]. During the process of membrane fusion, HR1 and HR2 regions form a six helix bundle core with a hydrophobic region being inserted into the host membrane and thereby fusion occurs [
<xref rid="B15" ref-type="bibr">15</xref>
].</p>
<p>Proteins interact with other proteins in order to perform cellular tasks and knowledge of this can facilitate the development of therapeutics. X-ray crystallography and mutagenesis are techniques used in determining protein complexes and consequently protein interfaces. However, these techniques are expensive; hence, an in silico approach in predicting protein interaction, protein-protein docking, and protein interface is needed. Protein-peptide docking methods can be divided into three categories: template-based docking; local docking; and global docking [
<xref rid="B16" ref-type="bibr">16</xref>
]. Example of protein-protein interactions includes the use of graphical models by predicting the binding site between two proteins [
<xref rid="B17" ref-type="bibr">17</xref>
]. Protein interface prediction involves determining a subset of residues on the protein surface which are involved in intermolecular interactions. Example of prediction of protein interfaces includes ComplexContact, which is a web server for determining interfacial residue-residue contact prediction of a putative protein complex. This is useful in deciphering how proteins form a complex by looking at how their residues interact [
<xref rid="B18" ref-type="bibr">18</xref>
]. The challenges faced in developing these computational methods are that no methods yield excellent results and there is no gold standard benchmark dataset that can be used to compare them [
<xref rid="B19" ref-type="bibr">19</xref>
]. In addition, there are other challenges like (i) modelling significant conformational changes of both peptide and protein molecules, (ii) selection of the highest accuracy structure out of many generated models, and (iii) integration of experimental data and computational predictions into the protein-peptide docking scheme [
<xref rid="B16" ref-type="bibr">16</xref>
].</p>
<p>In this study, we have considered a set of AMPs in order to identify their role as putative modulators for MERS-CoV proteins. More specifically, we aim at evaluating the inhibitory mechanism of a set of AMPs with specific physicochemical properties and by employing peptide-protein interaction in order to determine its accuracy in binding with spike fusion core of MERS-CoV. The motivation for this study is that we will use highly available and reusable data that would otherwise be costly to produce. In addition, the simplicity of the proposed method, once optimized, will make it easy to identify the most important peptides that act as therapeutic agents. Our study is purely based on the binding efficacy of antimicrobial peptides on MERS-CoV spike (S). The consequences of such effort are twofold: (i) it will eliminate or at the least minimize the cost of synthesizing countless numbers of peptides and (ii) accelerate drug discovery of MERS therapeutics.</p>
</sec>
<sec id="sec2">
<title>2. Materials and Methods</title>
<p>We propose a two-stage computational approach to determine possible antimicrobial peptides (AMPs) that can target spike protein of MERS-CoV. The first stage involves database screening of AMPs from APD3 database (
<ext-link ext-link-type="uri" xlink:href="http://aps.unmc.edu/AP/main.php">http://aps.unmc.edu/AP/main.php</ext-link>
) [
<xref rid="B15" ref-type="bibr">15</xref>
] based on physicochemical properties. The second stage involves the structural bioinformatics studies to analyze the peptide-protein interaction complex of MERS-CoV S protein using the shortlisted AMPs and implement the docking studies in order to determine the interacting residues with greater affinity. The flowchart depicting the methodology employed in this study is shown in
<xref ref-type="fig" rid="fig1">Figure 1</xref>
. Detailed description of the steps involved is presented in the following subsections.</p>
<sec id="sec2.1">
<title>2.1. Retrieval of the Prefusion Structure of MERS-CoV spike Protein</title>
<p>We considered the S protein of MERS-CoV, which is illustrated in
<xref ref-type="fig" rid="fig2">Figure 2</xref>
; in particular, we selected the prefusion form. The rationale for targeting HR regions in the prefusion conformation is because the antimicrobial peptide can potentially prevent protein refolding and fusion. Hence, this will prevent the formation of the 6-HB (postfusion) and the entry of the virus into the host cell. It is for this reason we retrieved the cryo-EM structure of the MERS S spike protein from Protein Data Bank (PDB) with the PDB ID: 5X59 [
<xref rid="B20" ref-type="bibr">20</xref>
], which is a prefusion structure of MERS-CoV spike glycoprotein with threefold symmetry as shown in
<xref ref-type="fig" rid="fig3">Figure 3(a)</xref>
. The postfusion of MERS-CoV spike protein is shown in
<xref ref-type="fig" rid="fig3">Figure 3(b)</xref>
. The structure was elucidated by electron microscopy with a resolution of 3.7Å. This structure has total weight of 444204.84 and a sequence length of 3969 amino acid residues.</p>
</sec>
<sec id="sec2.2">
<title>2.2. Database Screening of Antimicrobial Peptides</title>
<p>The set of AMPs were retrieved from the antimicrobial peptide database (version 3), APD3 [
<xref rid="B15" ref-type="bibr">15</xref>
]. This database contains a total of 2961 AMPs from six kingdoms, namely, bacteria, archaea, protists, fungi, plants, and animals. In particular, we selected a list of basic antimicrobial peptides that are broad-spectrum. The strategy employed is based on a similar database screening [
<xref rid="B22" ref-type="bibr">21</xref>
] with additional criteria. The extracted AMPs from APD3 were filtered according to the following criteria, namely,
<list list-type="alpha-lower">
<list-item>
<p>20aa < = length < = 55aa: The longer the sequence, the better the antiviral activity [
<xref rid="B14" ref-type="bibr">14</xref>
],</p>
</list-item>
<list-item>
<p>basic residues should be abundant [
<xref rid="B13" ref-type="bibr">13</xref>
],</p>
</list-item>
<list-item>
<p>net charge > = 0 because the virus membrane is negatively charged [
<xref rid="B22" ref-type="bibr">21</xref>
],</p>
</list-item>
<list-item>
<p>nontoxic to mammalian cells [
<xref rid="B22" ref-type="bibr">21</xref>
],</p>
</list-item>
<list-item>
<p>peptides with unknown anti-MERS-CoV activity,</p>
</list-item>
<list-item>
<p>not annotated as synthetic (i.e., man-made peptides) in the database [
<xref rid="B22" ref-type="bibr">21</xref>
],</p>
</list-item>
<list-item>
<p>interfacial activity [
<xref rid="B8" ref-type="bibr">8</xref>
] should be as follows:</p>
<p>
<list list-type="roman-lower">
<list-item>
<p>Wimley-White interfacial hydrophobicity scale (WWIHS > 0),</p>
</list-item>
<list-item>
<p>interfacial helical hydrophobic moment (iHHM > 0).</p>
</list-item>
</list>
</p>
</list-item>
</list>
</p>
<p>In addition to the list of AMPs, we selected a number of peptides from the literature, which have been verified experimentally to have anti-MERS-CoV activity. These peptides act as positive control in which their docking complexes with MERS-CoV will be compared with our predicted complexes, in particular, two positive controls, namely P9 [
<xref rid="B13" ref-type="bibr">13</xref>
] and HR2P [
<xref rid="B10" ref-type="bibr">10</xref>
]. P9 is a subsequence derived from mouse beta defensin (mBD4) while HR2P is a peptide from the HR2 region of MERS-CoV spike protein.</p>
</sec>
<sec id="sec2.3">
<title>2.3. Ab Initio Modelling of the Shortlisted AMPs and Validation</title>
<p>The 3D structure of the shortlisted AMPs was predicted by submitting amino acid sequence into I-TASSER (
<ext-link ext-link-type="uri" xlink:href="https://zhanglab.ccmb.med.umich.edu/I-TASSER/">https://zhanglab.ccmb.med.umich.edu/I-TASSER/</ext-link>
), an online server which stands for Iterative Threading ASSembly Refinement [
<xref rid="B23" ref-type="bibr">22</xref>
]. This integrated platform works based on sequence-structure-function relation. This is an automated modelling server, which predicts a model based on confidence score (C-score) and build five models with confidence ranging from -5 to 2. C-score gives the estimate of accuracy of the prediction. If the C-score increases, the confidence of the model also increases. Based on C-score, best model of the peptide was selected for the study. The predicted AMPs structures obtained from I-TASSER were subjected for validation using Rampage server (
<ext-link ext-link-type="uri" xlink:href="http://mordred.bioc.cam.ac.uk/~rapper/rampage.php">http://mordred.bioc.cam.ac.uk/~rapper/rampage.php</ext-link>
) [
<xref rid="B24" ref-type="bibr">23</xref>
]. This validation recognizes errors in theoretical models of protein structures by performing statistical analysis of all available protein structures.</p>
</sec>
<sec id="sec2.4">
<title>2.4. Protein Preparation of the Receptor (5X59) and the Ligand AMPs</title>
<p>The protein preparation wizard (PrepWizard) was used to prepare the structure of the modelled AMPs and also the crystal structure of the fusion core spike protein S2 (5X59). The aim of protein preparation was to optimize the molecule (Schrödinger Suite 2018 Protein Preparation Wizard, Schrödinger LLC, New York, NY, 2018). The protein chains were edited for missing hydrogen atoms; bond orders and hydrogen bonds were optimized. The preparation process of the protein continued until it attained a minimized state, which usually has a default Root Mean Square Deviation (RMSD) value of 0.30.</p>
</sec>
<sec id="sec2.5">
<title>2.5. AMPs-Receptor Docking</title>
<p>To determine the binding mode of shortlisted AMPs with the spike protein receptor (5X59), 5X59 and the modelled AMPs were subjected to peptide-protein docking using Piper module of Schrödinger [
<xref rid="B25" ref-type="bibr">24</xref>
,
<xref rid="B26" ref-type="bibr">25</xref>
]. Piper algorithm is based on fast Fourier transform and it consists of two steps, namely, conformational sampling and structural clustering. The conformational sampling involves performing exhaustive evaluation of an energy function given in Equation (
<xref ref-type="disp-formula" rid="EEq1">1</xref>
) [
<xref rid="B26" ref-type="bibr">25</xref>
] in a discretized space of mutual orientations of two proteins. On the other hand, the structural clustering aids in identifying and ranking likely docked protein poses.
<disp-formula id="EEq1">
<label>(1)</label>
<mml:math id="M1">
<mml:mtable style="T1">
<mml:mtr>
<mml:mtd>
<mml:mi>E</mml:mi>
<mml:mfenced separators="" open="(" close=")">
<mml:mrow>
<mml:mspace height="7.08pt" depth="2.59pt"></mml:mspace>
<mml:mi>α</mml:mi>
<mml:mo>,</mml:mo>
<mml:mi>β</mml:mi>
<mml:mo>,</mml:mo>
<mml:mi>γ</mml:mi>
<mml:mspace height="7.08pt" depth="2.59pt"></mml:mspace>
</mml:mrow>
</mml:mfenced>
<mml:mo>=</mml:mo>
<mml:mrow>
<mml:munder>
<mml:mstyle displaystyle="true">
<mml:mo stretchy="false"></mml:mo>
</mml:mstyle>
<mml:mrow>
<mml:mi>p</mml:mi>
</mml:mrow>
</mml:munder>
<mml:mrow>
<mml:mi></mml:mi>
<mml:mrow>
<mml:munder>
<mml:mstyle displaystyle="true">
<mml:mo stretchy="false"></mml:mo>
</mml:mstyle>
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mo>,</mml:mo>
<mml:mi>j</mml:mi>
<mml:mo>,</mml:mo>
<mml:mi>k</mml:mi>
</mml:mrow>
</mml:munder>
<mml:mrow>
<mml:mfenced separators="|">
<mml:mrow>
<mml:mspace height="8.07999pt" depth="4.15698pt"></mml:mspace>
<mml:msub>
<mml:mrow>
<mml:mi>R</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>p</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mfenced separators="|">
<mml:mrow>
<mml:mspace height="7.08pt" depth="2.59pt"></mml:mspace>
<mml:mi>i</mml:mi>
<mml:mo>,</mml:mo>
<mml:mi>j</mml:mi>
<mml:mo>,</mml:mo>
<mml:mi>k</mml:mi>
<mml:mspace height="7.08pt" depth="2.59pt"></mml:mspace>
</mml:mrow>
</mml:mfenced>
<mml:msub>
<mml:mrow>
<mml:mi>L</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>p</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mfenced separators="|">
<mml:mrow>
<mml:mspace height="7.08pt" depth="2.59pt"></mml:mspace>
<mml:mi>i</mml:mi>
<mml:mo>+</mml:mo>
<mml:mi>α</mml:mi>
<mml:mo>,</mml:mo>
<mml:mi>j</mml:mi>
<mml:mo>+</mml:mo>
<mml:mi>β</mml:mi>
<mml:mo>,</mml:mo>
<mml:mi>k</mml:mi>
<mml:mo>+</mml:mo>
<mml:mi>γ</mml:mi>
<mml:mspace height="7.08pt" depth="2.59pt"></mml:mspace>
</mml:mrow>
</mml:mfenced>
<mml:mspace height="8.07999pt" depth="4.15698pt"></mml:mspace>
</mml:mrow>
</mml:mfenced>
</mml:mrow>
</mml:mrow>
</mml:mrow>
</mml:mrow>
</mml:mtd>
</mml:mtr>
</mml:mtable>
</mml:math>
</disp-formula>
For peptide-protein docking, the AMPs were set as ligands and docked with receptor 5X59. The number of ligand rotation to probe was set for 10,000 rotations and, for each dock, five poses were retrieved. This was done in order to find large clusters of structures below a certain energy value. The shortlisted AMPs with the best Piper cluster size than experimentally validated peptides against MERS-CoV are considered as putative anti-MERS-CoV AMPs. In addition, we have used ClusPro 2.0 server [
<xref rid="B27" ref-type="bibr">26</xref>
] in determining protein-protein interaction. Briefly, ClusPro, rotates the ligand with 70,000 rotations and, for each rotation, it translates the ligand in
<italic>x</italic>
,
<italic>y</italic>
, and
<italic>z</italic>
axis relative to the receptor on a grid. The ClusPro 2.0 server is based on Piper, but the method is extended to be used with pairwise interaction potentials [
<xref rid="B27" ref-type="bibr">26</xref>
].</p>
</sec>
<sec id="sec2.6">
<title>2.6. Binding Mode of Docked Complexes</title>
<p>The docked complex structure output format was submitted into the Protein Interactions Calculator (PIC) webserver (
<ext-link ext-link-type="uri" xlink:href="http://pic.mbu.iisc.ernet.in/">http://pic.mbu.iisc.ernet.in/</ext-link>
) in order to map the interaction of the resulting docked complex [
<xref rid="B28" ref-type="bibr">27</xref>
]. The parameters such as number of hydrogen bonds, number of hydrophobic residues, and number of aromatic and ionic interactions were considered in interpreting the strength of the interaction.</p>
</sec>
</sec>
<sec id="sec3">
<title>3. Results</title>
<sec id="sec3.1">
<title>3.1. Peptide Modelling Using I-TASSER and Validation</title>
<p>As we theorize that the spike protein of MERS-CoV represents the key receptor for our analysis, we focus on developing a theoretical model for the selected AMPs using I-TASSER server and its evaluation using Ramachandran plot. The Ramachandran plots of the theoretical models were developed and compared using a server, namely, Rampage. Out of the 37 models developed, most of the models had good quality score and backbone conformation which are considered as reliable. Supplementary
<xref ref-type="supplementary-material" rid="supplementary-material-1">Table 1</xref>
represents the number of residues in the favored region, allowed region, and outlier region in 13 models predicted.</p>
</sec>
<sec id="sec3.2">
<title>3.2. Filtering of AMPs Based on Database Screening Criteria</title>
<p>The filtering process using the criteria mentioned in
<xref ref-type="sec" rid="sec2.2">Section 2.2</xref>
resulted in 37 shortlisted AMPs as shown in
<xref rid="tab1" ref-type="table">Table 1</xref>
, where majority of the AMPs belong to the defensin family from different species.</p>
</sec>
<sec id="sec3.3">
<title>3.3. Protein Preparation, Docking, and Evaluation of Top Complexes</title>
<p>The PrepWizard prepared the structures by automatically adding missing hydrogen atoms and correcting bond order assignments, charge states, and orientation of various groups and performed restrained minimizations which allow hydrogen atoms to be freely minimized.</p>
<p>Further, AMP-MERS docking (docking of antimicrobial peptides with 5X59) was performed by using Piper algorithm and the pose with the best fit was selected for each peptide-protein complex based on cluster size. The resulting structures were grouped into clusters and ranked according to cluster size values from the largest to the smallest. Top ranked peptide and protein complex details are presented in Tables
<xref rid="tab2" ref-type="table">2</xref>
,
<xref rid="tab3" ref-type="table">3</xref>
, and
<xref rid="tab4" ref-type="table">4</xref>
.</p>
<p>The results indicate that, out of 37 AMPs, 8 AMPs had a cluster size greater than 200 which is an indication of the binding of the peptides to MERS-CoV spike protein as shown in
<xref rid="tab2" ref-type="table">Table 2</xref>
. These AMPs are derived from various sources such as fungus, plants, and fish. In addition, it was found that the seven AMPs had higher cluster size value than the positive control (HR2P: cluster value of 208), but lower cluster size value than the positive control (P9: cluster value of 328), where HR2P and P9 have been experimentally demonstrated to possess potent anti-MERS-CoV activity [
<xref rid="B10" ref-type="bibr">10</xref>
,
<xref rid="B13" ref-type="bibr">13</xref>
]. In particular, we considered a cutoff value of 208. The positive control P9 was the best and had a cluster size value of 328 as shown in
<xref rid="tab2" ref-type="table">Table 2</xref>
. Peptide AP00225 showed a very strong binding affinity score with a cluster size (binding affinity score) of 285 compared to all other putative peptides. Other top ranked putative AMPs include AP00180, AP00549, AP00744, AP00729, AP00764, and AP00223 with cluster size values of 277, 270, 253, 247, 223, and 219, respectively. These confirm the probability of these five peptides to be putative anti-MERS-CoV peptides. For further analyses, we selected four peptides, namely, AP00225, AP00180, AP00549, and AP00744, belonging to family of defensin. During validation of these four putative defensin peptides, AP00225 Ramachandran plot (Psi-Phi) pairs had 79.3% of residues in most favored regions, 6.9% core residues in allowed regions, and 13.8% residues in outlier regions. AP00180 Ramachandran plot (Psi-Phi) pairs had 84.3% of residues in most favored regions, 10.0% core residues in allowed regions, and 6.7% residues in outlier regions. AP00549 Ramachandran plot (Psi-Phi) pairs had 81.6% of residues in most favored regions, 7.9% core residues in allowed regions, and 10.5% residues in outlier regions. AP00744 Ramachandran plot (Psi-Phi) pairs had 87.2% of residues in most favored regions, 7.7% core residues in allowed regions, and 5.1% residues in outlier regions (Supplementary
<xref ref-type="supplementary-material" rid="supplementary-material-1">Table 1</xref>
).</p>
<p>In addition, the results show that 20 AMPs and 12 AMPs were ranked higher than P9 and HR2P, respectively, shown in
<xref rid="tab3" ref-type="table">Table 3</xref>
. However, the ranking based on energy scores shows that 11 AMPs and 17 AMPs were ranked higher than HR2P and P9 as tabulated in
<xref rid="tab4" ref-type="table">Table 4</xref>
. We have used the results given by Piper (
<xref rid="tab2" ref-type="table">Table 2</xref>
) and have used cluster size because, in ClusPro 2.0 documentation, they mentioned that the best way to rank models is by cluster size and not by energy scores.</p>
</sec>
<sec id="sec3.4">
<title>3.4. Evaluation of Peptide-Protein Complex and Its Interactions Analysis</title>
<p>Once we observed that the AMPs could potentially bind to spike protein, the next step was to know the binding mode. In particular, we have used Protein Interactions Calculator (PIC) to recognize the interactions within the bound complexes. In structural bioinformatics, predicting protein-protein interactions which stabilize the tertiary and quaternary structures is an important task. For the top best four AMPs-MERS-CoV complexes with the best cluster size were subjected to PIC server and the binding mode (interactions) of each peptide are given in
<xref rid="tab5" ref-type="table">Table 5</xref>
. PIC identified interactions such as hydrophobic residues interactions, ionic interactions, hydrogen bonds, aromatic-aromatic interactions and aromatic–sulphur interactions within the peptide-protein complexes. According to the PIC server results as shown in
<xref rid="tab5" ref-type="table">Table 5</xref>
, AP00225 forms hydrophobic interactions with Val790, Tyr1142, Phe764, Leu731, Ile768, Pro1143, Pro767, and Val770; hydrogen bond interactions with Pro730; and ionic interactions with Gln792 and Ser734 as shown in
<xref rid="tab5" ref-type="table">Table 5</xref>
. AP00180 forms hydrophobic interactions with Ala1007, Val790, Leu731, Pro767, Ile768, and Tyr1142; hydrogen bond interactions with Gly789 and Pro730; and ionic interactions with Glu1017 and Asp740 as shown in
<xref rid="tab5" ref-type="table">Table 5</xref>
. AP00549 forms hydrophobic interactions with Ala1049, Pro59, Tyr64, Tyr928, Val929, Ala930, Ala920, Ile69, and Tyr71; hydrogen bond interactions with Ala1049 and Gly61; and ionic interactions with Arg1057, Arg62, and Asp922 as shown in
<xref rid="tab5" ref-type="table">Table 5</xref>
. AP00744 forms hydrophobic interactions with Leu1200, Pro767, Val1168, Ile1180, Leu780, Phe778, Pro1143, Val983, and Ile985; hydrogen bond interactions with Ala1206; and ionic interactions with Asp771 as shown in
<xref rid="tab5" ref-type="table">Table 5</xref>
. These residues may be considered as critical residues. AP00549 have overlapping residues with experimentally validated anti-MERS-CoV peptide P9, as highlighted in bold (
<xref rid="tab5" ref-type="table">Table 5</xref>
) and
<xref ref-type="fig" rid="fig4">Figure 4(a)</xref>
, while AP00225, AP00180, and AP00744 have common residues with HR2P as highlighted in italic (
<xref rid="tab5" ref-type="table">Table 5</xref>
) and
<xref ref-type="fig" rid="fig4">Figure 4(b)</xref>
. The binding of the peptide AP00549 has the same binding region as P9; AP00225, AP00180, and AP00744 have the same binding region as shown in Figures
<xref ref-type="fig" rid="fig5">5</xref>
and
<xref ref-type="fig" rid="fig6">6</xref>
. The binding of the peptides to the receptor spike and ligands includes AP00179, AP00260, AP00340, AP02733, P9, and HR2P; see
<xref ref-type="fig" rid="fig7">Figure 7</xref>
.</p>
</sec>
</sec>
<sec id="sec4">
<title>4. Discussion</title>
<p>Computational and structural biology methods have accelerated the discovery of novel drugs used to treat viral diseases [
<xref rid="B22" ref-type="bibr">21</xref>
,
<xref rid="B29" ref-type="bibr">28</xref>
]. We followed the structural biology aspects which focus on the availability and retrieval of an S protein receptor structure from PDB which was resolved using cryo-EM structure method. We have applied the docking technique not only to predict the binding mode of AMPs to spike protein but also to study the peptide-protein interactions. The receptor used is the prefusion state of the S protein, because it is a type I fusion protein, which undergoes a nonreversible conformational change that results in the postfusion form of the protein. In postfusion, the protein has refolded and the membranes have undergone fusion, or the spike protein has been spent. Therefore, it is reasonable to target the S protein in the prefusion conformation as peptides bind to the prefusion conformation. This can potentially prevent protein refolding and entry of the virus into the host cell, as it has been shown for diverse Type I proteins like HIV gp41 and paramyxovirus F proteins. Once the 6HB fusion core is formed, it will not accommodate any peptide within it and any peptide related therapeutic intervention would have to take place either at the prefusion stage, or at the intermediate hairpin stages [
<xref rid="B30" ref-type="bibr">29</xref>
].</p>
<p>The model refinement has improved its quality of the theoretical models developed for selected AMPs. Further, Ramachandran plots from Rampage server determined the stereochemical quality of best scored four defensin models. The aim of model refinement using Rampage Ramachandran plot was to determine whether the theoretical model acquired the quality and side chain configuration [
<xref rid="B31" ref-type="bibr">30</xref>
]. This program helps researchers to evaluate the accuracy of the predicted models [
<xref rid="B32" ref-type="bibr">31</xref>
].</p>
<p>Based on filtering of potential peptides acting against S protein, we employed interfacial activity based on WWIHS and iHMM scales. It has been hypothesized that positive interfacial hydrophobicity of a peptide increases the chances for membrane binding, that is, interacting with the viral hydrophobic surfaces and hence inhibiting fusion and entry of the virus [
<xref rid="B8" ref-type="bibr">8</xref>
]. Therefore, since the best five putative AMPs have higher values of interfacial hydrophobicity, we can infer that their mechanism of action is by inhibiting fusion and hence blocking entry of the virus into the host cell. The mechanism of action for the positive controls, namely, P9 [
<xref rid="B13" ref-type="bibr">13</xref>
] and HR2P [
<xref rid="B10" ref-type="bibr">10</xref>
] has been experimentally validated to inhibit viral fusion. Nevertheless, these five putative anti-MERS-CoV AMPs have same values as positive control peptides in terms of WWHIS and iHMM values and also on an average sequence length.</p>
<p>In order to characterize binding properties of AMPs with the spike protein S2, we used Piper, which involves peptide-protein interaction, in which it determines the best-fit orientation of ligand with receptor [
<xref rid="B26" ref-type="bibr">25</xref>
]. The binding affinity is determined by Piper cluster size and not scores or probability. The docking score together with probability can give confidence on the binding and which are lacking in our study since we used cluster size as criteria for ranking best poses. However, it has been hypothesized that the best way to rank docking is by cluster size, which can be useful in informing experimental approaches [
<xref rid="B26" ref-type="bibr">25</xref>
]. In this study, we selected five peptides which had higher cluster value than experimentally validated anti-MERS-CoV peptide, P9 [
<xref rid="B13" ref-type="bibr">13</xref>
]. Nevertheless, these peptides have good binding with MERS-CoV spike protein (S2) in terms of hydrogen bonds and hydrophobic interactions.</p>
<p>Our results may indicate that AP00225 (Rat defensin), AP00180 (Human alpha defensin), AP00549 (Plectasin), AP00744 (Chicken beta defensin), AP00729 (Cyclotides), AP00764 (Dermaseptin-S9), and AP00223 (Rat alpha defensin) were the best docked peptides with high cluster size values, which is an indicative of strong binding affinity. Most of these putative peptides are defensin, similar to P9, which is a mouse beta defensin. On comparison of P9 and AP00549, we found that five residues, namely, Tyr64, Ile69, Ala920, Tyr928, and Val929, were common in the binding. On the same breath, HR2P have nine common residues (Leu780, Pro767, Tyr1142, Leu729, Leu731, Val1168, Val770, Pro1143, Val790) with AP00225, AP00180, and AP00744. These residues may be considered as key or critical and may play a major role in the protein protein-interaction [
<xref rid="B33" ref-type="bibr">32</xref>
] and might inhibit the formation of the six-helical bundle (6-HB). Further studies may help to understand the role of these residues in drug binding mechanism.</p>
<p>Interestingly, these seven best peptides have been experimentally validated to have activity against various microorganisms. For instance, AP00225 and AP00223 are rat defensin and this peptide has activity against
<italic> Escherichia coli</italic>
ML-35,
<italic> Acinetobacter calcoaceticus</italic>
HON-1,
<italic> Staphylococcus aureus</italic>
502A, and
<italic> Candida albicans</italic>
820 in vitro [
<xref rid="B34" ref-type="bibr">33</xref>
]. AP00180 is a Human alpha defensin and it inhibits nonenveloped BK virus infection [
<xref rid="B35" ref-type="bibr">34</xref>
]. AP00549 is fungal plectasin which belongs to the family of defensins and primary source is
<italic> Pseudoplectania nigrella</italic>
and this peptide is an effective antiviral against dengue virus [
<xref rid="B32" ref-type="bibr">31</xref>
]. AP00744 (Chicken avian beta defensin) has antimicrobial activity against
<italic> Salmonella serovars</italic>
[
<xref rid="B36" ref-type="bibr">35</xref>
]. AP00729 is kalata B1 which is generally known as plant cyclotides acting as a stable component for drug discovery [
<xref rid="B37" ref-type="bibr">36</xref>
]. Cyclotides possess many biological activities such as anti-HIV, antimicrobial, and hemolytic. Some cyclotides show cell penetrating properties. AP00764 (dermaseptin) induces the migration of immune cells. Dermaseptin shows inhibition against the microorganisms and cancer cell lines [
<xref rid="B38" ref-type="bibr">37</xref>
]. This peptide has innate immunity properties [
<xref rid="B39" ref-type="bibr">38</xref>
]; however, it has not been shown to have antiviral activity against MERS-CoV. This could suggest that mechanism of action of this and other peptides could be varied.</p>
<p>Finally, lack of wet-lab validation is a drawback in our research and we expect computational biology analysis and its integration with wet-lab data can be productive in the determination of potential anti-MERS-CoV components.</p>
</sec>
<sec id="sec5">
<title>5. Conclusion</title>
<p>In the present work, we have used a docking and scoring algorithm for combined peptide-protein binding mode search using a list of AMPs. We named the method as AMP-MERS docking as it is a novel application of AMPs to MERS-CoV spike protein. Our computational study confirms that four AMPs were able to bind clearly to the specific binding site of S protein (5X59). From our results, it may confirm that these AMPs may be suitable for inhibiting MERS-CoV virus entry into the host cell by binding and preventing fusion. However, the results are preliminary and certainly need experimental confirmation using in vitro and in vivo experiments essential to validate them. Special assays studies are needed to confirm the mechanism of action. Considering all the structural aspects and binding affinity studies of the four AMPs may possibly be the first choice as an anti-MERS-CoV AMPs which could be exploited to design potential inhibitors for treating MERS. We conclude that molecular docking studies aid in deciphering the antiviral activity of molecules by determining the inhibition score and binding energy.</p>
</sec>
</body>
<back>
<ack>
<title>Acknowledgments</title>
<p>The authors acknowledge the contribution of Dr. Mohamed Hussein, who assisted in installing Schrödinger software. This research was funded by King Abdullah International Medical Research Center grant number RC16/089.</p>
</ack>
<sec sec-type="data-availability">
<title>Data Availability</title>
<p>The data used to support the findings of this study are available from the corresponding author upon request.</p>
</sec>
<sec>
<title>Conflicts of Interest</title>
<p>The authors declare no conflicts of interest.</p>
</sec>
<sec sec-type="supplementary-material" id="supplementary-material-1">
<title>Supplementary Materials</title>
<supplementary-material content-type="local-data" id="supp-1">
<label>Supplementary Materials</label>
<caption>
<p>Supplementary Table 1 shows the model evaluation of modelled AMPs using Rampage Server.</p>
</caption>
<media xlink:href="6815105.f1.pdf">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
</sec>
<ref-list>
<ref id="B1">
<label>1</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Milne-Price</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Miazgowicz</surname>
<given-names>K. L.</given-names>
</name>
<name>
<surname>Munster</surname>
<given-names>V. J.</given-names>
</name>
</person-group>
<article-title>The emergence of the Middle East Respiratory Syndrome coronavirus</article-title>
<source>
<italic toggle="yes">Pathogens and Disease</italic>
</source>
<year>2014</year>
<volume>71</volume>
<issue>2</issue>
<fpage>121</fpage>
<lpage>136</lpage>
<pub-id pub-id-type="doi">10.1111/2049-632X.12166</pub-id>
<pub-id pub-id-type="pmid">24585737</pub-id>
</element-citation>
</ref>
<ref id="B2">
<label>2</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mohd</surname>
<given-names>H. A.</given-names>
</name>
<name>
<surname>Al-Tawfiq</surname>
<given-names>J. A.</given-names>
</name>
<name>
<surname>Memish</surname>
<given-names>Z. A.</given-names>
</name>
</person-group>
<article-title>Middle east respiratory syndrome coronavirus (MERS-CoV) origin and animal reservoir Susanna Lau</article-title>
<source>
<italic toggle="yes">Virology Journal</italic>
</source>
<year>2016</year>
<volume>13</volume>
<issue>1, article 87</issue>
<pub-id pub-id-type="other">2-s2.0-84975856260</pub-id>
</element-citation>
</ref>
<ref id="B3">
<label>3</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Melnik</surname>
<given-names>L. I.</given-names>
</name>
<name>
<surname>Garry</surname>
<given-names>R. F.</given-names>
</name>
<name>
<surname>Morris</surname>
<given-names>C. A.</given-names>
</name>
</person-group>
<article-title>Peptide inhibition of human cytomegalovirus infection</article-title>
<source>
<italic toggle="yes">Virology Journal</italic>
</source>
<year>2011</year>
<volume>8, article 76</volume>
<pub-id pub-id-type="doi">10.1186/1743-422X-8-76</pub-id>
</element-citation>
</ref>
<ref id="B4">
<label>4</label>
<element-citation publication-type="other">
<article-title>Safety study of flufirvitide-3 nasal spray in healthy subjects</article-title>
<comment>
<ext-link ext-link-type="uri" xlink:href="https://clinicaltrials.gov/ct2/show/NCT01313962?term=Flufirvitide">https://clinicaltrials.gov/ct2/show/NCT01313962?term=Flufirvitide</ext-link>
</comment>
</element-citation>
</ref>
<ref id="B5">
<label>5</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Koehler</surname>
<given-names>J. W.</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>J. M.</given-names>
</name>
<name>
<surname>Ripoll</surname>
<given-names>D. R.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A fusion-inhibiting peptide against rift valley fever virus inhibits multiple, diverse viruses</article-title>
<source>
<italic toggle="yes">PLOS Neglected Tropical Diseases</italic>
</source>
<year>2013</year>
<volume>7</volume>
<issue>9</issue>
<fpage>1</fpage>
<lpage>11</lpage>
<pub-id pub-id-type="other">2-s2.0-84884679512</pub-id>
</element-citation>
</ref>
<ref id="B6">
<label>6</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hrobowski</surname>
<given-names>Y. M.</given-names>
</name>
<name>
<surname>Garry</surname>
<given-names>R. F.</given-names>
</name>
<name>
<surname>Michael</surname>
<given-names>S. F.</given-names>
</name>
</person-group>
<article-title>Peptide inhibitors of dengue virus and West Nile virus infectivity</article-title>
<source>
<italic toggle="yes">Virology Journal</italic>
</source>
<year>2005</year>
<volume>2</volume>
<issue>1, article 49</issue>
<pub-id pub-id-type="doi">10.1186/1743-422X-2-49</pub-id>
<pub-id pub-id-type="other">2-s2.0-23744446349</pub-id>
</element-citation>
</ref>
<ref id="B7">
<label>7</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sainz</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Mossel</surname>
<given-names>E. C.</given-names>
</name>
<name>
<surname>Gallaher</surname>
<given-names>W. R.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Inhibition of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) infectivity by peptides analogous to the viral spike protein</article-title>
<source>
<italic toggle="yes">Virus Research</italic>
</source>
<year>2006</year>
<volume>120</volume>
<issue>1-2</issue>
<fpage>146</fpage>
<lpage>155</lpage>
<pub-id pub-id-type="doi">10.1016/j.virusres.2006.03.001</pub-id>
<pub-id pub-id-type="pmid">16616792</pub-id>
</element-citation>
</ref>
<ref id="B8">
<label>8</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Badani</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Garry</surname>
<given-names>R. F.</given-names>
</name>
<name>
<surname>Wimley</surname>
<given-names>W. C.</given-names>
</name>
</person-group>
<article-title>Peptide entry inhibitors of enveloped viruses: The importance of interfacial hydrophobicity</article-title>
<source>
<italic toggle="yes">Biochimica et Biophysica Acta (BBA) - Biomembranes</italic>
</source>
<year>2014</year>
<volume>1838</volume>
<issue>9</issue>
<fpage>2180</fpage>
<lpage>2197</lpage>
<pub-id pub-id-type="doi">10.1016/j.bbamem.2014.04.015</pub-id>
<pub-id pub-id-type="other">2-s2.0-84903717697</pub-id>
<pub-id pub-id-type="pmid">24780375</pub-id>
</element-citation>
</ref>
<ref id="B9">
<label>9</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chia</surname>
<given-names>T.-J.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>Y.-C.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>J.-Y.</given-names>
</name>
<name>
<surname>Chi</surname>
<given-names>S.-C.</given-names>
</name>
</person-group>
<article-title>Antimicrobial peptides (AMP) with antiviral activity against fish nodavirus</article-title>
<source>
<italic toggle="yes">Fish and Shellfish Immunology</italic>
</source>
<year>2010</year>
<volume>28</volume>
<issue>3</issue>
<fpage>434</fpage>
<lpage>439</lpage>
<pub-id pub-id-type="doi">10.1016/j.fsi.2009.11.020</pub-id>
<pub-id pub-id-type="other">2-s2.0-76749160808</pub-id>
<pub-id pub-id-type="pmid">20004246</pub-id>
</element-citation>
</ref>
<ref id="B10">
<label>10</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lu</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>Y.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Structure-based discovery of Middle East respiratory syndrome coronavirus fusion inhibitor</article-title>
<source>
<italic toggle="yes">Nature Communications</italic>
</source>
<year>2014</year>
<volume>5, article 3067</volume>
<pub-id pub-id-type="doi">10.1038/ncomms4067</pub-id>
</element-citation>
</ref>
<ref id="B11">
<label>11</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Channappanavar</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Xia</surname>
<given-names>S.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Protective effect of intranasal regimens containing peptidic middle east respiratory syndrome coronavirus fusion inhibitor against MERS-CoV infection</article-title>
<source>
<italic toggle="yes">The Journal of Infectious Diseases</italic>
</source>
<year>2015</year>
<volume>212</volume>
<issue>12</issue>
<fpage>1894</fpage>
<lpage>1903</lpage>
<pub-id pub-id-type="doi">10.1093/infdis/jiv325</pub-id>
<pub-id pub-id-type="pmid">26164863</pub-id>
</element-citation>
</ref>
<ref id="B12">
<label>12</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gao</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Qi</surname>
<given-names>J.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Structure of the fusion core and inhibition of fusion by a heptad repeat peptide derived from the s protein of middle east respiratory syndrome coronavirus</article-title>
<source>
<italic toggle="yes">Journal of Virology</italic>
</source>
<year>2013</year>
<volume>87</volume>
<issue>24</issue>
<fpage>13134</fpage>
<lpage>13140</lpage>
<pub-id pub-id-type="doi">10.1128/JVI.02433-13</pub-id>
<pub-id pub-id-type="pmid">24067982</pub-id>
</element-citation>
</ref>
<ref id="B13">
<label>13</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhao</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>K.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A novel peptide with potent and broad-spectrum antiviral activities against multiple respiratory viruses</article-title>
<source>
<italic toggle="yes">Scientific Reports</italic>
</source>
<year>2016</year>
<volume>6, article 22008</volume>
<pub-id pub-id-type="other">2-s2.0-84959422192</pub-id>
</element-citation>
</ref>
<ref id="B14">
<label>14</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Du</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>Y.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>MERS-CoV spike protein: a key target for antivirals</article-title>
<source>
<italic toggle="yes">Expert Opinion on Therapeutic Targets</italic>
</source>
<year>2017</year>
<volume>21</volume>
<issue>2</issue>
<fpage>131</fpage>
<lpage>143</lpage>
<pub-id pub-id-type="doi">10.1080/14728222.2017.1271415</pub-id>
<pub-id pub-id-type="pmid">27936982</pub-id>
</element-citation>
</ref>
<ref id="B15">
<label>15</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Z.</given-names>
</name>
</person-group>
<article-title>APD3: the antimicrobial peptide database as a tool for research and education</article-title>
<source>
<italic toggle="yes">Nucleic Acids Research</italic>
</source>
<year>2016</year>
<volume>44</volume>
<issue>D1</issue>
<fpage>D1087</fpage>
<lpage>D1093</lpage>
<pub-id pub-id-type="doi">10.1093/nar/gkv1278</pub-id>
<pub-id pub-id-type="pmid">26602694</pub-id>
</element-citation>
</ref>
<ref id="B16">
<label>16</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ciemny</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kurcinski</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kamel</surname>
<given-names>K.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Protein–peptide docking: opportunities and challenges</article-title>
<source>
<italic toggle="yes">Drug Discovery Therapy</italic>
</source>
<year>2018</year>
<volume>23</volume>
<issue>8</issue>
<fpage>1530</fpage>
<lpage>1537</lpage>
<pub-id pub-id-type="doi">10.1016/j.drudis.2018.05.006</pub-id>
</element-citation>
</ref>
<ref id="B17">
<label>17</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Hoojghan</surname>
<given-names>A. V.</given-names>
</name>
</person-group>
<source>
<italic toggle="yes">Application of graphical models in protein-protein interactions and dynamics [Ph.D. thesis]</italic>
</source>
<publisher-name>University of Massachusetts Boston</publisher-name>
</element-citation>
</ref>
<ref id="B18">
<label>18</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhao</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Zeng</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>X.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Complexcontact: a web server for inter-protein contact prediction using deep learning</article-title>
<source>
<italic toggle="yes">Nucleic Acids Research</italic>
</source>
<year>2018</year>
<volume>46</volume>
<issue>W1</issue>
<fpage>W432</fpage>
<lpage>W437</lpage>
<pub-id pub-id-type="pmid">29790960</pub-id>
</element-citation>
</ref>
<ref id="B19">
<label>19</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Valencia</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Ezkurdia</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Bartoli</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Tress</surname>
<given-names>M. L.</given-names>
</name>
<name>
<surname>Fariselli</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Casadio</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Progress and challenges in predicting proteinprotein interaction sites</article-title>
<source>
<italic toggle="yes">Briefings in Bioinformatics</italic>
</source>
<year>2009</year>
<volume>10</volume>
<issue>3</issue>
<fpage>233</fpage>
<lpage>246</lpage>
<pub-id pub-id-type="pmid">19346321</pub-id>
</element-citation>
</ref>
<ref id="B20">
<label>20</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Berman</surname>
<given-names>H. M.</given-names>
</name>
<name>
<surname>Westbrook</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Feng</surname>
<given-names>Z.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The protein data bank</article-title>
<source>
<italic toggle="yes">Nucleic Acids Research</italic>
</source>
<year>2000</year>
<volume>28</volume>
<issue>1</issue>
<fpage>235</fpage>
<lpage>242</lpage>
<pub-id pub-id-type="doi">10.1093/nar/28.1.235</pub-id>
<pub-id pub-id-type="other">2-s2.0-0033954256</pub-id>
<pub-id pub-id-type="pmid">10592235</pub-id>
</element-citation>
</ref>
<ref id="B22">
<label>21</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Natural antimicrobial peptides as promising anti-hiv candidates</article-title>
<source>
<italic toggle="yes">Current Topics in Peptide and Protein Research</italic>
</source>
<year>2012</year>
<volume>13</volume>
<fpage>93</fpage>
<lpage>110</lpage>
<pub-id pub-id-type="pmid">26834391</pub-id>
</element-citation>
</ref>
<ref id="B23">
<label>22</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Roy</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Kucukural</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>I-TASSER: a unified platform for automated protein structure and function prediction</article-title>
<source>
<italic toggle="yes">Nature Protocols</italic>
</source>
<year>2010</year>
<volume>5</volume>
<issue>4</issue>
<fpage>725</fpage>
<lpage>738</lpage>
<pub-id pub-id-type="doi">10.1038/nprot.2010.5</pub-id>
<pub-id pub-id-type="other">2-s2.0-77954065271</pub-id>
<pub-id pub-id-type="pmid">20360767</pub-id>
</element-citation>
</ref>
<ref id="B24">
<label>23</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lovell</surname>
<given-names>S. C.</given-names>
</name>
<name>
<surname>Davis</surname>
<given-names>I. W.</given-names>
</name>
<name>
<surname>Arendall</surname>
<given-names>W. B.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Structure validation by c
<italic>α</italic>
geometry:
<italic>ϕ</italic>
,
<italic>ψ</italic>
and c
<italic>β</italic>
deviation</article-title>
<source>
<italic toggle="yes">Proteins: Structure, Function, and Bioinformatics</italic>
</source>
<year>2003</year>
<volume>50</volume>
<issue>3</issue>
<fpage>437</fpage>
<lpage>450</lpage>
<pub-id pub-id-type="doi">10.1002/prot.10286</pub-id>
<pub-id pub-id-type="other">2-s2.0-0037441653</pub-id>
</element-citation>
</ref>
<ref id="B25">
<label>24</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chuang</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Kozakov</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Brenke</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Comeau</surname>
<given-names>S. R.</given-names>
</name>
<name>
<surname>Vajda</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>DARS (decoys as the reference state) potentials for protein-protein docking</article-title>
<source>
<italic toggle="yes">Biophysical Journal</italic>
</source>
<year>2008</year>
<volume>95</volume>
<issue>9</issue>
<fpage>4217</fpage>
<lpage>4227</lpage>
<pub-id pub-id-type="doi">10.1529/biophysj.108.135814</pub-id>
<pub-id pub-id-type="pmid">18676649</pub-id>
</element-citation>
</ref>
<ref id="B26">
<label>25</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kozakov</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Brenke</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Comeau</surname>
<given-names>S. R.</given-names>
</name>
<name>
<surname>Vajda</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>PIPER: an FFT-based protein docking program with pairwise potentials</article-title>
<source>
<italic toggle="yes">Proteins: Structure, Function, and Genetics</italic>
</source>
<year>2006</year>
<volume>65</volume>
<issue>2</issue>
<fpage>392</fpage>
<lpage>406</lpage>
<pub-id pub-id-type="doi">10.1002/prot.21117</pub-id>
<pub-id pub-id-type="other">2-s2.0-33749020839</pub-id>
</element-citation>
</ref>
<ref id="B27">
<label>26</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kozakov</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Hall</surname>
<given-names>D. R.</given-names>
</name>
<name>
<surname>Xia</surname>
<given-names>B.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The ClusPro web server for protein–protein docking</article-title>
<source>
<italic toggle="yes">Nature Protocols</italic>
</source>
<year>2017</year>
<volume>12</volume>
<issue>2</issue>
<fpage>255</fpage>
<lpage>278</lpage>
<pub-id pub-id-type="doi">10.1038/nprot.2016.169</pub-id>
<pub-id pub-id-type="pmid">28079879</pub-id>
</element-citation>
</ref>
<ref id="B28">
<label>27</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tina</surname>
<given-names>K. G.</given-names>
</name>
<name>
<surname>Bhadra</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Srinivasan</surname>
<given-names>N.</given-names>
</name>
</person-group>
<article-title>PIC: protein interactions calculator</article-title>
<source>
<italic toggle="yes">Nucleic Acids Research</italic>
</source>
<year>2007</year>
<volume>35</volume>
<issue>2</issue>
<fpage>W473</fpage>
<lpage>W476</lpage>
<pub-id pub-id-type="doi">10.1093/nar/gkm423</pub-id>
<pub-id pub-id-type="other">2-s2.0-84855229636</pub-id>
<pub-id pub-id-type="pmid">17584791</pub-id>
</element-citation>
</ref>
<ref id="B29">
<label>28</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Adedeji</surname>
<given-names>A. O.</given-names>
</name>
<name>
<surname>Singh</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Kassim</surname>
<given-names>A.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Evaluation of SSYA10-001 as a replication inhibitor of severe acute respiratory syndrome, mouse hepatitis, and middle east respiratory syndrome coronaviruses</article-title>
<source>
<italic toggle="yes">Antimicrobial Agents and Chemotherapy</italic>
</source>
<year>2014</year>
<volume>58</volume>
<issue>8</issue>
<fpage>4894</fpage>
<lpage>4898</lpage>
<pub-id pub-id-type="doi">10.1128/AAC.02994-14</pub-id>
<pub-id pub-id-type="pmid">24841268</pub-id>
</element-citation>
</ref>
<ref id="B30">
<label>29</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Teissier</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Penin</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Pécheur</surname>
<given-names>E.-I.</given-names>
</name>
</person-group>
<article-title>Targeting cell entry of enveloped viruses as an antiviral strategy</article-title>
<source>
<italic toggle="yes">Molecules</italic>
</source>
<year>2011</year>
<volume>16</volume>
<issue>1</issue>
<fpage>221</fpage>
<lpage>250</lpage>
<pub-id pub-id-type="doi">10.3390/molecules16010221</pub-id>
<pub-id pub-id-type="other">2-s2.0-79251528593</pub-id>
</element-citation>
</ref>
<ref id="B31">
<label>30</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ramachandran</surname>
<given-names>G. N.</given-names>
</name>
<name>
<surname>Ramakrishnan</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Sasisekharan</surname>
<given-names>V.</given-names>
</name>
</person-group>
<article-title>Stereochemistry of polypeptide chain configurations</article-title>
<source>
<italic toggle="yes">Journal of Molecular Biology</italic>
</source>
<year>1963</year>
<volume>7</volume>
<fpage>95</fpage>
<lpage>99</lpage>
<pub-id pub-id-type="doi">10.1016/s0022-2836(63)80023-6</pub-id>
<pub-id pub-id-type="other">2-s2.0-73649194755</pub-id>
<pub-id pub-id-type="pmid">13990617</pub-id>
</element-citation>
</ref>
<ref id="B32">
<label>31</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rothan</surname>
<given-names>H. A.</given-names>
</name>
<name>
<surname>Mohamed</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Suhaeb</surname>
<given-names>A. M.</given-names>
</name>
<name>
<surname>Rahman</surname>
<given-names>N. A.</given-names>
</name>
<name>
<surname>Yusof</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Antiviral cationic peptides as a strategy for innovation in global health therapeutics for dengue virus: high yield production of the biologically active recombinant plectasin peptide</article-title>
<source>
<italic toggle="yes">OMICS: A Journal of Integrative Biology</italic>
</source>
<year>2013</year>
<volume>17</volume>
<issue>11</issue>
<fpage>560</fpage>
<lpage>567</lpage>
<pub-id pub-id-type="doi">10.1089/omi.2013.0056</pub-id>
<pub-id pub-id-type="other">2-s2.0-84887028599</pub-id>
<pub-id pub-id-type="pmid">24044366</pub-id>
</element-citation>
</ref>
<ref id="B33">
<label>32</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Haspel</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Jagodzinski</surname>
<given-names>F.</given-names>
</name>
</person-group>
<source>
<italic toggle="yes">Methods for Detecting Critical Residues in Proteins</italic>
</source>
<year>2017</year>
<publisher-loc>New York, NY, USA</publisher-loc>
<publisher-name>Springer</publisher-name>
</element-citation>
</ref>
<ref id="B34">
<label>33</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Eisenhauer</surname>
<given-names>P. B.</given-names>
</name>
<name>
<surname>Harwig</surname>
<given-names>S. S. L.</given-names>
</name>
<name>
<surname>Szklarek</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Ganz</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Selsted</surname>
<given-names>M. E.</given-names>
</name>
<name>
<surname>Lehrer</surname>
<given-names>R. I.</given-names>
</name>
</person-group>
<article-title>Purification and antimicrobial properties of three defensins from rat neutrophils</article-title>
<source>
<italic toggle="yes">Infection and Immunity</italic>
</source>
<year>1989</year>
<volume>57</volume>
<issue>7</issue>
<fpage>2021</fpage>
<lpage>2027</lpage>
<pub-id pub-id-type="other">2-s2.0-0024319808</pub-id>
<pub-id pub-id-type="pmid">2543629</pub-id>
</element-citation>
</ref>
<ref id="B35">
<label>34</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dugan</surname>
<given-names>A. S.</given-names>
</name>
<name>
<surname>Maginnis</surname>
<given-names>M. S.</given-names>
</name>
<name>
<surname>Jordan</surname>
<given-names>J. A.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Human
<italic>α</italic>
-defensins inhibit BK virus infection by aggregating virions and blocking binding to host cells</article-title>
<source>
<italic toggle="yes">The Journal of Biological Chemistry</italic>
</source>
<year>2008</year>
<volume>283</volume>
<issue>45</issue>
<fpage>31125</fpage>
<lpage>31132</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.M805902200</pub-id>
<pub-id pub-id-type="other">2-s2.0-57649178354</pub-id>
<pub-id pub-id-type="pmid">18782756</pub-id>
</element-citation>
</ref>
<ref id="B36">
<label>35</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Milona</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Townes</surname>
<given-names>C. L.</given-names>
</name>
<name>
<surname>Bevan</surname>
<given-names>R. M.</given-names>
</name>
<name>
<surname>Hall</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>The chicken host peptides, gallinacins 4, 7, and 9 have antimicrobial activity against Salmonella serovars</article-title>
<source>
<italic toggle="yes">Biochemical and Biophysical Research Communications</italic>
</source>
<year>2007</year>
<volume>356</volume>
<issue>1</issue>
<fpage>169</fpage>
<lpage>174</lpage>
<pub-id pub-id-type="doi">10.1016/j.bbrc.2007.02.098</pub-id>
<pub-id pub-id-type="pmid">17346671</pub-id>
</element-citation>
</ref>
<ref id="B37">
<label>36</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gould</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Ji</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Aboye</surname>
<given-names>T. L.</given-names>
</name>
<name>
<surname>Camarero</surname>
<given-names>J. A.</given-names>
</name>
</person-group>
<article-title>Cyclotides, a novel ultrastable polypeptide scaffold for drug discovery</article-title>
<source>
<italic toggle="yes">Current Pharmaceutical Design</italic>
</source>
<year>2011</year>
<volume>17</volume>
<issue>38</issue>
<fpage>4294</fpage>
<lpage>4307</lpage>
<pub-id pub-id-type="doi">10.2174/138161211798999438</pub-id>
<pub-id pub-id-type="other">2-s2.0-84861322262</pub-id>
<pub-id pub-id-type="pmid">22204428</pub-id>
</element-citation>
</ref>
<ref id="B38">
<label>37</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shi</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Hou</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>L.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Two novel dermaseptin-like antimicrobial peptides with anticancer activities from the skin secretion of Pachymedusa dacnicolor</article-title>
<source>
<italic toggle="yes">Toxins</italic>
</source>
<year>2016</year>
<volume>8</volume>
<issue>5</issue>
<pub-id pub-id-type="other">2-s2.0-84968538263</pub-id>
</element-citation>
</ref>
<ref id="B39">
<label>38</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Iijima</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Tanimoto</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Emoto</surname>
<given-names>Y.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Purification and characterization of three isoforms of chrysophsin, a novel antimicrobial peptide in the gills of the red sea bream, Chrysophrys major</article-title>
<source>
<italic toggle="yes">European Journal of Biochemistry</italic>
</source>
<year>2003</year>
<volume>270</volume>
<issue>4</issue>
<fpage>675</fpage>
<lpage>686</lpage>
<pub-id pub-id-type="doi">10.1046/j.1432-1033.2003.03419.x</pub-id>
<pub-id pub-id-type="pmid">12581207</pub-id>
</element-citation>
</ref>
<ref id="B21">
<label>39</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mustafa</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Balkhy</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Gabere</surname>
<given-names>M. N.</given-names>
</name>
</person-group>
<article-title>Current treatment options and the role of peptides as potential therapeutic components for Middle East Respiratory Syndrome (MERS): a review</article-title>
<source>
<italic toggle="yes">Journal of Infection and Public Health</italic>
</source>
<year>2018</year>
<volume>11</volume>
<issue>1</issue>
<fpage>9</fpage>
<lpage>17</lpage>
<pub-id pub-id-type="doi">10.1016/j.jiph.2017.08.009</pub-id>
<pub-id pub-id-type="pmid">28864360</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
<floats-group>
<fig id="fig1" orientation="portrait" position="float">
<label>Figure 1</label>
<caption>
<p>The flowchart depicting the methodology employed in this study.</p>
</caption>
<graphic xlink:href="ABI2019-6815105.001"></graphic>
</fig>
<fig id="fig2" orientation="portrait" position="float">
<label>Figure 2</label>
<caption>
<p>MERS-CoV spike (S) protein and its S2 regions which form a fusion core HR1 and HR2 are the heptad repeats 1 and 2 [
<xref rid="B21" ref-type="bibr">39</xref>
].</p>
</caption>
<graphic xlink:href="ABI2019-6815105.002"></graphic>
</fig>
<fig id="fig3" orientation="portrait" position="float">
<label>Figure 3</label>
<caption>
<p>(a) Prefusion stage (PDB ID: 5X59) of the S protein and (b) S2 protein forms a six-helical bundle (6-HB) during postfusion stage (PDB ID: 4NJL.</p>
</caption>
<graphic xlink:href="ABI2019-6815105.003"></graphic>
</fig>
<fig id="fig4" orientation="portrait" position="float">
<label>Figure 4</label>
<caption>
<p>Venn diagram showing common residues.</p>
</caption>
<graphic xlink:href="ABI2019-6815105.004"></graphic>
</fig>
<fig id="fig5" orientation="portrait" position="float">
<label>Figure 5</label>
<caption>
<p>Possible interaction of receptor spike and ligands, namely, HR2P, AP00180, AP00225, and AP00744, which all bind to the spike protein in similar position.</p>
</caption>
<graphic xlink:href="ABI2019-6815105.005"></graphic>
</fig>
<fig id="fig6" orientation="portrait" position="float">
<label>Figure 6</label>
<caption>
<p>Possible interaction of receptor spike and ligands, namely, P9 and AP00549, which all bind to the spike protein in similar position.</p>
</caption>
<graphic xlink:href="ABI2019-6815105.006"></graphic>
</fig>
<fig id="fig7" orientation="portrait" position="float">
<label>Figure 7</label>
<caption>
<p>Possible interaction of receptor spike and ligands, namely, AP00179, AP00260, AP00340, AP02733, P9, and HR2P.</p>
</caption>
<graphic xlink:href="ABI2019-6815105.007"></graphic>
</fig>
<table-wrap id="tab1" content-type="sidewaystable" orientation="portrait" position="float">
<label>Table 1</label>
<caption>
<p>The table shows the filtering of antimicrobial peptides from various sources based on length, WWIHS, iHMM, and net charge.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">S.No </th>
<th align="center" rowspan="1" colspan="1"> Peptide </th>
<th align="center" rowspan="1" colspan="1">APD3 ID </th>
<th align="center" rowspan="1" colspan="1">Definition </th>
<th align="center" rowspan="1" colspan="1">Length</th>
<th align="center" rowspan="1" colspan="1">WWIHS </th>
<th align="center" rowspan="1" colspan="1">iHHM </th>
<th align="center" rowspan="1" colspan="1">Net charge </th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">1</td>
<td align="center" rowspan="1" colspan="1"> KTCENLADTFRGPCFATSNC</td>
<td align="center" rowspan="1" colspan="1">AP00532</td>
<td align="center" rowspan="1" colspan="1">Lunatusin</td>
<td align="center" rowspan="1" colspan="1">20</td>
<td align="center" rowspan="1" colspan="1">1.8</td>
<td align="center" rowspan="1" colspan="1">2.62</td>
<td align="center" rowspan="1" colspan="1"> 0</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">2</td>
<td align="center" rowspan="1" colspan="1"> GLFVGVLAKVAAHVVPAIAEHF</td>
<td align="center" rowspan="1" colspan="1">AP00260</td>
<td align="center" rowspan="1" colspan="1"> Maculatin 1.1</td>
<td align="center" rowspan="1" colspan="1"> 22</td>
<td align="center" rowspan="1" colspan="1"> 1.29</td>
<td align="center" rowspan="1" colspan="1"> 3.26</td>
<td align="center" rowspan="1" colspan="1"> 1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">3</td>
<td align="center" rowspan="1" colspan="1"> GIGKFLHSAGKFGKAFVGEIMKS</td>
<td align="center" rowspan="1" colspan="1">AP00771</td>
<td align="center" rowspan="1" colspan="1"> Magainin 1</td>
<td align="center" rowspan="1" colspan="1"> 23</td>
<td align="center" rowspan="1" colspan="1"> 1.34</td>
<td align="center" rowspan="1" colspan="1"> 7.19</td>
<td align="center" rowspan="1" colspan="1"> 3</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="center" rowspan="1" colspan="1"> GIGKFLHSAKKFGKAFVGEIMNS</td>
<td align="center" rowspan="1" colspan="1">AP00144</td>
<td align="center" rowspan="1" colspan="1">Magainin 2</td>
<td align="center" rowspan="1" colspan="1"> 23</td>
<td align="center" rowspan="1" colspan="1"> 0.93</td>
<td align="center" rowspan="1" colspan="1"> 7.1</td>
<td align="center" rowspan="1" colspan="1"> 3</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">5</td>
<td align="center" rowspan="1" colspan="1"> GEGFLGMLLHGVGHAIHGLIHGK</td>
<td align="center" rowspan="1" colspan="1">AP02663</td>
<td align="center" rowspan="1" colspan="1">Piscidins</td>
<td align="center" rowspan="1" colspan="1"> 23</td>
<td align="center" rowspan="1" colspan="1"> 1.26</td>
<td align="center" rowspan="1" colspan="1"> 4.72</td>
<td align="center" rowspan="1" colspan="1"> 0</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">6</td>
<td align="center" rowspan="1" colspan="1"> GLRSKIWLWVLLMIWQESNKFKKM</td>
<td align="center" rowspan="1" colspan="1">AP00764</td>
<td align="center" rowspan="1" colspan="1"> Dermaseptin-S9</td>
<td align="center" rowspan="1" colspan="1"> 24</td>
<td align="center" rowspan="1" colspan="1"> 6.07</td>
<td align="center" rowspan="1" colspan="1"> 2.95</td>
<td align="center" rowspan="1" colspan="1"> 4</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">7</td>
<td align="center" rowspan="1" colspan="1"> FLPVLAGIAAKVVPALFCKITKKC</td>
<td align="center" rowspan="1" colspan="1">AP00074</td>
<td align="center" rowspan="1" colspan="1">Brevinin-1</td>
<td align="center" rowspan="1" colspan="1"> 24</td>
<td align="center" rowspan="1" colspan="1"> 1.31</td>
<td align="center" rowspan="1" colspan="1"> 3.48</td>
<td align="center" rowspan="1" colspan="1"> 4</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">8</td>
<td align="center" rowspan="1" colspan="1"> GWGSFFKKAAHVGKHVGKAALTHYL</td>
<td align="center" rowspan="1" colspan="1">AP00166</td>
<td align="center" rowspan="1" colspan="1">Pleurocidin</td>
<td align="center" rowspan="1" colspan="1"> 25</td>
<td align="center" rowspan="1" colspan="1"> 0.37</td>
<td align="center" rowspan="1" colspan="1"> 7.49</td>
<td align="center" rowspan="1" colspan="1"> 4</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">9</td>
<td align="center" rowspan="1" colspan="1"> FFGWLIRGAIHAGKAIHGLIHRRRH</td>
<td align="center" rowspan="1" colspan="1">AP00340</td>
<td align="center" rowspan="1" colspan="1">Chrysophsin-2</td>
<td align="center" rowspan="1" colspan="1"> 25</td>
<td align="center" rowspan="1" colspan="1"> 0.02</td>
<td align="center" rowspan="1" colspan="1"> 5.97</td>
<td align="center" rowspan="1" colspan="1"> 0</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="center" rowspan="1" colspan="1"> ALWMTLLKKVLKAAAKAALNAVLVGANA</td>
<td align="center" rowspan="1" colspan="1">AP00160</td>
<td align="center" rowspan="1" colspan="1">Dermaseptin-S4</td>
<td align="center" rowspan="1" colspan="1"> 28</td>
<td align="center" rowspan="1" colspan="1"> 0.92</td>
<td align="center" rowspan="1" colspan="1"> 4.71</td>
<td align="center" rowspan="1" colspan="1"> 4</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">11</td>
<td align="center" rowspan="1" colspan="1"> GLPVCGETCVGGTCNTPGCTCSWPVCTRN</td>
<td align="center" rowspan="1" colspan="1">AP00729</td>
<td align="center" rowspan="1" colspan="1">Kalata B1</td>
<td align="center" rowspan="1" colspan="1"> 29</td>
<td align="center" rowspan="1" colspan="1"> 1.94</td>
<td align="center" rowspan="1" colspan="1"> 3.64</td>
<td align="center" rowspan="1" colspan="1"> 0</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">12</td>
<td align="center" rowspan="1" colspan="1"> GAFGNFLKGVAKKAGLKILSIAQCKLSGTC</td>
<td align="center" rowspan="1" colspan="1">AP01644</td>
<td align="center" rowspan="1" colspan="1">Brevinin-2-RN1</td>
<td align="center" rowspan="1" colspan="1"> 30</td>
<td align="center" rowspan="1" colspan="1"> 0.62</td>
<td align="center" rowspan="1" colspan="1"> 1.97</td>
<td align="center" rowspan="1" colspan="1"> 5</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">13</td>
<td align="center" rowspan="1" colspan="1"> GWFKKAWRKVKNAGRRVLKGVGIHYGVGLI</td>
<td align="center" rowspan="1" colspan="1">AP00692</td>
<td align="center" rowspan="1" colspan="1">Hagfish cathelicidin</td>
<td align="center" rowspan="1" colspan="1"> 30</td>
<td align="center" rowspan="1" colspan="1"> 0.24</td>
<td align="center" rowspan="1" colspan="1"> 6.41</td>
<td align="center" rowspan="1" colspan="1"> 8</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">14</td>
<td align="center" rowspan="1" colspan="1"> GSVLNCGETCLLGTCYTTGCTCNKYRVCTKD</td>
<td align="center" rowspan="1" colspan="1">AP00730</td>
<td align="center" rowspan="1" colspan="1">Kalata B8</td>
<td align="center" rowspan="1" colspan="1"> 31</td>
<td align="center" rowspan="1" colspan="1"> 2.47</td>
<td align="center" rowspan="1" colspan="1"> 2.06</td>
<td align="center" rowspan="1" colspan="1"> 1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">15</td>
<td align="center" rowspan="1" colspan="1"> RRCICTTRTCRFPYRRLGTCIFQNRVYTFCC</td>
<td align="center" rowspan="1" colspan="1">AP00174</td>
<td align="center" rowspan="1" colspan="1">Guinea pig neutrophil</td>
<td align="center" rowspan="1" colspan="1"> 31</td>
<td align="center" rowspan="1" colspan="1"> 2.16</td>
<td align="center" rowspan="1" colspan="1"> 2.06</td>
<td align="center" rowspan="1" colspan="1"> 7</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">16</td>
<td align="center" rowspan="1" colspan="1"> ACYCRIGACVSGERLTGACGLNGRIYRLCCR</td>
<td align="center" rowspan="1" colspan="1">AP00225</td>
<td align="center" rowspan="1" colspan="1">RatNP-4 rat defensin,</td>
<td align="center" rowspan="1" colspan="1"> 31</td>
<td align="center" rowspan="1" colspan="1"> 2.43</td>
<td align="center" rowspan="1" colspan="1"> 2.58</td>
<td align="center" rowspan="1" colspan="1"> 4</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">17</td>
<td align="center" rowspan="1" colspan="1"> GVIPCGESCVFIPCISTLLGCSCKNKVCYRN</td>
<td align="center" rowspan="1" colspan="1">AP00275</td>
<td align="center" rowspan="1" colspan="1">Circulin B</td>
<td align="center" rowspan="1" colspan="1"> 31</td>
<td align="center" rowspan="1" colspan="1"> 2.44</td>
<td align="center" rowspan="1" colspan="1"> 3.23</td>
<td align="center" rowspan="1" colspan="1"> 2</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">18</td>
<td align="center" rowspan="1" colspan="1"> GVIPCGESCVFIPCISAAIGCSCKNKVCYRN</td>
<td align="center" rowspan="1" colspan="1">AP01022</td>
<td align="center" rowspan="1" colspan="1">Cycloviolin A</td>
<td align="center" rowspan="1" colspan="1"> 31</td>
<td align="center" rowspan="1" colspan="1"> 1.43</td>
<td align="center" rowspan="1" colspan="1"> 2.52</td>
<td align="center" rowspan="1" colspan="1"> 2</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">19</td>
<td align="center" rowspan="1" colspan="1"> KIPCGESCVWIPCVTSIFNCKCKENKVCYHD</td>
<td align="center" rowspan="1" colspan="1">AP01061</td>
<td align="center" rowspan="1" colspan="1">Circulin D</td>
<td align="center" rowspan="1" colspan="1"> 31</td>
<td align="center" rowspan="1" colspan="1"> 1.27</td>
<td align="center" rowspan="1" colspan="1"> 5.43</td>
<td align="center" rowspan="1" colspan="1"> 1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">20</td>
<td align="center" rowspan="1" colspan="1"> GSIPACGESCFKGKCYTPGCSCSKYPLCAKN</td>
<td align="center" rowspan="1" colspan="1">AP01065</td>
<td align="center" rowspan="1" colspan="1">Cycloviolacin O14</td>
<td align="center" rowspan="1" colspan="1"> 31</td>
<td align="center" rowspan="1" colspan="1"> 0.73</td>
<td align="center" rowspan="1" colspan="1"> 1.48</td>
<td align="center" rowspan="1" colspan="1"> 3</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">21</td>
<td align="center" rowspan="1" colspan="1"> CGESCVFIPCITTVLGCSCSIKVCYKNGSIP</td>
<td align="center" rowspan="1" colspan="1">AP02571</td>
<td align="center" rowspan="1" colspan="1">Cycloviolacin VY1</td>
<td align="center" rowspan="1" colspan="1"> 31</td>
<td align="center" rowspan="1" colspan="1"> 3.15</td>
<td align="center" rowspan="1" colspan="1"> 2.77</td>
<td align="center" rowspan="1" colspan="1"> 1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">22</td>
<td align="center" rowspan="1" colspan="1"> ATCYCRTGRCATRESLSGVCEISGRLYRLCCR</td>
<td align="center" rowspan="1" colspan="1">AP00180</td>
<td align="center" rowspan="1" colspan="1">Human defensin 5</td>
<td align="center" rowspan="1" colspan="1"> 32</td>
<td align="center" rowspan="1" colspan="1"> 1.39</td>
<td align="center" rowspan="1" colspan="1"> 3.83</td>
<td align="center" rowspan="1" colspan="1"> 4</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">23</td>
<td align="center" rowspan="1" colspan="1"> AFTCHCRRSCYSTEYSYGTCTVMGINHRFCCL</td>
<td align="center" rowspan="1" colspan="1">AP00181</td>
<td align="center" rowspan="1" colspan="1">Human defensin 6</td>
<td align="center" rowspan="1" colspan="1"> 32</td>
<td align="center" rowspan="1" colspan="1"> 3.82</td>
<td align="center" rowspan="1" colspan="1"> 2.56</td>
<td align="center" rowspan="1" colspan="1"> 2</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">24</td>
<td align="center" rowspan="1" colspan="1"> VTCYCRRTRCGFRERLSGACGYRGRIYRLCCR</td>
<td align="center" rowspan="1" colspan="1">AP00222</td>
<td align="center" rowspan="1" colspan="1">RatNP-1 rat defensin</td>
<td align="center" rowspan="1" colspan="1"> 32</td>
<td align="center" rowspan="1" colspan="1"> 1.02</td>
<td align="center" rowspan="1" colspan="1"> 4.29</td>
<td align="center" rowspan="1" colspan="1"> 8</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">25</td>
<td align="center" rowspan="1" colspan="1"> VTCYCRSTRCGFRERLSGACGYRGRIYRLCCR</td>
<td align="center" rowspan="1" colspan="1">AP00223</td>
<td align="center" rowspan="1" colspan="1">RatNP-2 rat defensin</td>
<td align="center" rowspan="1" colspan="1"> 32</td>
<td align="center" rowspan="1" colspan="1"> 1.7</td>
<td align="center" rowspan="1" colspan="1"> 4.01</td>
<td align="center" rowspan="1" colspan="1"> 7</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">26</td>
<td align="center" rowspan="1" colspan="1"> GFFALIPKIISSPLFKTLLSAVGSALSSSGEQE</td>
<td align="center" rowspan="1" colspan="1">AP00641</td>
<td align="center" rowspan="1" colspan="1">Pardaxin 1</td>
<td align="center" rowspan="1" colspan="1"> 33</td>
<td align="center" rowspan="1" colspan="1"> 4.19</td>
<td align="center" rowspan="1" colspan="1"> 0.2</td>
<td align="center" rowspan="1" colspan="1"> 0</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">27</td>
<td align="center" rowspan="1" colspan="1"> VCSCRLVFCRRTELRVGNCLIGGVSFTYCCTRV</td>
<td align="center" rowspan="1" colspan="1">AP00179</td>
<td align="center" rowspan="1" colspan="1">Human neutrophil peptide-4</td>
<td align="center" rowspan="1" colspan="1">33</td>
<td align="center" rowspan="1" colspan="1">3.28</td>
<td align="center" rowspan="1" colspan="1"> 1.54</td>
<td align="center" rowspan="1" colspan="1"> 4</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">28</td>
<td align="center" rowspan="1" colspan="1"> DFASCHTNGGICLPNRCPGHMIQIGICFRPRVKCCRSW</td>
<td align="center" rowspan="1" colspan="1">AP00036</td>
<td align="center" rowspan="1" colspan="1">Bovine beta-defensin 1</td>
<td align="center" rowspan="1" colspan="1">38</td>
<td align="center" rowspan="1" colspan="1"> 0.22</td>
<td align="center" rowspan="1" colspan="1"> 4.72</td>
<td align="center" rowspan="1" colspan="1"> 4</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">29</td>
<td align="center" rowspan="1" colspan="1"> GFGCNGPWDEDDMQCHNHCKSIKGYKGGYCAKGGFVCKCY</td>
<td align="center" rowspan="1" colspan="1">AP00549</td>
<td align="center" rowspan="1" colspan="1">Plectasin</td>
<td align="center" rowspan="1" colspan="1"> 40</td>
<td align="center" rowspan="1" colspan="1"> 2.11</td>
<td align="center" rowspan="1" colspan="1"> 3.67</td>
<td align="center" rowspan="1" colspan="1"> 1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">30</td>
<td align="center" rowspan="1" colspan="1"> GLPQDCERRGGFCSHKSCPPGIGRIGLCSKEDFCCRSRWYS</td>
<td align="center" rowspan="1" colspan="1">AP00744</td>
<td align="center" rowspan="1" colspan="1">Chicken AvBD5</td>
<td align="center" rowspan="1" colspan="1"> 41</td>
<td align="center" rowspan="1" colspan="1"> 0.93</td>
<td align="center" rowspan="1" colspan="1"> 3.26</td>
<td align="center" rowspan="1" colspan="1"> 3</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">31</td>
<td align="center" rowspan="1" colspan="1"> SPIHACRYQRGVCIPGPCRWPYYRVGSCGSGLKSCCVRNRWA</td>
<td align="center" rowspan="1" colspan="1">AP00742</td>
<td align="center" rowspan="1" colspan="1">Chicken AvBD6</td>
<td align="center" rowspan="1" colspan="1">42</td>
<td align="center" rowspan="1" colspan="1"> 0.58</td>
<td align="center" rowspan="1" colspan="1"> 2.64</td>
<td align="center" rowspan="1" colspan="1"> 7</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">32</td>
<td align="center" rowspan="1" colspan="1"> KYYGNGVSCNKKGCSVDWGKAIGIIGNNSAANLATGGAAGWKS</td>
<td align="center" rowspan="1" colspan="1">AP00846</td>
<td align="center" rowspan="1" colspan="1">Mundticin KS</td>
<td align="center" rowspan="1" colspan="1">43</td>
<td align="center" rowspan="1" colspan="1"> 0.83</td>
<td align="center" rowspan="1" colspan="1"> 2.1</td>
<td align="center" rowspan="1" colspan="1"> 4</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">33</td>
<td align="center" rowspan="1" colspan="1"> QEAQSVACTSYYCSKFCGSAGCSLYGCYLLHPGKICYCLHCSR</td>
<td align="center" rowspan="1" colspan="1">AP01788</td>
<td align="center" rowspan="1" colspan="1">Myticin C</td>
<td align="center" rowspan="1" colspan="1">43</td>
<td align="center" rowspan="1" colspan="1"> 4.62</td>
<td align="center" rowspan="1" colspan="1"> 0.95</td>
<td align="center" rowspan="1" colspan="1"> 2</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">34</td>
<td align="center" rowspan="1" colspan="1"> VSFPWSCAALSGVCRQGACLPSELYFGPLGCGKGSLCCVSYFL</td>
<td align="center" rowspan="1" colspan="1">AP02830</td>
<td align="center" rowspan="1" colspan="1">Channel catfish beta defensin</td>
<td align="center" rowspan="1" colspan="1">43</td>
<td align="center" rowspan="1" colspan="1">8.81</td>
<td align="center" rowspan="1" colspan="1">2.3</td>
<td align="center" rowspan="1" colspan="1"> 1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">35</td>
<td align="center" rowspan="1" colspan="1"> KTCMTKKEGWGRCLIDTTCAHSCRKYGYMGGKCQGITRRCYCLLNC</td>
<td align="center" rowspan="1" colspan="1">AP01356</td>
<td align="center" rowspan="1" colspan="1">Cp-thionin II</td>
<td align="center" rowspan="1" colspan="1">46</td>
<td align="center" rowspan="1" colspan="1"> 0.39</td>
<td align="center" rowspan="1" colspan="1"> 2.59</td>
<td align="center" rowspan="1" colspan="1"> 7</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">36</td>
<td align="center" rowspan="1" colspan="1"> FFLLFLQGAAGNSVLCRIRGGRCHVGSCHFPERHIGRCSGFQACCIRTWG</td>
<td align="center" rowspan="1" colspan="1">AP02148</td>
<td align="center" rowspan="1" colspan="1">Apl-AvBD16</td>
<td align="center" rowspan="1" colspan="1">50</td>
<td align="center" rowspan="1" colspan="1">3.26</td>
<td align="center" rowspan="1" colspan="1"> 5.26</td>
<td align="center" rowspan="1" colspan="1"> 5</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">37</td>
<td align="center" rowspan="1" colspan="1"> LFGSVKAWFKGAKKGFQDYRYQKDMAKMNKRYGPNWQQRGGQEPPADAQANDQPP</td>
<td align="center" rowspan="1" colspan="1">AP02733</td>
<td align="center" rowspan="1" colspan="1">Piscidin 6</td>
<td align="center" rowspan="1" colspan="1">55</td>
<td align="center" rowspan="1" colspan="1">2.93</td>
<td align="center" rowspan="1" colspan="1"> 6.41</td>
<td align="center" rowspan="1" colspan="1"> 5</td>
</tr>
</tbody>
</table>
</table-wrap>
<table-wrap id="tab2" orientation="portrait" position="float">
<label>Table 2</label>
<caption>
<p>Piper ranking of docked complex based on cluster size, where peptides with (
<italic></italic>
) represent the experimentally validated against MERS-CoV and are considered as positive controls.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">Rank </th>
<th align="center" rowspan="1" colspan="1"> Peptide</th>
<th align="center" rowspan="1" colspan="1"> Length </th>
<th align="center" rowspan="1" colspan="1"> Definition</th>
<th align="center" rowspan="1" colspan="1">Species </th>
<th align="center" rowspan="1" colspan="1">Cluster</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>1 </italic>
</td>
<td align="center" rowspan="1" colspan="1">
<italic> P9∗</italic>
</td>
<td align="center" rowspan="1" colspan="1">
<italic>30 </italic>
</td>
<td align="center" rowspan="1" colspan="1">
<italic>Mouse Beta-defensin </italic>
</td>
<td align="center" rowspan="1" colspan="1">
<italic> Mouse </italic>
</td>
<td align="center" rowspan="1" colspan="1">
<italic>328</italic>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">2</td>
<td align="center" rowspan="1" colspan="1"> AP00225</td>
<td align="center" rowspan="1" colspan="1">31</td>
<td align="center" rowspan="1" colspan="1">RatNP-4 (rat defensin)</td>
<td align="center" rowspan="1" colspan="1"> Rat</td>
<td align="center" rowspan="1" colspan="1"> 285</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">3</td>
<td align="center" rowspan="1" colspan="1"> AP00180</td>
<td align="center" rowspan="1" colspan="1">32</td>
<td align="center" rowspan="1" colspan="1">Human defensin 5 (alpha defensin)</td>
<td align="center" rowspan="1" colspan="1"> Human</td>
<td align="center" rowspan="1" colspan="1">277</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="center" rowspan="1" colspan="1"> AP00549</td>
<td align="center" rowspan="1" colspan="1">40</td>
<td align="center" rowspan="1" colspan="1">Plectasin (fungal defensin)</td>
<td align="center" rowspan="1" colspan="1"> Fungus</td>
<td align="center" rowspan="1" colspan="1"> 270</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">5</td>
<td align="center" rowspan="1" colspan="1"> AP00744</td>
<td align="center" rowspan="1" colspan="1">41</td>
<td align="center" rowspan="1" colspan="1">AvBD-5, chicken avian beta defensin)</td>
<td align="center" rowspan="1" colspan="1"> Chicken</td>
<td align="center" rowspan="1" colspan="1">253</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">6</td>
<td align="center" rowspan="1" colspan="1"> AP00729</td>
<td align="center" rowspan="1" colspan="1">29</td>
<td align="center" rowspan="1" colspan="1">Kalata B1 (cyclotides)</td>
<td align="center" rowspan="1" colspan="1"> Plant</td>
<td align="center" rowspan="1" colspan="1"> 247</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">7</td>
<td align="center" rowspan="1" colspan="1"> AP00764</td>
<td align="center" rowspan="1" colspan="1">24</td>
<td align="center" rowspan="1" colspan="1">Dermaseptin-S9</td>
<td align="center" rowspan="1" colspan="1"> Frog</td>
<td align="center" rowspan="1" colspan="1"> 223</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">8</td>
<td align="center" rowspan="1" colspan="1"> AP00223</td>
<td align="center" rowspan="1" colspan="1">32</td>
<td align="center" rowspan="1" colspan="1">RatNP-2 (rat alpha defensin)</td>
<td align="center" rowspan="1" colspan="1"> Rat</td>
<td align="center" rowspan="1" colspan="1"> 219</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>9</italic>
</td>
<td align="center" rowspan="1" colspan="1">
<italic> HR2P∗</italic>
</td>
<td align="center" rowspan="1" colspan="1">
<italic>36 </italic>
</td>
<td align="center" rowspan="1" colspan="1">
<italic>HR2 region of MERS-CoV </italic>
</td>
<td align="center" rowspan="1" colspan="1">
<italic>Synthetic </italic>
</td>
<td align="center" rowspan="1" colspan="1">
<italic>208</italic>
</td>
</tr>
<tr>
<td colspan="6" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="center" rowspan="1" colspan="1"> AP00160</td>
<td align="center" rowspan="1" colspan="1">28</td>
<td align="center" rowspan="1" colspan="1">Dermaseptin-S4</td>
<td align="center" rowspan="1" colspan="1"> Frog</td>
<td align="center" rowspan="1" colspan="1"> 200</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">11</td>
<td align="center" rowspan="1" colspan="1"> AP00174</td>
<td align="center" rowspan="1" colspan="1">31</td>
<td align="center" rowspan="1" colspan="1">Guinea pig neutrophil cationic peptide 1</td>
<td align="center" rowspan="1" colspan="1"> Guinea pig</td>
<td align="center" rowspan="1" colspan="1">193</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">12</td>
<td align="center" rowspan="1" colspan="1"> AP00730</td>
<td align="center" rowspan="1" colspan="1">31</td>
<td align="center" rowspan="1" colspan="1">Kalata B8 (cyclotides)</td>
<td align="center" rowspan="1" colspan="1"> Plant</td>
<td align="center" rowspan="1" colspan="1"> 175</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">13</td>
<td align="center" rowspan="1" colspan="1"> AP00222</td>
<td align="center" rowspan="1" colspan="1">32</td>
<td align="center" rowspan="1" colspan="1">RatNP-1 (rat alpha defensin,)</td>
<td align="center" rowspan="1" colspan="1"> Rat</td>
<td align="center" rowspan="1" colspan="1"> 175</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">14</td>
<td align="center" rowspan="1" colspan="1"> AP02663</td>
<td align="center" rowspan="1" colspan="1">23</td>
<td align="center" rowspan="1" colspan="1">Piscidins</td>
<td align="center" rowspan="1" colspan="1"> Fish</td>
<td align="center" rowspan="1" colspan="1"> 171</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">15</td>
<td align="center" rowspan="1" colspan="1"> AP01061</td>
<td align="center" rowspan="1" colspan="1">31</td>
<td align="center" rowspan="1" colspan="1">Circulin D (cyclotides)</td>
<td align="center" rowspan="1" colspan="1"> Plant</td>
<td align="center" rowspan="1" colspan="1"> 163</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">16</td>
<td align="center" rowspan="1" colspan="1"> AP01356</td>
<td align="center" rowspan="1" colspan="1">46</td>
<td align="center" rowspan="1" colspan="1">Cp-thionin II</td>
<td align="center" rowspan="1" colspan="1"> Plant</td>
<td align="center" rowspan="1" colspan="1"> 160</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">17</td>
<td align="center" rowspan="1" colspan="1"> AP00532</td>
<td align="center" rowspan="1" colspan="1">20</td>
<td align="center" rowspan="1" colspan="1">Lunatusin</td>
<td align="center" rowspan="1" colspan="1"> Plant</td>
<td align="center" rowspan="1" colspan="1"> 157</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">18</td>
<td align="center" rowspan="1" colspan="1"> AP02571</td>
<td align="center" rowspan="1" colspan="1">31</td>
<td align="center" rowspan="1" colspan="1">Cycloviolacin VY1 (cyclotides)</td>
<td align="center" rowspan="1" colspan="1"> Plant</td>
<td align="center" rowspan="1" colspan="1"> 155</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">19</td>
<td align="center" rowspan="1" colspan="1"> AP00692</td>
<td align="center" rowspan="1" colspan="1">30</td>
<td align="center" rowspan="1" colspan="1">HFIAP-3 (Hagfish cathelicidin)</td>
<td align="center" rowspan="1" colspan="1"> Fish</td>
<td align="center" rowspan="1" colspan="1">148</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">20</td>
<td align="center" rowspan="1" colspan="1"> AP00260</td>
<td align="center" rowspan="1" colspan="1">22</td>
<td align="center" rowspan="1" colspan="1">Maculatin 1.1</td>
<td align="center" rowspan="1" colspan="1"> Frog</td>
<td align="center" rowspan="1" colspan="1"> 146</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">21</td>
<td align="center" rowspan="1" colspan="1"> AP02733</td>
<td align="center" rowspan="1" colspan="1">55</td>
<td align="center" rowspan="1" colspan="1">Piscidin</td>
<td align="center" rowspan="1" colspan="1"> Fish</td>
<td align="center" rowspan="1" colspan="1"> 144</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">22</td>
<td align="center" rowspan="1" colspan="1"> AP00275</td>
<td align="center" rowspan="1" colspan="1">31</td>
<td align="center" rowspan="1" colspan="1">Circulin B (cyclotides)</td>
<td align="center" rowspan="1" colspan="1"> Plant</td>
<td align="center" rowspan="1" colspan="1"> 143</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">23</td>
<td align="center" rowspan="1" colspan="1"> AP01644</td>
<td align="center" rowspan="1" colspan="1">30</td>
<td align="center" rowspan="1" colspan="1">Brevinin-2-RN1</td>
<td align="center" rowspan="1" colspan="1"> Frog</td>
<td align="center" rowspan="1" colspan="1"> 143</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">24</td>
<td align="center" rowspan="1" colspan="1"> AP02148</td>
<td align="center" rowspan="1" colspan="1">50</td>
<td align="center" rowspan="1" colspan="1">Apl-AvBD16 (Beta def)</td>
<td align="center" rowspan="1" colspan="1"> Bird</td>
<td align="center" rowspan="1" colspan="1"> 139</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">25</td>
<td align="center" rowspan="1" colspan="1"> AP01065</td>
<td align="center" rowspan="1" colspan="1">31</td>
<td align="center" rowspan="1" colspan="1">Cycloviolacin 014 (cyclotides)</td>
<td align="center" rowspan="1" colspan="1"> Plant</td>
<td align="center" rowspan="1" colspan="1"> 136</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">26</td>
<td align="center" rowspan="1" colspan="1"> AP01022</td>
<td align="center" rowspan="1" colspan="1">31</td>
<td align="center" rowspan="1" colspan="1">Cycloviolin A (cyclotides)</td>
<td align="center" rowspan="1" colspan="1"> Plant</td>
<td align="center" rowspan="1" colspan="1"> 134</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">27</td>
<td align="center" rowspan="1" colspan="1"> AP00036</td>
<td align="center" rowspan="1" colspan="1">38</td>
<td align="center" rowspan="1" colspan="1">Bovine Beta-defensin 1</td>
<td align="center" rowspan="1" colspan="1"> Bovine</td>
<td align="center" rowspan="1" colspan="1"> 127</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">28</td>
<td align="center" rowspan="1" colspan="1"> AP00074</td>
<td align="center" rowspan="1" colspan="1">24</td>
<td align="center" rowspan="1" colspan="1">Brevinin-1</td>
<td align="center" rowspan="1" colspan="1"> Frog</td>
<td align="center" rowspan="1" colspan="1"> 120</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">29</td>
<td align="center" rowspan="1" colspan="1"> AP00340</td>
<td align="center" rowspan="1" colspan="1">25</td>
<td align="center" rowspan="1" colspan="1">Chrysophsin-2</td>
<td align="center" rowspan="1" colspan="1"> Fish</td>
<td align="center" rowspan="1" colspan="1"> 120</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">30</td>
<td align="center" rowspan="1" colspan="1"> AP00166</td>
<td align="center" rowspan="1" colspan="1">25</td>
<td align="center" rowspan="1" colspan="1">Pleurocidin</td>
<td align="center" rowspan="1" colspan="1"> Fish</td>
<td align="center" rowspan="1" colspan="1"> 118</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">31</td>
<td align="center" rowspan="1" colspan="1"> AP02830</td>
<td align="center" rowspan="1" colspan="1">43</td>
<td align="center" rowspan="1" colspan="1">ccBD (Channel Catfish beta def)</td>
<td align="center" rowspan="1" colspan="1"> Fish</td>
<td align="center" rowspan="1" colspan="1"> 115</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">32</td>
<td align="center" rowspan="1" colspan="1"> AP00181</td>
<td align="center" rowspan="1" colspan="1">32</td>
<td align="center" rowspan="1" colspan="1">Human defensin 6</td>
<td align="center" rowspan="1" colspan="1"> Human</td>
<td align="center" rowspan="1" colspan="1"> 115</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">33</td>
<td align="center" rowspan="1" colspan="1"> AP01788</td>
<td align="center" rowspan="1" colspan="1">43</td>
<td align="center" rowspan="1" colspan="1">Myticin C</td>
<td align="center" rowspan="1" colspan="1"> molluscs</td>
<td align="center" rowspan="1" colspan="1"> 111</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">34</td>
<td align="center" rowspan="1" colspan="1"> AP00179</td>
<td align="center" rowspan="1" colspan="1">33</td>
<td align="center" rowspan="1" colspan="1">Human neutrophil peptide-4 (Alpha def)</td>
<td align="center" rowspan="1" colspan="1"> Human</td>
<td align="center" rowspan="1" colspan="1">97</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">35</td>
<td align="center" rowspan="1" colspan="1"> AP00641</td>
<td align="center" rowspan="1" colspan="1">33</td>
<td align="center" rowspan="1" colspan="1">Pardaxin 1</td>
<td align="center" rowspan="1" colspan="1"> Fish</td>
<td align="center" rowspan="1" colspan="1"> 96</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">36</td>
<td align="center" rowspan="1" colspan="1"> AP00771</td>
<td align="center" rowspan="1" colspan="1">23</td>
<td align="center" rowspan="1" colspan="1">Magainin 1</td>
<td align="center" rowspan="1" colspan="1"> Frog</td>
<td align="center" rowspan="1" colspan="1"> 90</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">37</td>
<td align="center" rowspan="1" colspan="1"> AP00742</td>
<td align="center" rowspan="1" colspan="1">42</td>
<td align="center" rowspan="1" colspan="1">Chicken AvBD6 (Beta def)</td>
<td align="center" rowspan="1" colspan="1"> Chicken</td>
<td align="center" rowspan="1" colspan="1"> 88</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">38</td>
<td align="center" rowspan="1" colspan="1"> AP00144</td>
<td align="center" rowspan="1" colspan="1">23</td>
<td align="center" rowspan="1" colspan="1">Magainin 2</td>
<td align="center" rowspan="1" colspan="1"> Frog</td>
<td align="center" rowspan="1" colspan="1"> 85</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">39</td>
<td align="center" rowspan="1" colspan="1"> AP00846</td>
<td align="center" rowspan="1" colspan="1">43</td>
<td align="center" rowspan="1" colspan="1">Mundticin KS (Bacteriocin)</td>
<td align="center" rowspan="1" colspan="1"> Bacteria</td>
<td align="center" rowspan="1" colspan="1">66</td>
</tr>
</tbody>
</table>
</table-wrap>
<table-wrap id="tab3" orientation="portrait" position="float">
<label>Table 3</label>
<caption>
<p>ClusPro ranking of docked complex based on cluster size (member), where peptides with (
<italic></italic>
) represent the experimentally validated against MERS-CoV and are considered as positive controls.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">Rank </th>
<th align="center" rowspan="1" colspan="1"> Peptide</th>
<th align="center" rowspan="1" colspan="1"> Length </th>
<th align="center" rowspan="1" colspan="1"> Definition</th>
<th align="center" rowspan="1" colspan="1">Species </th>
<th align="center" rowspan="1" colspan="1">Representative </th>
<th align="center" rowspan="1" colspan="1">Member </th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">1</td>
<td align="center" rowspan="1" colspan="1"> AP00166</td>
<td align="center" rowspan="1" colspan="1">25</td>
<td align="center" rowspan="1" colspan="1">Pleurocidin</td>
<td align="center" rowspan="1" colspan="1"> Fish</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> 134</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">2</td>
<td align="center" rowspan="1" colspan="1"> AP00641</td>
<td align="center" rowspan="1" colspan="1">33</td>
<td align="center" rowspan="1" colspan="1">Pardaxin 1</td>
<td align="center" rowspan="1" colspan="1"> Fish</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> 134</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">3</td>
<td align="center" rowspan="1" colspan="1"> AP00144</td>
<td align="center" rowspan="1" colspan="1">23</td>
<td align="center" rowspan="1" colspan="1">Magainin 2</td>
<td align="center" rowspan="1" colspan="1"> Frog</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> 117</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="center" rowspan="1" colspan="1"> AP00771</td>
<td align="center" rowspan="1" colspan="1">23</td>
<td align="center" rowspan="1" colspan="1">Magainin 1</td>
<td align="center" rowspan="1" colspan="1"> Frog</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> 117</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> 5</td>
<td align="center" rowspan="1" colspan="1"> AP01644</td>
<td align="center" rowspan="1" colspan="1">30</td>
<td align="center" rowspan="1" colspan="1">Brevinin-2-RN1</td>
<td align="center" rowspan="1" colspan="1"> Frog</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> 117</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">6</td>
<td align="center" rowspan="1" colspan="1"> AP00764</td>
<td align="center" rowspan="1" colspan="1">24</td>
<td align="center" rowspan="1" colspan="1">Dermaseptin-S9</td>
<td align="center" rowspan="1" colspan="1"> Frog</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> 110</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">7</td>
<td align="center" rowspan="1" colspan="1"> AP02571</td>
<td align="center" rowspan="1" colspan="1">31</td>
<td align="center" rowspan="1" colspan="1">Cycloviolacin VY1 (cyclotides)</td>
<td align="center" rowspan="1" colspan="1"> Plant</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> 110</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">8</td>
<td align="center" rowspan="1" colspan="1"> AP00275</td>
<td align="center" rowspan="1" colspan="1">31</td>
<td align="center" rowspan="1" colspan="1">Circulin B (cyclotides)</td>
<td align="center" rowspan="1" colspan="1"> Plant</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> 107</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">9</td>
<td align="center" rowspan="1" colspan="1"> AP01022</td>
<td align="center" rowspan="1" colspan="1">31</td>
<td align="center" rowspan="1" colspan="1">Cycloviolin A (cyclotides)</td>
<td align="center" rowspan="1" colspan="1"> Plant</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> 107</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="center" rowspan="1" colspan="1"> AP01061</td>
<td align="center" rowspan="1" colspan="1">31</td>
<td align="center" rowspan="1" colspan="1">Circulin D (cyclotides)</td>
<td align="center" rowspan="1" colspan="1"> Plant</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> 107</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">11</td>
<td align="center" rowspan="1" colspan="1"> AP00549</td>
<td align="center" rowspan="1" colspan="1">40</td>
<td align="center" rowspan="1" colspan="1">Plectasin (fungal defensin)</td>
<td align="center" rowspan="1" colspan="1"> Fungus</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> 101</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">12</td>
<td align="center" rowspan="1" colspan="1"> AP00729</td>
<td align="center" rowspan="1" colspan="1">29</td>
<td align="center" rowspan="1" colspan="1">Kalata B1 (cyclotides)</td>
<td align="center" rowspan="1" colspan="1"> Plant</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> 101</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">13</td>
<td align="center" rowspan="1" colspan="1"> AP00730</td>
<td align="center" rowspan="1" colspan="1">31</td>
<td align="center" rowspan="1" colspan="1">Kalata B8 (cyclotides)</td>
<td align="center" rowspan="1" colspan="1"> Plant</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> 101</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">14</td>
<td align="center" rowspan="1" colspan="1"> AP01065</td>
<td align="center" rowspan="1" colspan="1">31</td>
<td align="center" rowspan="1" colspan="1">Cycloviolacin 014 (cyclotides)</td>
<td align="center" rowspan="1" colspan="1"> Plant</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> 101</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">15</td>
<td align="center" rowspan="1" colspan="1"> AP01788</td>
<td align="center" rowspan="1" colspan="1">43</td>
<td align="center" rowspan="1" colspan="1">Myticin C</td>
<td align="center" rowspan="1" colspan="1"> molluscs</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> 97</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">16</td>
<td align="center" rowspan="1" colspan="1"> AP01356</td>
<td align="center" rowspan="1" colspan="1">46</td>
<td align="center" rowspan="1" colspan="1">Cp-thionin II</td>
<td align="center" rowspan="1" colspan="1"> Plant</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> 93</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">17</td>
<td align="center" rowspan="1" colspan="1"> AP00742</td>
<td align="center" rowspan="1" colspan="1">42</td>
<td align="center" rowspan="1" colspan="1">Chicken AvBD6 (Beta def)</td>
<td align="center" rowspan="1" colspan="1"> Chicken</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> 87</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">18</td>
<td align="center" rowspan="1" colspan="1"> AP02148</td>
<td align="center" rowspan="1" colspan="1">50</td>
<td align="center" rowspan="1" colspan="1">Apl-AvBD16 (Beta def)</td>
<td align="center" rowspan="1" colspan="1"> Bird</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> 87</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">19</td>
<td align="center" rowspan="1" colspan="1"> AP00846</td>
<td align="center" rowspan="1" colspan="1">43</td>
<td align="center" rowspan="1" colspan="1">Mundticin KS (Bacteriocin)</td>
<td align="center" rowspan="1" colspan="1"> Bacteria</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> 83</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">20</td>
<td align="center" rowspan="1" colspan="1"> AP00532</td>
<td align="center" rowspan="1" colspan="1">20</td>
<td align="center" rowspan="1" colspan="1">Lunatusin</td>
<td align="center" rowspan="1" colspan="1"> Plant</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> 78</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">21</td>
<td align="center" rowspan="1" colspan="1"> P9
<italic></italic>
</td>
<td align="center" rowspan="1" colspan="1">30</td>
<td align="center" rowspan="1" colspan="1">Mouse Beta-defensin</td>
<td align="center" rowspan="1" colspan="1"> Mouse</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> 68</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">22</td>
<td align="center" rowspan="1" colspan="1"> AP00692</td>
<td align="center" rowspan="1" colspan="1">30</td>
<td align="center" rowspan="1" colspan="1">HFIAP-3 (Hagfish cathelicidin)</td>
<td align="center" rowspan="1" colspan="1"> Fish</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> 67</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">23</td>
<td align="center" rowspan="1" colspan="1"> AP00036</td>
<td align="center" rowspan="1" colspan="1">38</td>
<td align="center" rowspan="1" colspan="1">Bovine Beta-defensin 1</td>
<td align="center" rowspan="1" colspan="1"> Bovine</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> 66</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">24</td>
<td align="center" rowspan="1" colspan="1"> AP00074</td>
<td align="center" rowspan="1" colspan="1">24</td>
<td align="center" rowspan="1" colspan="1">Brevinin-1</td>
<td align="center" rowspan="1" colspan="1"> Frog</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> 66</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">25</td>
<td align="center" rowspan="1" colspan="1"> AP00744</td>
<td align="center" rowspan="1" colspan="1">41</td>
<td align="center" rowspan="1" colspan="1">AvBD-5, chicken avian beta defensin)</td>
<td align="center" rowspan="1" colspan="1"> Chicken</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> 66</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">26</td>
<td align="center" rowspan="1" colspan="1"> AP02663</td>
<td align="center" rowspan="1" colspan="1">23</td>
<td align="center" rowspan="1" colspan="1">Piscidins</td>
<td align="center" rowspan="1" colspan="1"> Fish</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> 66</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">27</td>
<td align="center" rowspan="1" colspan="1"> AP00179</td>
<td align="center" rowspan="1" colspan="1">33</td>
<td align="center" rowspan="1" colspan="1">Human neutrophil peptide-4 (Alpha def)</td>
<td align="center" rowspan="1" colspan="1"> Human</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> 57</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">28</td>
<td align="center" rowspan="1" colspan="1"> AP00174</td>
<td align="center" rowspan="1" colspan="1">31</td>
<td align="center" rowspan="1" colspan="1">Guinea pig neutrophil cationic peptide 1</td>
<td align="center" rowspan="1" colspan="1"> Guinea pig</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> 49</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">29</td>
<td align="center" rowspan="1" colspan="1"> AP02733</td>
<td align="center" rowspan="1" colspan="1">55</td>
<td align="center" rowspan="1" colspan="1">Piscidin</td>
<td align="center" rowspan="1" colspan="1"> Fish</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> 43</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">30</td>
<td align="center" rowspan="1" colspan="1"> AP00160</td>
<td align="center" rowspan="1" colspan="1">28</td>
<td align="center" rowspan="1" colspan="1">Dermaseptin-S4</td>
<td align="center" rowspan="1" colspan="1"> Frog</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> 40</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">31</td>
<td align="center" rowspan="1" colspan="1"> AP00180</td>
<td align="center" rowspan="1" colspan="1">32</td>
<td align="center" rowspan="1" colspan="1">Human defensin 5 (alpha defensin)</td>
<td align="center" rowspan="1" colspan="1"> Human</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> 40</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">32</td>
<td align="center" rowspan="1" colspan="1"> AP00222</td>
<td align="center" rowspan="1" colspan="1">32</td>
<td align="center" rowspan="1" colspan="1">RatNP-1 (rat alpha defensin,)</td>
<td align="center" rowspan="1" colspan="1"> Rat</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> 40</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">33</td>
<td align="center" rowspan="1" colspan="1"> AP00223</td>
<td align="center" rowspan="1" colspan="1">32</td>
<td align="center" rowspan="1" colspan="1">RatNP-2 (rat alpha defensin)</td>
<td align="center" rowspan="1" colspan="1"> Rat</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> 40</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">34</td>
<td align="center" rowspan="1" colspan="1"> HR2P
<italic></italic>
</td>
<td align="center" rowspan="1" colspan="1">36</td>
<td align="center" rowspan="1" colspan="1">HR2 region of MERS-CoV</td>
<td align="center" rowspan="1" colspan="1">Synthetic</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> 39</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">35</td>
<td align="center" rowspan="1" colspan="1"> AP00340</td>
<td align="center" rowspan="1" colspan="1">25</td>
<td align="center" rowspan="1" colspan="1">Chrysophsin-2</td>
<td align="center" rowspan="1" colspan="1"> Fish</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> 38</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">36</td>
<td align="center" rowspan="1" colspan="1"> AP00181</td>
<td align="center" rowspan="1" colspan="1">32</td>
<td align="center" rowspan="1" colspan="1">Human defensin 6</td>
<td align="center" rowspan="1" colspan="1"> Human</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> 37</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">37</td>
<td align="center" rowspan="1" colspan="1"> AP00260</td>
<td align="center" rowspan="1" colspan="1">22</td>
<td align="center" rowspan="1" colspan="1">Maculatin 1.1</td>
<td align="center" rowspan="1" colspan="1"> Frog</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> 37</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">38</td>
<td align="center" rowspan="1" colspan="1"> AP02830</td>
<td align="center" rowspan="1" colspan="1">43</td>
<td align="center" rowspan="1" colspan="1">ccBD (Channel Catfish beta def)</td>
<td align="center" rowspan="1" colspan="1"> Fish</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> 33</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">39</td>
<td align="center" rowspan="1" colspan="1"> AP00225</td>
<td align="center" rowspan="1" colspan="1">31</td>
<td align="center" rowspan="1" colspan="1">RatNP-4 (rat defensin)</td>
<td align="center" rowspan="1" colspan="1"> Rat</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> 31</td>
</tr>
</tbody>
</table>
</table-wrap>
<table-wrap id="tab4" orientation="portrait" position="float">
<label>Table 4</label>
<caption>
<p>ClusPro ranking of docked complex based on energy scores, where peptides with (
<italic></italic>
) represent the experimentally validated against MERS-CoV and are considered as positive controls.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">Rank </th>
<th align="center" rowspan="1" colspan="1"> Peptide</th>
<th align="center" rowspan="1" colspan="1"> Length </th>
<th align="center" rowspan="1" colspan="1"> Definition</th>
<th align="center" rowspan="1" colspan="1">Species </th>
<th align="center" rowspan="1" colspan="1">Representative </th>
<th align="center" rowspan="1" colspan="1">Energy </th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">1</td>
<td align="center" rowspan="1" colspan="1"> AP00260</td>
<td align="center" rowspan="1" colspan="1">22</td>
<td align="center" rowspan="1" colspan="1">Maculatin 1.1</td>
<td align="center" rowspan="1" colspan="1"> Frog</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> -1692.0</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">2</td>
<td align="center" rowspan="1" colspan="1"> AP02733</td>
<td align="center" rowspan="1" colspan="1">55</td>
<td align="center" rowspan="1" colspan="1">Piscidin</td>
<td align="center" rowspan="1" colspan="1"> Fish</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> -1581.2</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">3</td>
<td align="center" rowspan="1" colspan="1"> AP00179</td>
<td align="center" rowspan="1" colspan="1">33</td>
<td align="center" rowspan="1" colspan="1">Human neutrophil peptide-4 (Alpha def)</td>
<td align="center" rowspan="1" colspan="1"> Human</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> -1498.5</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="center" rowspan="1" colspan="1"> AP00340</td>
<td align="center" rowspan="1" colspan="1">25</td>
<td align="center" rowspan="1" colspan="1">Chrysophsin-2</td>
<td align="center" rowspan="1" colspan="1"> Fish</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> -1488.6</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">5</td>
<td align="center" rowspan="1" colspan="1"> AP00181</td>
<td align="center" rowspan="1" colspan="1">32</td>
<td align="center" rowspan="1" colspan="1">Human defensin 6</td>
<td align="center" rowspan="1" colspan="1"> Human</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> -1399.5</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">6</td>
<td align="center" rowspan="1" colspan="1"> AP00180</td>
<td align="center" rowspan="1" colspan="1">32</td>
<td align="center" rowspan="1" colspan="1">Human defensin 5 (alpha defensin)</td>
<td align="center" rowspan="1" colspan="1"> Human</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> -1340.8</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">7</td>
<td align="center" rowspan="1" colspan="1"> AP00222</td>
<td align="center" rowspan="1" colspan="1">32</td>
<td align="center" rowspan="1" colspan="1">RatNP-1 (rat alpha defensin,)</td>
<td align="center" rowspan="1" colspan="1"> Rat</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> -1340.8</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">8</td>
<td align="center" rowspan="1" colspan="1"> AP00223</td>
<td align="center" rowspan="1" colspan="1">32</td>
<td align="center" rowspan="1" colspan="1">RatNP-2 (rat alpha defensin)</td>
<td align="center" rowspan="1" colspan="1"> Rat</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> -1340.8</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">9</td>
<td align="center" rowspan="1" colspan="1"> AP00764</td>
<td align="center" rowspan="1" colspan="1">24</td>
<td align="center" rowspan="1" colspan="1">Dermaseptin-S9</td>
<td align="center" rowspan="1" colspan="1"> Frog</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> -1338.8</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="center" rowspan="1" colspan="1"> AP00742</td>
<td align="center" rowspan="1" colspan="1">42</td>
<td align="center" rowspan="1" colspan="1">Chicken AvBD6 (Beta def)</td>
<td align="center" rowspan="1" colspan="1"> Chicken</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> -1264.8</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">11</td>
<td align="center" rowspan="1" colspan="1"> AP02148</td>
<td align="center" rowspan="1" colspan="1">50</td>
<td align="center" rowspan="1" colspan="1">Apl-AvBD16 (Beta def)</td>
<td align="center" rowspan="1" colspan="1"> Bird</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> -1264.8</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">12</td>
<td align="center" rowspan="1" colspan="1"> HR2P
<italic></italic>
</td>
<td align="center" rowspan="1" colspan="1">36</td>
<td align="center" rowspan="1" colspan="1">HR2 region of MERS-CoV</td>
<td align="center" rowspan="1" colspan="1"> Synthetic</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> -1256.9</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">13</td>
<td align="center" rowspan="1" colspan="1"> AP00174</td>
<td align="center" rowspan="1" colspan="1">31</td>
<td align="center" rowspan="1" colspan="1">Guinea pig neutrophil cationic peptide 1</td>
<td align="center" rowspan="1" colspan="1"> Guinea pig</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> -1223.0</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">14</td>
<td align="center" rowspan="1" colspan="1"> AP01788</td>
<td align="center" rowspan="1" colspan="1">43</td>
<td align="center" rowspan="1" colspan="1">Myticin C</td>
<td align="center" rowspan="1" colspan="1"> molluscs</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> -1202.7</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">15</td>
<td align="center" rowspan="1" colspan="1"> AP02830</td>
<td align="center" rowspan="1" colspan="1">43</td>
<td align="center" rowspan="1" colspan="1">ccBD (Channel Catfish beta def)</td>
<td align="center" rowspan="1" colspan="1"> Fish</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> -1184.3</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">16</td>
<td align="center" rowspan="1" colspan="1"> AP00074</td>
<td align="center" rowspan="1" colspan="1">24</td>
<td align="center" rowspan="1" colspan="1">Brevinin-1</td>
<td align="center" rowspan="1" colspan="1"> Frog</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> -1184.2</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">17</td>
<td align="center" rowspan="1" colspan="1"> AP02663</td>
<td align="center" rowspan="1" colspan="1">23</td>
<td align="center" rowspan="1" colspan="1">Piscidins</td>
<td align="center" rowspan="1" colspan="1"> Fish</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> -1184.2</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">18</td>
<td align="center" rowspan="1" colspan="1"> AP01356</td>
<td align="center" rowspan="1" colspan="1">46</td>
<td align="center" rowspan="1" colspan="1">Cp-thionin II</td>
<td align="center" rowspan="1" colspan="1"> Plant</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> -1139.1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">19</td>
<td align="center" rowspan="1" colspan="1"> AP00166</td>
<td align="center" rowspan="1" colspan="1">25</td>
<td align="center" rowspan="1" colspan="1">Pleurocidin</td>
<td align="center" rowspan="1" colspan="1"> Fish</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> -1137.1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">20</td>
<td align="center" rowspan="1" colspan="1"> AP00225</td>
<td align="center" rowspan="1" colspan="1">31</td>
<td align="center" rowspan="1" colspan="1">RatNP-4 (rat defensin)</td>
<td align="center" rowspan="1" colspan="1"> Rat</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> -1103.8</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">21</td>
<td align="center" rowspan="1" colspan="1"> AP00036</td>
<td align="center" rowspan="1" colspan="1">38</td>
<td align="center" rowspan="1" colspan="1">Bovine Beta-defensin 1</td>
<td align="center" rowspan="1" colspan="1"> Bovine</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> -1103.7</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">22</td>
<td align="center" rowspan="1" colspan="1"> AP00744</td>
<td align="center" rowspan="1" colspan="1">41</td>
<td align="center" rowspan="1" colspan="1">AvBD-5, chicken avian beta defensin)</td>
<td align="center" rowspan="1" colspan="1"> Chicken</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> -1103.7</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">23</td>
<td align="center" rowspan="1" colspan="1"> AP00160</td>
<td align="center" rowspan="1" colspan="1">28</td>
<td align="center" rowspan="1" colspan="1">Dermaseptin-S4</td>
<td align="center" rowspan="1" colspan="1"> Frog</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> -1097.0</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">24</td>
<td align="center" rowspan="1" colspan="1"> AP00641</td>
<td align="center" rowspan="1" colspan="1">33</td>
<td align="center" rowspan="1" colspan="1">Pardaxin 1</td>
<td align="center" rowspan="1" colspan="1"> Fish</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> -1050.1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">25</td>
<td align="center" rowspan="1" colspan="1"> AP00549</td>
<td align="center" rowspan="1" colspan="1">40</td>
<td align="center" rowspan="1" colspan="1">Plectasin (fungal defensin)</td>
<td align="center" rowspan="1" colspan="1"> Fungus</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> -994.2</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">26</td>
<td align="center" rowspan="1" colspan="1"> AP00275</td>
<td align="center" rowspan="1" colspan="1">31</td>
<td align="center" rowspan="1" colspan="1">Circulin B (cyclotides)</td>
<td align="center" rowspan="1" colspan="1"> Plant</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> -993.9</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">27</td>
<td align="center" rowspan="1" colspan="1"> AP01022</td>
<td align="center" rowspan="1" colspan="1">31</td>
<td align="center" rowspan="1" colspan="1">Cycloviolin A (cyclotides)</td>
<td align="center" rowspan="1" colspan="1"> Plant</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> -993.9</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">28</td>
<td align="center" rowspan="1" colspan="1"> AP01061</td>
<td align="center" rowspan="1" colspan="1">31</td>
<td align="center" rowspan="1" colspan="1">Circulin D (cyclotides)</td>
<td align="center" rowspan="1" colspan="1"> Plant</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> -993.9</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">29</td>
<td align="center" rowspan="1" colspan="1"> AP00846</td>
<td align="center" rowspan="1" colspan="1">43</td>
<td align="center" rowspan="1" colspan="1">Mundticin KS (Bacteriocin)</td>
<td align="center" rowspan="1" colspan="1"> Bacteria</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> -937.1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">30</td>
<td align="center" rowspan="1" colspan="1"> P9
<italic></italic>
</td>
<td align="center" rowspan="1" colspan="1">30</td>
<td align="center" rowspan="1" colspan="1">Mouse Beta-defensin</td>
<td align="center" rowspan="1" colspan="1"> Mouse</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> -925.5</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">31</td>
<td align="center" rowspan="1" colspan="1"> AP00532</td>
<td align="center" rowspan="1" colspan="1">20</td>
<td align="center" rowspan="1" colspan="1">Lunatusin</td>
<td align="center" rowspan="1" colspan="1"> Plant</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> -921.9</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">32</td>
<td align="center" rowspan="1" colspan="1"> AP02571</td>
<td align="center" rowspan="1" colspan="1">31</td>
<td align="center" rowspan="1" colspan="1">Cycloviolacin VY1 (cyclotides)</td>
<td align="center" rowspan="1" colspan="1"> Plant</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> -897.7</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">33</td>
<td align="center" rowspan="1" colspan="1"> AP00144</td>
<td align="center" rowspan="1" colspan="1">23</td>
<td align="center" rowspan="1" colspan="1">Magainin 2</td>
<td align="center" rowspan="1" colspan="1"> Frog</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> -868.2</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">34</td>
<td align="center" rowspan="1" colspan="1"> AP00771</td>
<td align="center" rowspan="1" colspan="1">23</td>
<td align="center" rowspan="1" colspan="1">Magainin 1</td>
<td align="center" rowspan="1" colspan="1"> Frog</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> -868.2</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">35</td>
<td align="center" rowspan="1" colspan="1"> AP01644</td>
<td align="center" rowspan="1" colspan="1">30</td>
<td align="center" rowspan="1" colspan="1">Brevinin-2-RN1</td>
<td align="center" rowspan="1" colspan="1"> Frog</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> -868.2</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">36</td>
<td align="center" rowspan="1" colspan="1"> AP00692</td>
<td align="center" rowspan="1" colspan="1">30</td>
<td align="center" rowspan="1" colspan="1">HFIAP-3 (Hagfish cathelicidin)</td>
<td align="center" rowspan="1" colspan="1"> Fish</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> -821.3</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">37</td>
<td align="center" rowspan="1" colspan="1"> AP00729</td>
<td align="center" rowspan="1" colspan="1">29</td>
<td align="center" rowspan="1" colspan="1">Kalata B1 (cyclotides)</td>
<td align="center" rowspan="1" colspan="1"> Plant</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> -805.8</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">38</td>
<td align="center" rowspan="1" colspan="1"> AP00730</td>
<td align="center" rowspan="1" colspan="1">31</td>
<td align="center" rowspan="1" colspan="1">Kalata B8 (cyclotides)</td>
<td align="center" rowspan="1" colspan="1"> Plant</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> -805.8</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">39</td>
<td align="center" rowspan="1" colspan="1"> AP01065</td>
<td align="center" rowspan="1" colspan="1">31</td>
<td align="center" rowspan="1" colspan="1">Cycloviolacin 014 (cyclotides)</td>
<td align="center" rowspan="1" colspan="1"> Plant</td>
<td align="center" rowspan="1" colspan="1"> Center</td>
<td align="center" rowspan="1" colspan="1"> -805.8</td>
</tr>
</tbody>
</table>
</table-wrap>
<table-wrap id="tab5" orientation="portrait" position="float">
<label>Table 5</label>
<caption>
<p>Binding mode of each peptide-protein complex using Protein Interaction Calculator (PIC) server.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">APD3 ID</th>
<th align="center" rowspan="1" colspan="1">Hydrophobic interactions </th>
<th align="center" rowspan="1" colspan="1">Main chain Hydrogen bond interactions </th>
<th align="center" rowspan="1" colspan="1">Side chain Hydrogen bond interactions </th>
<th align="center" rowspan="1" colspan="1">Ionic interactions </th>
<th align="center" rowspan="1" colspan="1">Aromatic-aromatic interactions </th>
<th align="center" rowspan="1" colspan="1">Aromatic-sulphur interactions </th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">P9</td>
<td align="center" rowspan="1" colspan="1">
<bold>Tyr64</bold>
,
<bold>Ile69</bold>
, Tyr809,
<bold> Ala920</bold>
,
<bold>Tyr928</bold>
,
<bold>Val929</bold>
, Tyr932, Ala1037</td>
<td align="center" rowspan="1" colspan="1">Asn812, Ser919, Asp922, Asn1042, Asn812, Ser1038</td>
<td align="center" rowspan="1" colspan="1">Tyr932</td>
<td align="center" rowspan="1" colspan="1">Glu1039</td>
<td align="center" rowspan="1" colspan="1">
<bold>Tyr928, Tyr64 </bold>
</td>
<td align="center" rowspan="1" colspan="1">Cys925</td>
</tr>
<tr>
<td colspan="7" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">AP00549</td>
<td align="center" rowspan="1" colspan="1"> Ala1049, Pro59,
<bold>Tyr64</bold>
,
<bold>Tyr928</bold>
,
<bold>Val929</bold>
, Ala930,
<bold> Ala920</bold>
,
<bold>Ile69</bold>
, Tyr71</td>
<td align="center" rowspan="1" colspan="1">Ala1049, Gly61</td>
<td align="center" rowspan="1" colspan="1">Gln60, Gln1056, Cys925</td>
<td align="center" rowspan="1" colspan="1"> Arg1057, Arg62, Asp922</td>
<td align="center" rowspan="1" colspan="1">
<bold>Tyr928, Tyr71 </bold>
</td>
<td align="center" rowspan="1" colspan="1">
<bold>- </bold>
</td>
</tr>
<tr>
<td colspan="7" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">AP00225</td>
<td align="center" rowspan="1" colspan="1">
<italic>Val790, Tyr1142</italic>
, Phe764,
<italic>Leu731</italic>
, Ile768,
<italic>Pro1143, Pro767, Val770</italic>
</td>
<td align="center" rowspan="1" colspan="1"> Pro730</td>
<td align="center" rowspan="1" colspan="1"> Thr791, Gln1119, Tyr1141, Leu729, Asn765, Leu731, His1146, Asn765, His766</td>
<td align="center" rowspan="1" colspan="1"> Gln792, Ser734</td>
<td align="center" rowspan="1" colspan="1">Glu1017</td>
<td align="center" rowspan="1" colspan="1">Tyr1142</td>
</tr>
<tr>
<td colspan="7" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">AP00180</td>
<td align="center" rowspan="1" colspan="1"> Ala1007, Val790,
<italic>Leu731, Pro767</italic>
, Ile768,
<italic>Tyr1142</italic>
</td>
<td align="center" rowspan="1" colspan="1"> Gly789, Pro730</td>
<td align="center" rowspan="1" colspan="1"> Gln1119, Tyr1142, Leu731, Leu729, Pro730, Asn765 Aln1007</td>
<td align="center" rowspan="1" colspan="1">Glu1017, Asp740</td>
<td align="center" rowspan="1" colspan="1"> -</td>
<td align="center" rowspan="1" colspan="1"> Cys1142</td>
</tr>
<tr>
<td colspan="7" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">AP00744</td>
<td align="center" rowspan="1" colspan="1"> Leu1200,
<italic>Pro767, Val1168</italic>
, Ile1180,
<italic>Leu780</italic>
, Phe778,
<italic>Pro1143</italic>
, Val983, Ile985</td>
<td align="center" rowspan="1" colspan="1"> Ala1206</td>
<td align="center" rowspan="1" colspan="1"> Cys1164, Val770, Tyr1153, Ser781</td>
<td align="center" rowspan="1" colspan="1"> Asp771</td>
<td align="center" rowspan="1" colspan="1">Tyr1142</td>
<td align="center" rowspan="1" colspan="1"> -</td>
</tr>
<tr>
<td colspan="7" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">HR2P</td>
<td align="center" rowspan="1" colspan="1"> Tyr1153, Ile1165,
<italic>Val1168</italic>
, Ile1180, Val1181,
<italic>Leu780, Val770, Pro767, Pro1143, Tyr1142, Val790, Leu729,</italic>
Pro730,
<italic>Leu731</italic>
</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1">Asn1169</td>
<td align="center" rowspan="1" colspan="1">His1146, His766</td>
<td align="center" rowspan="1" colspan="1">-</td>
<td align="center" rowspan="1" colspan="1"> -</td>
</tr>
</tbody>
</table>
</table-wrap>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A299 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000A299 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021