Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The prevalence of Middle East respiratory syndrome coronavirus (MERS‐CoV) antibodies in dromedary camels in Israel

Identifieur interne : 000753 ( Pmc/Corpus ); précédent : 000752; suivant : 000754

The prevalence of Middle East respiratory syndrome coronavirus (MERS‐CoV) antibodies in dromedary camels in Israel

Auteurs : Jennifer L. Harcourt ; Nir Rudoler ; Azaibi Tamin ; Eyal Leshem ; Michal Rasis ; Michael Giladi ; Lia M. Haynes

Source :

RBID : PMC:6274617

Abstract

Abstract

Middle East respiratory syndrome coronavirus, MERS‐CoV, was identified in Saudi Arabia in 2012, and as of January 29, 2018, there were 2,123 laboratory‐confirmed MERS‐CoV cases reported to WHO (WHO, 2018, https://www.who.int/emergencies/mers-cov/en/). Multiple studies suggest that dromedary camels are a source for human MERS‐CoV infection. MERS‐CoV‐specific antibodies have been detected in the serum of dromedary camels across Northern Africa and across the Arabian Peninsula. Israel's geographic location places Israel at risk for MERS‐CoV infection. To date, MERS‐CoV‐related illness has not been reported and the burden of MERS‐CoV infection in the Israeli population is unknown. The seroprevalence of MERS‐CoV‐specific antibodies in Israeli dromedary camels is unknown. The objective of this study was to determine the prevalence of MERS‐CoV seropositivity in dromedary camels in Israel. The prevalence of MERS‐CoV antibodies in Israeli camels was examined in 71 camel sera collected from four farms across Israel by MERS‐CoV‐specific microneutralization (Mnt) assay and confirmed by MERS‐CoV‐specific immunofluorescence assay (IFA). Although this study cannot rule out potential antibody cross‐reactivity by IFA, the presence of bovine coronavirus‐specific antibodies do not appear to impact detection of MERS‐CoV antibodies by Mnt. MERS‐CoV neutralizing antibodies were detectable in 51 (71.8%) camel sera, and no association was observed between the presence of neutralizing antibodies and camel age or gender. These findings extend the known range of MERS‐CoV circulation in Middle Eastern camels. The high rate of MERS‐CoV‐specific antibody seropositivity in dromedary camels in the absence of any reported human MERS cases suggests that there is still much to be learned about the dynamics of camel‐to‐human transmission of MERS‐CoV.


Url:
DOI: 10.1111/zph.12482
PubMed: 29855166
PubMed Central: 6274617

Links to Exploration step

PMC:6274617

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The prevalence of Middle East respiratory syndrome coronavirus (MERS‐CoV) antibodies in dromedary camels in Israel</title>
<author>
<name sortKey="Harcourt, Jennifer L" sort="Harcourt, Jennifer L" uniqKey="Harcourt J" first="Jennifer L." last="Harcourt">Jennifer L. Harcourt</name>
<affiliation>
<nlm:aff id="zph12482-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Rudoler, Nir" sort="Rudoler, Nir" uniqKey="Rudoler N" first="Nir" last="Rudoler">Nir Rudoler</name>
<affiliation>
<nlm:aff id="zph12482-aff-0002"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tamin, Azaibi" sort="Tamin, Azaibi" uniqKey="Tamin A" first="Azaibi" last="Tamin">Azaibi Tamin</name>
<affiliation>
<nlm:aff id="zph12482-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Leshem, Eyal" sort="Leshem, Eyal" uniqKey="Leshem E" first="Eyal" last="Leshem">Eyal Leshem</name>
<affiliation>
<nlm:aff id="zph12482-aff-0003"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Rasis, Michal" sort="Rasis, Michal" uniqKey="Rasis M" first="Michal" last="Rasis">Michal Rasis</name>
<affiliation>
<nlm:aff id="zph12482-aff-0004"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Giladi, Michael" sort="Giladi, Michael" uniqKey="Giladi M" first="Michael" last="Giladi">Michael Giladi</name>
<affiliation>
<nlm:aff id="zph12482-aff-0004"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="zph12482-aff-0005"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Haynes, Lia M" sort="Haynes, Lia M" uniqKey="Haynes L" first="Lia M." last="Haynes">Lia M. Haynes</name>
<affiliation>
<nlm:aff id="zph12482-aff-0006"></nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">29855166</idno>
<idno type="pmc">6274617</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6274617</idno>
<idno type="RBID">PMC:6274617</idno>
<idno type="doi">10.1111/zph.12482</idno>
<date when="2018">2018</date>
<idno type="wicri:Area/Pmc/Corpus">000753</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000753</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">The prevalence of Middle East respiratory syndrome coronavirus (MERS‐CoV) antibodies in dromedary camels in Israel</title>
<author>
<name sortKey="Harcourt, Jennifer L" sort="Harcourt, Jennifer L" uniqKey="Harcourt J" first="Jennifer L." last="Harcourt">Jennifer L. Harcourt</name>
<affiliation>
<nlm:aff id="zph12482-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Rudoler, Nir" sort="Rudoler, Nir" uniqKey="Rudoler N" first="Nir" last="Rudoler">Nir Rudoler</name>
<affiliation>
<nlm:aff id="zph12482-aff-0002"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tamin, Azaibi" sort="Tamin, Azaibi" uniqKey="Tamin A" first="Azaibi" last="Tamin">Azaibi Tamin</name>
<affiliation>
<nlm:aff id="zph12482-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Leshem, Eyal" sort="Leshem, Eyal" uniqKey="Leshem E" first="Eyal" last="Leshem">Eyal Leshem</name>
<affiliation>
<nlm:aff id="zph12482-aff-0003"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Rasis, Michal" sort="Rasis, Michal" uniqKey="Rasis M" first="Michal" last="Rasis">Michal Rasis</name>
<affiliation>
<nlm:aff id="zph12482-aff-0004"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Giladi, Michael" sort="Giladi, Michael" uniqKey="Giladi M" first="Michael" last="Giladi">Michael Giladi</name>
<affiliation>
<nlm:aff id="zph12482-aff-0004"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="zph12482-aff-0005"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Haynes, Lia M" sort="Haynes, Lia M" uniqKey="Haynes L" first="Lia M." last="Haynes">Lia M. Haynes</name>
<affiliation>
<nlm:aff id="zph12482-aff-0006"></nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Zoonoses and Public Health</title>
<idno type="ISSN">1863-1959</idno>
<idno type="eISSN">1863-2378</idno>
<imprint>
<date when="2018">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<title>Abstract</title>
<p>Middle East respiratory syndrome coronavirus, MERS‐CoV, was identified in Saudi Arabia in 2012, and as of January 29, 2018, there were 2,123 laboratory‐confirmed MERS‐CoV cases reported to WHO (WHO, 2018,
<ext-link ext-link-type="uri" xlink:href="https://www.who.int/emergencies/mers-cov/en/">https://www.who.int/emergencies/mers-cov/en/</ext-link>
). Multiple studies suggest that dromedary camels are a source for human MERS‐CoV infection. MERS‐CoV‐specific antibodies have been detected in the serum of dromedary camels across Northern Africa and across the Arabian Peninsula. Israel's geographic location places Israel at risk for MERS‐CoV infection. To date, MERS‐CoV‐related illness has not been reported and the burden of MERS‐CoV infection in the Israeli population is unknown. The seroprevalence of MERS‐CoV‐specific antibodies in Israeli dromedary camels is unknown. The objective of this study was to determine the prevalence of MERS‐CoV seropositivity in dromedary camels in Israel. The prevalence of MERS‐CoV antibodies in Israeli camels was examined in 71 camel sera collected from four farms across Israel by MERS‐CoV‐specific microneutralization (Mnt) assay and confirmed by MERS‐CoV‐specific immunofluorescence assay (IFA). Although this study cannot rule out potential antibody cross‐reactivity by IFA, the presence of bovine coronavirus‐specific antibodies do not appear to impact detection of MERS‐CoV antibodies by Mnt. MERS‐CoV neutralizing antibodies were detectable in 51 (71.8%) camel sera, and no association was observed between the presence of neutralizing antibodies and camel age or gender. These findings extend the known range of MERS‐CoV circulation in Middle Eastern camels. The high rate of MERS‐CoV‐specific antibody seropositivity in dromedary camels in the absence of any reported human MERS cases suggests that there is still much to be learned about the dynamics of camel‐to‐human transmission of MERS‐CoV.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="brief-report">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Zoonoses Public Health</journal-id>
<journal-id journal-id-type="iso-abbrev">Zoonoses Public Health</journal-id>
<journal-id journal-id-type="doi">10.1111/(ISSN)1863-2378</journal-id>
<journal-id journal-id-type="publisher-id">ZPH</journal-id>
<journal-title-group>
<journal-title>Zoonoses and Public Health</journal-title>
</journal-title-group>
<issn pub-type="ppub">1863-1959</issn>
<issn pub-type="epub">1863-2378</issn>
<publisher>
<publisher-name>John Wiley and Sons Inc.</publisher-name>
<publisher-loc>Hoboken</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">29855166</article-id>
<article-id pub-id-type="pmc">6274617</article-id>
<article-id pub-id-type="doi">10.1111/zph.12482</article-id>
<article-id pub-id-type="publisher-id">ZPH12482</article-id>
<article-categories>
<subj-group subj-group-type="overline">
<subject>Short Communication</subject>
</subj-group>
<subj-group subj-group-type="heading">
<subject>Short Communications</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>The prevalence of Middle East respiratory syndrome coronavirus (MERS‐CoV) antibodies in dromedary camels in Israel</article-title>
<alt-title alt-title-type="left-running-head">HARCOURT et al.</alt-title>
</title-group>
<contrib-group>
<contrib id="zph12482-cr-0001" contrib-type="author" corresp="yes">
<name>
<surname>Harcourt</surname>
<given-names>Jennifer L.</given-names>
</name>
<contrib-id contrib-id-type="orcid" authenticated="false">http://orcid.org/0000-0003-3271-4174</contrib-id>
<xref ref-type="aff" rid="zph12482-aff-0001">
<sup>1</sup>
</xref>
<address>
<email>zaq6@cdc.gov</email>
</address>
</contrib>
<contrib id="zph12482-cr-0002" contrib-type="author">
<name>
<surname>Rudoler</surname>
<given-names>Nir</given-names>
</name>
<xref ref-type="aff" rid="zph12482-aff-0002">
<sup>2</sup>
</xref>
</contrib>
<contrib id="zph12482-cr-0003" contrib-type="author">
<name>
<surname>Tamin</surname>
<given-names>Azaibi</given-names>
</name>
<xref ref-type="aff" rid="zph12482-aff-0001">
<sup>1</sup>
</xref>
</contrib>
<contrib id="zph12482-cr-0004" contrib-type="author">
<name>
<surname>Leshem</surname>
<given-names>Eyal</given-names>
</name>
<xref ref-type="aff" rid="zph12482-aff-0003">
<sup>3</sup>
</xref>
</contrib>
<contrib id="zph12482-cr-0005" contrib-type="author">
<name>
<surname>Rasis</surname>
<given-names>Michal</given-names>
</name>
<xref ref-type="aff" rid="zph12482-aff-0004">
<sup>4</sup>
</xref>
</contrib>
<contrib id="zph12482-cr-0006" contrib-type="author">
<name>
<surname>Giladi</surname>
<given-names>Michael</given-names>
</name>
<xref ref-type="aff" rid="zph12482-aff-0004">
<sup>4</sup>
</xref>
<xref ref-type="aff" rid="zph12482-aff-0005">
<sup>5</sup>
</xref>
</contrib>
<contrib id="zph12482-cr-0007" contrib-type="author">
<name>
<surname>Haynes</surname>
<given-names>Lia M.</given-names>
</name>
<xref ref-type="aff" rid="zph12482-aff-0006">
<sup>6</sup>
</xref>
</contrib>
</contrib-group>
<aff id="zph12482-aff-0001">
<label>
<sup>1</sup>
</label>
<named-content content-type="organisation-division">National Center for Immunization and Respiratory Diseases, Division of Viral Diseases, Gastroenteritis and Respiratory Viruses Laboratory Branch</named-content>
<institution>Centers for Disease Control and Prevention (CDC)</institution>
<city>Atlanta</city>
<named-content content-type="country-part">Georgia</named-content>
</aff>
<aff id="zph12482-aff-0002">
<label>
<sup>2</sup>
</label>
<named-content content-type="organisation-division">Koret School of Veterinary Medicine, Faculty of Agriculture</named-content>
<institution>Hebrew University</institution>
<city>Rehovot</city>
<country country="IL">Israel</country>
</aff>
<aff id="zph12482-aff-0003">
<label>
<sup>3</sup>
</label>
<named-content content-type="organisation-division">National Center for Immunization and Respiratory Diseases, Division of Viral Diseases, Epidemiology Branch</named-content>
<institution>Centers for Disease Control and Prevention (CDC)</institution>
<city>Atlanta</city>
<named-content content-type="country-part">Georgia</named-content>
</aff>
<aff id="zph12482-aff-0004">
<label>
<sup>4</sup>
</label>
<named-content content-type="organisation-division">Bernard Pridan Laboratory for Molecular Biology of Infectious Diseases</named-content>
<institution>Tel Aviv Sourasky Medical Center</institution>
<city>Tel Aviv</city>
<country country="IL">Israel</country>
</aff>
<aff id="zph12482-aff-0005">
<label>
<sup>5</sup>
</label>
<named-content content-type="organisation-division">Sackler Faculty of Medicine</named-content>
<institution>Tel Aviv University</institution>
<city>Tel Aviv</city>
<country country="IL">Israel</country>
</aff>
<aff id="zph12482-aff-0006">
<label>
<sup>6</sup>
</label>
<named-content content-type="organisation-division">National Center for Immunization and Respiratory Diseases, Division of Viral Diseases</named-content>
<institution>Centers for Disease Control and Prevention (CDC)</institution>
<city>Atlanta</city>
<named-content content-type="country-part">Georgia</named-content>
</aff>
<author-notes>
<corresp id="correspondenceTo">
<label>*</label>
<bold>Correspondence</bold>
<break></break>
Jennifer L. Harcourt, Division of Viral Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop G‐18, Atlanta, 30333, GA.
<break></break>
Email:
<email>zaq6@cdc.gov</email>
<break></break>
</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>31</day>
<month>5</month>
<year>2018</year>
</pub-date>
<pub-date pub-type="ppub">
<month>9</month>
<year>2018</year>
</pub-date>
<volume>65</volume>
<issue>6</issue>
<issue-id pub-id-type="doi">10.1111/zph.2018.65.issue-6</issue-id>
<fpage>749</fpage>
<lpage>754</lpage>
<history>
<date date-type="received">
<day>29</day>
<month>1</month>
<year>2018</year>
</date>
<date date-type="rev-recd">
<day>24</day>
<month>4</month>
<year>2018</year>
</date>
<date date-type="accepted">
<day>28</day>
<month>4</month>
<year>2018</year>
</date>
</history>
<permissions>
<pmc-comment> Copyright © 2018 Blackwell Verlag GmbH </pmc-comment>
<copyright-statement content-type="article-copyright">© 2018 Blackwell Verlag GmbH</copyright-statement>
<license>
<license-p>This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency.</license-p>
</license>
</permissions>
<self-uri content-type="pdf" xlink:href="file:ZPH-65-749.pdf"></self-uri>
<abstract id="zph12482-abs-0001">
<title>Abstract</title>
<p>Middle East respiratory syndrome coronavirus, MERS‐CoV, was identified in Saudi Arabia in 2012, and as of January 29, 2018, there were 2,123 laboratory‐confirmed MERS‐CoV cases reported to WHO (WHO, 2018,
<ext-link ext-link-type="uri" xlink:href="https://www.who.int/emergencies/mers-cov/en/">https://www.who.int/emergencies/mers-cov/en/</ext-link>
). Multiple studies suggest that dromedary camels are a source for human MERS‐CoV infection. MERS‐CoV‐specific antibodies have been detected in the serum of dromedary camels across Northern Africa and across the Arabian Peninsula. Israel's geographic location places Israel at risk for MERS‐CoV infection. To date, MERS‐CoV‐related illness has not been reported and the burden of MERS‐CoV infection in the Israeli population is unknown. The seroprevalence of MERS‐CoV‐specific antibodies in Israeli dromedary camels is unknown. The objective of this study was to determine the prevalence of MERS‐CoV seropositivity in dromedary camels in Israel. The prevalence of MERS‐CoV antibodies in Israeli camels was examined in 71 camel sera collected from four farms across Israel by MERS‐CoV‐specific microneutralization (Mnt) assay and confirmed by MERS‐CoV‐specific immunofluorescence assay (IFA). Although this study cannot rule out potential antibody cross‐reactivity by IFA, the presence of bovine coronavirus‐specific antibodies do not appear to impact detection of MERS‐CoV antibodies by Mnt. MERS‐CoV neutralizing antibodies were detectable in 51 (71.8%) camel sera, and no association was observed between the presence of neutralizing antibodies and camel age or gender. These findings extend the known range of MERS‐CoV circulation in Middle Eastern camels. The high rate of MERS‐CoV‐specific antibody seropositivity in dromedary camels in the absence of any reported human MERS cases suggests that there is still much to be learned about the dynamics of camel‐to‐human transmission of MERS‐CoV.</p>
</abstract>
<kwd-group kwd-group-type="author-generated">
<kwd id="zph12482-kwd-0001">coronavirus</kwd>
<kwd id="zph12482-kwd-0002">dromedary camels</kwd>
<kwd id="zph12482-kwd-0003">MERS‐CoV</kwd>
<kwd id="zph12482-kwd-0004">Middle East respiratory syndrome coronavirus</kwd>
</kwd-group>
<funding-group>
<award-group id="funding-0001">
<funding-source>
<institution-wrap>
<institution>Centers for Disease Control and Prevention </institution>
<institution-id institution-id-type="open-funder-registry">10.13039/100000030</institution-id>
</institution-wrap>
</funding-source>
</award-group>
</funding-group>
<counts>
<fig-count count="1"></fig-count>
<table-count count="2"></table-count>
<page-count count="6"></page-count>
<word-count count="4099"></word-count>
</counts>
<custom-meta-group>
<custom-meta>
<meta-name>source-schema-version-number</meta-name>
<meta-value>2.0</meta-value>
</custom-meta>
<custom-meta>
<meta-name>cover-date</meta-name>
<meta-value>September 2018</meta-value>
</custom-meta>
<custom-meta>
<meta-name>details-of-publishers-convertor</meta-name>
<meta-value>Converter:WILEY_ML3GV2_TO_JATSPMC version:5.8.0 mode:remove_FC converted:15.04.2020</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
<notes>
<p content-type="self-citation">
<mixed-citation publication-type="journal" id="zph12482-cit-1001">
<string-name>
<surname>Harcourt</surname>
<given-names>JL</given-names>
</string-name>
,
<string-name>
<surname>Rudoler</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Tamin</surname>
<given-names>A</given-names>
</string-name>
, et al.
<article-title>The prevalence of Middle East respiratory syndrome coronavirus (MERS‐CoV) antibodies in dromedary camels in Israel</article-title>
.
<source xml:lang="en">Zoonoses Public Health</source>
.
<year>2018</year>
;
<volume>65</volume>
:
<fpage>749</fpage>
<lpage>754</lpage>
.
<pub-id pub-id-type="doi">10.1111/zph.12482</pub-id>
<pub-id pub-id-type="pmid">29855166</pub-id>
</mixed-citation>
</p>
<fn-group id="zph12482-ntgp-0001">
<fn fn-type="equal" id="zph12482-note-0001">
<p>The findings and conclusions in this report are those of the author(s) and do not necessarily represent the official position of the Centers for Disease Control and Prevention.</p>
</fn>
</fn-group>
</notes>
</front>
<body id="zph12482-body-0001">
<p>
<boxed-text position="anchor" content-type="box" id="zph12482-blkfxd-0001" orientation="portrait">
<caption>
<title>Impacts</title>
</caption>
<p>
<list list-type="bullet" id="zph12482-list-0001">
<list-item>
<p>Israel’s geographic location places Israeli citizens at risk for MERS‐CoV infection. To date, MERS‐CoV‐related illness has not been reported in Israel.</p>
</list-item>
<list-item>
<p>Dromedary camels are one potential source of human MERS‐CoV infection; the seroprevalence of MERS‐CoV‐specific antibodies in Israeli dromedary camels is unknown.</p>
</list-item>
<list-item>
<p>In this study, MERS‐CoV seroprevalence in dromedary camels was 72% across four farms in Israel. The high prevalence of MERS‐CoV antibodies in camels and the absence of human MERS cases suggest that there is much to be learned about camel‐to‐human transmission of MERS‐CoV.</p>
</list-item>
</list>
</p>
</boxed-text>
</p>
<sec id="zph12482-sec-0002">
<label>1</label>
<title>INTRODUCTION</title>
<p>Middle East respiratory syndrome coronavirus, MERS‐CoV, a member of the Betacoronavirus genus lineage C, was first identified in Saudi Arabia in 2012. As of January 29, 2018, there were 2,123 laboratory‐confirmed human MERS‐CoV cases reported to WHO, including at least 740 MERS‐CoV‐related deaths (WHO,
<xref rid="zph12482-bib-0018" ref-type="ref">2018</xref>
). Multiple studies suggest that dromedary camels are a major source for human MERS‐CoV infection. MERS‐CoV‐specific antibodies have been detected in the serum of dromedary camels across Northern Africa, including Tunisia, Egypt, Sudan, Ethiopia, Nigeria, Kenya and Somalia, and across the Arabian Peninsula, including Jordan, Saudi Arabia, Qatar, Oman and United Arab Emirates (Corman et al.,
<xref rid="zph12482-bib-0004" ref-type="ref">2014</xref>
; Hemida et al.,
<xref rid="zph12482-bib-0007" ref-type="ref">2014</xref>
; Meyer et al.,
<xref rid="zph12482-bib-0010" ref-type="ref">2014</xref>
; Muller et al.,
<xref rid="zph12482-bib-0012" ref-type="ref">2014</xref>
). MERS‐CoV neutralizing antibodies have been detected in 30‐year‐old archived camel serum samples, suggesting long‐term circulation of MERS‐CoV in dromedaries in this region (Muller et al.,
<xref rid="zph12482-bib-0012" ref-type="ref">2014</xref>
). MERS‐CoV genome has been detected, isolated and sequenced from camel respiratory specimens in Northern Africa, Nigeria and Saudi Arabia, and from an air sample of a camel barn owned by a known MERS‐CoV‐infected human (Alagaili et al.,
<xref rid="zph12482-bib-0001" ref-type="ref">2014</xref>
; Azhar et al.,
<xref rid="zph12482-bib-0002" ref-type="ref">2014</xref>
; Chu et al.,
<xref rid="zph12482-bib-0003" ref-type="ref">2015</xref>
; Haagmans et al.,
<xref rid="zph12482-bib-0006" ref-type="ref">2014</xref>
; Raj et al.,
<xref rid="zph12482-bib-0015" ref-type="ref">2014</xref>
). Genomic and epidemiologic studies comparing MERS‐CoV sequences from household clusters and camels, and of dromedary farms and human contacts in UAE (Muhairi et al.,
<xref rid="zph12482-bib-0011" ref-type="ref">2016</xref>
; Paden et al.,
<xref rid="zph12482-bib-0013" ref-type="ref">2017</xref>
), and of patients with corresponding MERS‐CoV‐positive camels in Saudi Arabia (Kasem et al.,
<xref rid="zph12482-bib-0009" ref-type="ref">2017</xref>
) demonstrate that camels are a potential source of human MERS‐CoV infection.</p>
<p>Israel's geographic location in the Middle East, bordering Jordan where human cases have been reported and MERS‐CoV‐specific antibodies have been detected in the serum of dromedary camels, suggests Israeli citizens may be at risk for MERS‐CoV infection. However, to date, MERS‐CoV‐related illness has not been reported in Israel and the seroprevalence of MERS‐CoV‐specific antibodies in Israeli dromedary camels is unknown. The objective of this study was to determine the prevalence of MERS‐CoV seropositivity in Israeli camels.</p>
</sec>
<sec id="zph12482-sec-0003">
<label>2</label>
<title>MATERIALS AND METHODS</title>
<sec id="zph12482-sec-0004">
<label>2.1</label>
<title>Serum samples</title>
<p>Serum specimens from 71 dromedary camels across four different locations in Israel (Sites A‐D, Tables
<xref rid="zph12482-tbl-0001" ref-type="table">1</xref>
and
<xref rid="zph12482-tbl-0002" ref-type="table">2</xref>
) were collected between May and June 2013, as previously described (Rasis, Rudoler, Schwartz, & Giladi,
<xref rid="zph12482-bib-0016" ref-type="ref">2014</xref>
). Farm A (
<italic>n</italic>
 = 9) was located east of Jerusalem; farms B‐D (
<italic>n</italic>
 = 15, 27 and 20, respectively) were located in the Negev desert, in southern Israel. The origin of these camels prior to their association with these four locations is unknown. These camels were used in the tourism industry. This study included both male (
<italic>n</italic>
 = 19) and female (
<italic>n</italic>
 = 52) camels ages 3 to over 20 years old. Blood samples were taken by jugular vein puncture. Serum samples were obtained on the day of collection from unclotted blood using serum separator tubes. All serum specimens were shipped to the CDC and inactivated by gamma irradiation at 5 × 10
<sup>6</sup>
rads in a Cobalt irradiator to inactivate potential pathogens, and stored at −80°C until use. The study was approved by the Tel Aviv Sourasky Medical Center Institutional Animal Care and Use Committee (Study 18–6‐13).</p>
<table-wrap id="zph12482-tbl-0001" xml:lang="en" orientation="portrait" position="float">
<label>Table 1</label>
<caption>
<p>Middle East Respiratory Syndrome Coronavirus (MERS‐CoV) Microneutralization and Immunofluorescence (IFA) titres in sera samples collected from dromedary camels in Israel (
<italic>n</italic>
 = 35): High (≥80) neutralizing antibody titres</p>
</caption>
<table frame="hsides" rules="groups">
<col style="border-right:solid 1px #000000" span="1"></col>
<col style="border-right:solid 1px #000000" span="1"></col>
<col style="border-right:solid 1px #000000" span="1"></col>
<col style="border-right:solid 1px #000000" span="1"></col>
<col style="border-right:solid 1px #000000" span="1"></col>
<col style="border-right:solid 1px #000000" span="1"></col>
<col style="border-right:solid 1px #000000" span="1"></col>
<thead valign="top">
<tr style="border-bottom:solid 1px #000000">
<th align="left" valign="top" rowspan="1" colspan="1">Sample ID</th>
<th align="left" valign="top" rowspan="1" colspan="1">Site</th>
<th align="left" valign="top" rowspan="1" colspan="1">Age (years)</th>
<th align="left" valign="top" rowspan="1" colspan="1">Sex</th>
<th align="left" valign="top" rowspan="1" colspan="1">Microneutralization Reciprocal Titres, MERS‐CoV
<xref ref-type="fn" rid="zph12482-note-0003">a</xref>
</th>
<th align="left" valign="top" rowspan="1" colspan="1">IFA Reciprocal Titres, MERS‐CoV
<xref ref-type="fn" rid="zph12482-note-0004">b</xref>
</th>
<th align="left" valign="top" rowspan="1" colspan="1">IFA results, BCoV
<xref ref-type="fn" rid="zph12482-note-0005">c</xref>
</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">1</td>
<td align="left" rowspan="1" colspan="1">C</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">F</td>
<td align="left" rowspan="1" colspan="1">25,600</td>
<td align="left" rowspan="1" colspan="1">≥10,000</td>
<td align="left" rowspan="1" colspan="1">Pos</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">2</td>
<td align="left" rowspan="1" colspan="1">C</td>
<td align="left" rowspan="1" colspan="1">12</td>
<td align="left" rowspan="1" colspan="1">F</td>
<td align="left" rowspan="1" colspan="1">6,400</td>
<td align="left" rowspan="1" colspan="1">10,000</td>
<td align="left" rowspan="1" colspan="1">Pos</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">3</td>
<td align="left" rowspan="1" colspan="1">D</td>
<td align="left" rowspan="1" colspan="1">19</td>
<td align="left" rowspan="1" colspan="1">F</td>
<td align="left" rowspan="1" colspan="1">6,400</td>
<td align="left" rowspan="1" colspan="1">8,000</td>
<td align="left" rowspan="1" colspan="1">Pos</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">C</td>
<td align="left" rowspan="1" colspan="1">9</td>
<td align="left" rowspan="1" colspan="1">F</td>
<td align="left" rowspan="1" colspan="1">3,200</td>
<td align="left" rowspan="1" colspan="1">8,000</td>
<td align="left" rowspan="1" colspan="1">nd</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">5</td>
<td align="left" rowspan="1" colspan="1">D</td>
<td align="left" rowspan="1" colspan="1">9</td>
<td align="left" rowspan="1" colspan="1">F</td>
<td align="left" rowspan="1" colspan="1">1600</td>
<td align="left" rowspan="1" colspan="1">4,000</td>
<td align="left" rowspan="1" colspan="1">Pos</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">6</td>
<td align="left" rowspan="1" colspan="1">D</td>
<td align="left" rowspan="1" colspan="1">3</td>
<td align="left" rowspan="1" colspan="1">F</td>
<td align="left" rowspan="1" colspan="1">1600</td>
<td align="left" rowspan="1" colspan="1">4,000</td>
<td align="left" rowspan="1" colspan="1">Pos</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">7</td>
<td align="left" rowspan="1" colspan="1">C</td>
<td align="left" rowspan="1" colspan="1">8</td>
<td align="left" rowspan="1" colspan="1">F</td>
<td align="left" rowspan="1" colspan="1">1600</td>
<td align="left" rowspan="1" colspan="1">4,000</td>
<td align="left" rowspan="1" colspan="1">nd</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">8</td>
<td align="left" rowspan="1" colspan="1">B</td>
<td align="left" rowspan="1" colspan="1">15</td>
<td align="left" rowspan="1" colspan="1">F</td>
<td align="left" rowspan="1" colspan="1">800</td>
<td align="left" rowspan="1" colspan="1">4,000</td>
<td align="left" rowspan="1" colspan="1">Pos</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">9</td>
<td align="left" rowspan="1" colspan="1">D</td>
<td align="left" rowspan="1" colspan="1">12</td>
<td align="left" rowspan="1" colspan="1">F</td>
<td align="left" rowspan="1" colspan="1">640</td>
<td align="left" rowspan="1" colspan="1">2,000–4,000</td>
<td align="left" rowspan="1" colspan="1">Pos</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">D</td>
<td align="left" rowspan="1" colspan="1">15</td>
<td align="left" rowspan="1" colspan="1">F</td>
<td align="left" rowspan="1" colspan="1">640</td>
<td align="left" rowspan="1" colspan="1">2,000–4,000</td>
<td align="left" rowspan="1" colspan="1">Neg</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">11</td>
<td align="left" rowspan="1" colspan="1">D</td>
<td align="left" rowspan="1" colspan="1">9</td>
<td align="left" rowspan="1" colspan="1">F</td>
<td align="left" rowspan="1" colspan="1">640</td>
<td align="left" rowspan="1" colspan="1">2,000</td>
<td align="left" rowspan="1" colspan="1">Pos</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">12</td>
<td align="left" rowspan="1" colspan="1">D</td>
<td align="left" rowspan="1" colspan="1">11</td>
<td align="left" rowspan="1" colspan="1">F</td>
<td align="left" rowspan="1" colspan="1">640</td>
<td align="left" rowspan="1" colspan="1">750</td>
<td align="left" rowspan="1" colspan="1">Pos</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">13</td>
<td align="left" rowspan="1" colspan="1">A</td>
<td align="left" rowspan="1" colspan="1">20 (+)</td>
<td align="left" rowspan="1" colspan="1">F</td>
<td align="left" rowspan="1" colspan="1">640</td>
<td align="left" rowspan="1" colspan="1">750</td>
<td align="left" rowspan="1" colspan="1">Pos</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">14</td>
<td align="left" rowspan="1" colspan="1">C</td>
<td align="left" rowspan="1" colspan="1">7</td>
<td align="left" rowspan="1" colspan="1">F</td>
<td align="left" rowspan="1" colspan="1">640</td>
<td align="left" rowspan="1" colspan="1">2,000–4,000</td>
<td align="left" rowspan="1" colspan="1">nd</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">15</td>
<td align="left" rowspan="1" colspan="1">C</td>
<td align="left" rowspan="1" colspan="1">7</td>
<td align="left" rowspan="1" colspan="1">F</td>
<td align="left" rowspan="1" colspan="1">640</td>
<td align="left" rowspan="1" colspan="1">4,000</td>
<td align="left" rowspan="1" colspan="1">nd</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">16</td>
<td align="left" rowspan="1" colspan="1">D</td>
<td align="left" rowspan="1" colspan="1">13</td>
<td align="left" rowspan="1" colspan="1">F</td>
<td align="left" rowspan="1" colspan="1">320</td>
<td align="left" rowspan="1" colspan="1">100</td>
<td align="left" rowspan="1" colspan="1">Pos</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">17</td>
<td align="left" rowspan="1" colspan="1">D</td>
<td align="left" rowspan="1" colspan="1">14</td>
<td align="left" rowspan="1" colspan="1">F</td>
<td align="left" rowspan="1" colspan="1">320</td>
<td align="left" rowspan="1" colspan="1">100</td>
<td align="left" rowspan="1" colspan="1">Pos</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">18</td>
<td align="left" rowspan="1" colspan="1">D</td>
<td align="left" rowspan="1" colspan="1">24</td>
<td align="left" rowspan="1" colspan="1">F</td>
<td align="left" rowspan="1" colspan="1">320</td>
<td align="left" rowspan="1" colspan="1">100</td>
<td align="left" rowspan="1" colspan="1">Pos</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">19</td>
<td align="left" rowspan="1" colspan="1">D</td>
<td align="left" rowspan="1" colspan="1">12</td>
<td align="left" rowspan="1" colspan="1">F</td>
<td align="left" rowspan="1" colspan="1">320</td>
<td align="left" rowspan="1" colspan="1">100</td>
<td align="left" rowspan="1" colspan="1">Neg</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">20</td>
<td align="left" rowspan="1" colspan="1">C</td>
<td align="left" rowspan="1" colspan="1">14</td>
<td align="left" rowspan="1" colspan="1">M</td>
<td align="left" rowspan="1" colspan="1">320</td>
<td align="left" rowspan="1" colspan="1">100</td>
<td align="left" rowspan="1" colspan="1">Pos</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">21</td>
<td align="left" rowspan="1" colspan="1">C</td>
<td align="left" rowspan="1" colspan="1">14</td>
<td align="left" rowspan="1" colspan="1">M</td>
<td align="left" rowspan="1" colspan="1">320</td>
<td align="left" rowspan="1" colspan="1">100</td>
<td align="left" rowspan="1" colspan="1">Pos</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">22</td>
<td align="left" rowspan="1" colspan="1">C</td>
<td align="left" rowspan="1" colspan="1">7</td>
<td align="left" rowspan="1" colspan="1">F</td>
<td align="left" rowspan="1" colspan="1">320</td>
<td align="left" rowspan="1" colspan="1">100</td>
<td align="left" rowspan="1" colspan="1">nd</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">23</td>
<td align="left" rowspan="1" colspan="1">D</td>
<td align="left" rowspan="1" colspan="1">9</td>
<td align="left" rowspan="1" colspan="1">F</td>
<td align="left" rowspan="1" colspan="1">160</td>
<td align="left" rowspan="1" colspan="1">100</td>
<td align="left" rowspan="1" colspan="1">Neg</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">24</td>
<td align="left" rowspan="1" colspan="1">D</td>
<td align="left" rowspan="1" colspan="1">11</td>
<td align="left" rowspan="1" colspan="1">F</td>
<td align="left" rowspan="1" colspan="1">160</td>
<td align="left" rowspan="1" colspan="1">100</td>
<td align="left" rowspan="1" colspan="1">Pos</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">25</td>
<td align="left" rowspan="1" colspan="1">D</td>
<td align="left" rowspan="1" colspan="1">8</td>
<td align="left" rowspan="1" colspan="1">F</td>
<td align="left" rowspan="1" colspan="1">160</td>
<td align="left" rowspan="1" colspan="1">100</td>
<td align="left" rowspan="1" colspan="1">Neg</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">26</td>
<td align="left" rowspan="1" colspan="1">B</td>
<td align="left" rowspan="1" colspan="1">9</td>
<td align="left" rowspan="1" colspan="1">F</td>
<td align="left" rowspan="1" colspan="1">160</td>
<td align="left" rowspan="1" colspan="1">100</td>
<td align="left" rowspan="1" colspan="1">Pos</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">27</td>
<td align="left" rowspan="1" colspan="1">B</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">F</td>
<td align="left" rowspan="1" colspan="1">160</td>
<td align="left" rowspan="1" colspan="1">100</td>
<td align="left" rowspan="1" colspan="1">Pos</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">28</td>
<td align="left" rowspan="1" colspan="1">C</td>
<td align="left" rowspan="1" colspan="1">7</td>
<td align="left" rowspan="1" colspan="1">F</td>
<td align="left" rowspan="1" colspan="1">160</td>
<td align="left" rowspan="1" colspan="1">100</td>
<td align="left" rowspan="1" colspan="1">nd</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">29</td>
<td align="left" rowspan="1" colspan="1">C</td>
<td align="left" rowspan="1" colspan="1">8</td>
<td align="left" rowspan="1" colspan="1">F</td>
<td align="left" rowspan="1" colspan="1">160</td>
<td align="left" rowspan="1" colspan="1">100</td>
<td align="left" rowspan="1" colspan="1">Neg</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">30</td>
<td align="left" rowspan="1" colspan="1">D</td>
<td align="left" rowspan="1" colspan="1">20</td>
<td align="left" rowspan="1" colspan="1">F</td>
<td align="left" rowspan="1" colspan="1">80</td>
<td align="left" rowspan="1" colspan="1">100</td>
<td align="left" rowspan="1" colspan="1">Neg</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">31</td>
<td align="left" rowspan="1" colspan="1">D</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">F</td>
<td align="left" rowspan="1" colspan="1">80</td>
<td align="left" rowspan="1" colspan="1">Indeterminate
<xref ref-type="fn" rid="zph12482-note-0006">d</xref>
</td>
<td align="left" rowspan="1" colspan="1">Pos</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">32</td>
<td align="left" rowspan="1" colspan="1">D</td>
<td align="left" rowspan="1" colspan="1">17</td>
<td align="left" rowspan="1" colspan="1">F</td>
<td align="left" rowspan="1" colspan="1">80</td>
<td align="left" rowspan="1" colspan="1">100</td>
<td align="left" rowspan="1" colspan="1">Pos</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">33</td>
<td align="left" rowspan="1" colspan="1">B</td>
<td align="left" rowspan="1" colspan="1">9–10</td>
<td align="left" rowspan="1" colspan="1">F</td>
<td align="left" rowspan="1" colspan="1">80</td>
<td align="left" rowspan="1" colspan="1">100</td>
<td align="left" rowspan="1" colspan="1">Pos</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">34</td>
<td align="left" rowspan="1" colspan="1">C</td>
<td align="left" rowspan="1" colspan="1">7</td>
<td align="left" rowspan="1" colspan="1">M</td>
<td align="left" rowspan="1" colspan="1">80</td>
<td align="left" rowspan="1" colspan="1">100</td>
<td align="left" rowspan="1" colspan="1">Pos</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">35</td>
<td align="left" rowspan="1" colspan="1">C</td>
<td align="left" rowspan="1" colspan="1">6</td>
<td align="left" rowspan="1" colspan="1">F</td>
<td align="left" rowspan="1" colspan="1">80</td>
<td align="left" rowspan="1" colspan="1">100</td>
<td align="left" rowspan="1" colspan="1">Pos</td>
</tr>
</tbody>
</table>
<table-wrap-foot id="zph12482-ntgp-0002">
<fn id="zph12482-note-0002">
<p>
<italic>Notes.</italic>
nd, not done.</p>
</fn>
<fn id="zph12482-note-0003">
<label>a</label>
<p>In vitro microneutralization assays were performed using the Jordan strain of MERS‐CoV, beginning with a serial dilution range of 1:20–1:640. Samples with a titre ≥ 640 were further examined at serial dilutions out to 1:25,600. Microneutralization titres are reported as the dilution factor at which at least one of three independent wells completely inhibited virus infection.</p>
</fn>
<fn id="zph12482-note-0004">
<label>b</label>
<p>Immunofluorescence assays (IFAs) were performed against the Jordan strain of MERS‐CoV, beginning at a dilution of 1:100, to a final dilution of 1:10,000.</p>
</fn>
<fn id="zph12482-note-0005">
<label>c</label>
<p>Sera were evaluated by IFA for the presence of bovine coronavirus antibodies (BCoV) at a dilution of 1:100.</p>
</fn>
<fn id="zph12482-note-0006">
<label>d</label>
<p>Samples were considered indeterminate when an inconclusive result was obtained by two independent evaluations at a dilution of 1:100.</p>
</fn>
</table-wrap-foot>
<permissions>
<copyright-holder>John Wiley & Sons, Ltd</copyright-holder>
<license>
<license-p>This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency.</license-p>
</license>
</permissions>
</table-wrap>
<table-wrap id="zph12482-tbl-0002" xml:lang="en" orientation="portrait" position="float">
<label>Table 2</label>
<caption>
<p>Middle East Respiratory Syndrome Coronavirus (MERS‐CoV) Microneutralization and Immunofluorescence (IFA) titres in sera samples collected from dromedary camels in Israel: Low (<80) neutralizing antibody titres (
<italic>n</italic>
 = 16)</p>
</caption>
<table frame="hsides" rules="groups">
<col style="border-right:solid 1px #000000" span="1"></col>
<col style="border-right:solid 1px #000000" span="1"></col>
<col style="border-right:solid 1px #000000" span="1"></col>
<col style="border-right:solid 1px #000000" span="1"></col>
<col style="border-right:solid 1px #000000" span="1"></col>
<col style="border-right:solid 1px #000000" span="1"></col>
<col style="border-right:solid 1px #000000" span="1"></col>
<thead valign="top">
<tr style="border-bottom:solid 1px #000000">
<th align="left" valign="top" rowspan="1" colspan="1">Sample ID</th>
<th align="left" valign="top" rowspan="1" colspan="1">Site</th>
<th align="left" valign="top" rowspan="1" colspan="1">Age (years)</th>
<th align="left" valign="top" rowspan="1" colspan="1">Sex</th>
<th align="left" valign="top" rowspan="1" colspan="1">Microneutralization Reciprocal Titres, MERS‐CoV
<xref ref-type="fn" rid="zph12482-note-0008">a</xref>
</th>
<th align="left" valign="top" rowspan="1" colspan="1">IFA Reciprocal Titres, MERS‐CoV
<xref ref-type="fn" rid="zph12482-note-0009">b</xref>
</th>
<th align="left" valign="top" rowspan="1" colspan="1">IFA results, BCoV
<xref ref-type="fn" rid="zph12482-note-0010">c</xref>
</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">36</td>
<td align="left" rowspan="1" colspan="1">D</td>
<td align="left" rowspan="1" colspan="1">21</td>
<td align="left" rowspan="1" colspan="1">F</td>
<td align="left" rowspan="1" colspan="1">40</td>
<td align="left" rowspan="1" colspan="1">100</td>
<td align="left" rowspan="1" colspan="1">Pos</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">37</td>
<td align="left" rowspan="1" colspan="1">B</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">F</td>
<td align="left" rowspan="1" colspan="1">40</td>
<td align="left" rowspan="1" colspan="1">Indeterminate
<xref ref-type="fn" rid="zph12482-note-0011">d</xref>
</td>
<td align="left" rowspan="1" colspan="1">Pos</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">38</td>
<td align="left" rowspan="1" colspan="1">B</td>
<td align="left" rowspan="1" colspan="1">17</td>
<td align="left" rowspan="1" colspan="1">M</td>
<td align="left" rowspan="1" colspan="1">40</td>
<td align="left" rowspan="1" colspan="1">Indeterminate</td>
<td align="left" rowspan="1" colspan="1">Neg</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">39</td>
<td align="left" rowspan="1" colspan="1">B</td>
<td align="left" rowspan="1" colspan="1">10–12</td>
<td align="left" rowspan="1" colspan="1">M</td>
<td align="left" rowspan="1" colspan="1">40</td>
<td align="left" rowspan="1" colspan="1"><100</td>
<td align="left" rowspan="1" colspan="1">Neg</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">40</td>
<td align="left" rowspan="1" colspan="1">C</td>
<td align="left" rowspan="1" colspan="1">8</td>
<td align="left" rowspan="1" colspan="1">F</td>
<td align="left" rowspan="1" colspan="1">40</td>
<td align="left" rowspan="1" colspan="1">Indeterminate</td>
<td align="left" rowspan="1" colspan="1">Pos</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">41</td>
<td align="left" rowspan="1" colspan="1">C</td>
<td align="left" rowspan="1" colspan="1">12</td>
<td align="left" rowspan="1" colspan="1">M</td>
<td align="left" rowspan="1" colspan="1">40</td>
<td align="left" rowspan="1" colspan="1">Indeterminate</td>
<td align="left" rowspan="1" colspan="1">Indeterminate</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">42</td>
<td align="left" rowspan="1" colspan="1">C</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">M</td>
<td align="left" rowspan="1" colspan="1">40</td>
<td align="left" rowspan="1" colspan="1">Indeterminate</td>
<td align="left" rowspan="1" colspan="1">Neg</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">43</td>
<td align="left" rowspan="1" colspan="1">C</td>
<td align="left" rowspan="1" colspan="1">7</td>
<td align="left" rowspan="1" colspan="1">M</td>
<td align="left" rowspan="1" colspan="1">40</td>
<td align="left" rowspan="1" colspan="1">100</td>
<td align="left" rowspan="1" colspan="1">Pos</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">44</td>
<td align="left" rowspan="1" colspan="1">C</td>
<td align="left" rowspan="1" colspan="1">8</td>
<td align="left" rowspan="1" colspan="1">M</td>
<td align="left" rowspan="1" colspan="1">40</td>
<td align="left" rowspan="1" colspan="1">Indeterminate</td>
<td align="left" rowspan="1" colspan="1">Indeterminate</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">45</td>
<td align="left" rowspan="1" colspan="1">C</td>
<td align="left" rowspan="1" colspan="1">11</td>
<td align="left" rowspan="1" colspan="1">F</td>
<td align="left" rowspan="1" colspan="1">40</td>
<td align="left" rowspan="1" colspan="1">100</td>
<td align="left" rowspan="1" colspan="1">nd</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">46</td>
<td align="left" rowspan="1" colspan="1">C</td>
<td align="left" rowspan="1" colspan="1">6</td>
<td align="left" rowspan="1" colspan="1">F</td>
<td align="left" rowspan="1" colspan="1">40</td>
<td align="left" rowspan="1" colspan="1"><100</td>
<td align="left" rowspan="1" colspan="1">nd</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">47</td>
<td align="left" rowspan="1" colspan="1">D</td>
<td align="left" rowspan="1" colspan="1">8</td>
<td align="left" rowspan="1" colspan="1">F</td>
<td align="left" rowspan="1" colspan="1">20</td>
<td align="left" rowspan="1" colspan="1"><100</td>
<td align="left" rowspan="1" colspan="1">Pos</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">48</td>
<td align="left" rowspan="1" colspan="1">C</td>
<td align="left" rowspan="1" colspan="1">12</td>
<td align="left" rowspan="1" colspan="1">M</td>
<td align="left" rowspan="1" colspan="1">20</td>
<td align="left" rowspan="1" colspan="1">Indeterminate</td>
<td align="left" rowspan="1" colspan="1">Indeterminate</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">49</td>
<td align="left" rowspan="1" colspan="1">C</td>
<td align="left" rowspan="1" colspan="1">9</td>
<td align="left" rowspan="1" colspan="1">F</td>
<td align="left" rowspan="1" colspan="1">20</td>
<td align="left" rowspan="1" colspan="1"><100</td>
<td align="left" rowspan="1" colspan="1">Pos</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">50</td>
<td align="left" rowspan="1" colspan="1">C</td>
<td align="left" rowspan="1" colspan="1">5</td>
<td align="left" rowspan="1" colspan="1">F</td>
<td align="left" rowspan="1" colspan="1">20</td>
<td align="left" rowspan="1" colspan="1"><100</td>
<td align="left" rowspan="1" colspan="1">Pos</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">51</td>
<td align="left" rowspan="1" colspan="1">C</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">F</td>
<td align="left" rowspan="1" colspan="1">20</td>
<td align="left" rowspan="1" colspan="1"><100</td>
<td align="left" rowspan="1" colspan="1">nd</td>
</tr>
</tbody>
</table>
<table-wrap-foot id="zph12482-ntgp-0003">
<fn id="zph12482-note-0007">
<p>
<italic>Notes. </italic>
nd, not done.</p>
</fn>
<fn id="zph12482-note-0008">
<label>a</label>
<p>In vitro microneutralization assays were performed using the Jordan strain of MERS‐CoV, beginning with a serial dilution range of 1:20–1:640. Microneutralization titres are reported as the dilution factor at which at least one of three independent wells completely inhibited virus infection.</p>
</fn>
<fn id="zph12482-note-0009">
<label>b</label>
<p>Immunofluorescence assays (IFAs) were performed against the Jordan strain of MERS‐CoV, beginning at a dilution of 1:100, to a final dilution of 1:10,000.</p>
</fn>
<fn id="zph12482-note-0010">
<label>c</label>
<p>Sera were evaluated by IFA for the presence of bovine coronavirus antibodies (BCoV) at a dilution of 1:100.</p>
</fn>
<fn id="zph12482-note-0011">
<label>d</label>
<p>Samples were considered indeterminate when an inconclusive result was obtained by two independent evaluations at a dilution of 1:100.</p>
</fn>
</table-wrap-foot>
<permissions>
<copyright-holder>John Wiley & Sons, Ltd</copyright-holder>
<license>
<license-p>This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency.</license-p>
</license>
</permissions>
</table-wrap>
</sec>
<sec id="zph12482-sec-0005">
<label>2.2</label>
<title>MERS‐CoV‐specific neutralization assays</title>
<p>MERS‐CoV‐specific neutralization (MNt) assays were performed to determine the presence of neutralizing antibodies in camel sera using the Jordan strain of MERS‐CoV (Hu/Jordan‐N3/2012), following a previously established method (Sui et al.,
<xref rid="zph12482-bib-0017" ref-type="ref">2004</xref>
). Initial MNt assays were performed using a titration range from 20 to 640, and samples with MNt titres of 640 were further titrated. MNt was performed using polyclonal guinea pig anti‐bovine coronavirus (Mebus strain, NIH Biodenfense and Emerging Infections Research Resources Repository) antiserum to evaluate antibody cross‐neutralization.</p>
</sec>
<sec id="zph12482-sec-0006">
<label>2.3</label>
<title>Immunofluorescence assay (IFA)</title>
<p>Initial IFA screening was performed using sera diluted at 1:100, following a modified, previously published protocol (Corman et al.,
<xref rid="zph12482-bib-0005" ref-type="ref">2012</xref>
). Briefly, MERS‐CoV (Jordan)‐infected Vero cells slides were fixed, permeabilized, blocked with whole camel serum (Abcam, 1:10,000), incubated with serum, and stained with FITC‐conjugated llama anti‐goat IgG (H + L; Bethyl Lab, 1:100; Figure
<xref rid="zph12482-fig-0001" ref-type="fig">1</xref>
). Whole camel blocking serum was screened in the absence of specimens, to verify that blocking did not result in a false positive signal. Specimens indeterminate for the presence of MERS‐CoV antibodies were re‐screened at 1:50 and 1:100. A final indeterminate determination was made after two independent screens by IFA were indeterminate. IFA titres were determined by repeated screening with serial dilutions of camel sera, out to 1:10,000. Reactivity against BCoV Mebus strain was assessed using a commercially available BCoV‐specific IFA kit (Veterinary Medical Research and Development).</p>
<fig fig-type="Figure" xml:lang="en" id="zph12482-fig-0001" orientation="portrait" position="float">
<label>Figure 1</label>
<caption>
<p>Camel serum antibodies react to Middle East Respiratory Syndrome Coronavirus (MERS‐CoV)‐infected, fixed Vero cells by immunofluorescence assay. Vero cells were infected with MERS‐CoV (Hu/Jordan‐N3/2012, a–c), or mock‐infected (d), fixed, blocked, then incubated with sera from camels with high (a, d), low (b) or no (c) MERS‐CoV neutralizing antibodies and developed for immunofluorescence. Camel sera were determined to be positive (a, b) or negative (c, d) based on the intensity of staining against MERS‐CoV‐infected Vero cells compared to mock‐infected Vero cells (representative samples are shown). Camel sera were also tested against bovine coronavirus (BCoV)‐infected or mock‐infected MDBK cells using a commercially available test kit (Veterinary Medical Research and Development, VMRD). Shown, serum from a camel that did not react in a MERS‐CoV IFA or have MERS‐CoV neutralizing antibodies reacts to BCoV‐infected MDBK cells (e), but not mock‐infected MDBK cells (f). DAPI counterstain was used and cells were imaged using a Zeiss AxioImager microscope at 20X magnification [Colour figure can be viewed at
<ext-link ext-link-type="uri" xlink:href="http://www.wileyonlinelibrary.com/">http://www.wileyonlinelibrary.com/</ext-link>
]</p>
</caption>
<graphic id="nlm-graphic-1" xlink:href="ZPH-65-749-g001"></graphic>
</fig>
</sec>
<sec id="zph12482-sec-0007">
<label>2.4</label>
<title>Statistical analysis</title>
<p>Statistical analyses were performed using Fisher's exact test and a
<italic>p</italic>
‐value <0.05 was considered significant.</p>
</sec>
</sec>
<sec id="zph12482-sec-0008">
<label>3</label>
<title>RESULTS</title>
<p>Fifty‐one of the 71 (71.8%) camel sera had MERS‐CoV neutralizing antibodies titres (Tables
<xref rid="zph12482-tbl-0001" ref-type="table">1</xref>
and
<xref rid="zph12482-tbl-0002" ref-type="table">2</xref>
). Thirty‐five serum samples (49.3%) had high MERS‐CoV neutralizing antibody titres ranging from 80 to 25,600 (Table
<xref rid="zph12482-tbl-0001" ref-type="table">1</xref>
) with IFA titres ranging from 100 to greater than 10,000 (Table
<xref rid="zph12482-tbl-0001" ref-type="table">1</xref>
). As MERS‐CoV neutralization titres increased to ≥640 (
<italic>n</italic>
 = 15), MERS‐CoV‐specific titres determined by IFA also increased above 100. Sixteen of the 71 (22.5%) camels had lower MERS‐CoV serum neutralizing antibody titres, ranging from 20 to 40 (Table
<xref rid="zph12482-tbl-0002" ref-type="table">2</xref>
). For these 16 camels, the IFA titres were equal to 100 for three camels (Table
<xref rid="zph12482-tbl-0002" ref-type="table">2</xref>
and Figure
<xref rid="zph12482-fig-0001" ref-type="fig">1</xref>
b), less than 100 for six camels, and indeterminate for the remaining seven camels. For the remaining 20 (28.2%) camels, serum neutralizing antibody titres were less than 20 or below the level of detection, with MERS‐CoV antibody titres, by IFA, either <100 (
<italic>n</italic>
 = 15; Figure
<xref rid="zph12482-fig-0001" ref-type="fig">1</xref>
c) or indeterminate (
<italic>n</italic>
 = 5; data not shown). Attempts to detect coronavirus genomic material by RT‐PCR from the camel sera were unsuccessful. The inability to detect genomic material may in part be due to three key factors in this study; one, specimen collection was not optimized for nucleic acid preservation; two, prior to study, sera were irradiated at 5 × 10
<sup>6</sup>
rads upon arrival at the CDC per importation requirements; and three, camels may not have had acute infections at the time of serum collection.</p>
<p>The presence of BCoV‐reactive antibodies was determined in a randomly selected subset of camel sera with MERS‐CoV neutralizing antibody titres (
<italic>n</italic>
 = 42) and with no titres (
<italic>n</italic>
 = 20) by BCoV IFA, using a 1:100 dilution of camel sera. Nine of 42 (21.4%) camels with MERS‐CoV microneutralization titres were negative for BCoV‐reactive serum antibodies, including one camel with a MERS‐CoV‐specific neutralization titre of 640, three were indeterminate (7%) with the remaining 30 sera (71.4%) demonstrating reactivity to BCoV. Fourteen of the 20 camels (70%) with no detectable MERS‐CoV neutralizing antibody titres (titres <20) were positive for BCoV‐reactive antibodies at a 1:100 dilution. Serum antibodies from dromedary camels in Saudi Arabia demonstrated reactivity to both MERS‐CoV and bovine coronavirus (BCoV) (Hemida et al.,
<xref rid="zph12482-bib-0008" ref-type="ref">2013</xref>
; Perera et al.,
<xref rid="zph12482-bib-0014" ref-type="ref">2013</xref>
), suggesting that the presence of BCoV antibodies may impair the ability to specifically detect MERS‐CoV‐specific antibodies. However, antibodies specific to MERS‐CoV did not neutralize BCoV or SARS‐CoV infection, nor did BCoV‐specific antibodies neutralize MERS‐CoV infection (Hemida et al.,
<xref rid="zph12482-bib-0008" ref-type="ref">2013</xref>
; Perera et al.,
<xref rid="zph12482-bib-0014" ref-type="ref">2013</xref>
). Consistent with those findings, antiserum against BCoV did not cross‐neutralize MERS‐CoV in the Mnt used in this study, confirming the specificity of the assay to discriminate between the two viruses (data not shown).</p>
<p>There was no association of MERS‐CoV neutralizing antibodies with gender or age of the camels. By location, the number of MERS‐CoV neutralizing antibody positive camels was significantly higher at sites C and D (
<italic>p</italic>
 = 0.008 and 0.002, respectively), compared to site B, significantly higher at site C than A (
<italic>p</italic>
 < 0.001) and significantly higher at site D than A (
<italic>p</italic>
 < 0.001). Of those specimens tested for BCoV, all indeterminate specimens (
<italic>n</italic>
 = 12) originated from site D and were all positive for antibodies against MERS‐CoV.</p>
</sec>
<sec id="zph12482-sec-0009">
<label>4</label>
<title>DISCUSSION</title>
<p>These findings demonstrate high MERS‐CoV‐specific neutralizing antibody titres suggest that MERS‐CoV, or a related virus, has circulated through dromedary camels in Israel, extending the known geographic range of MERS‐CoV circulation in camels. While the results do not rule out antibody cross‐reactivity, the inability of BCoV immune sera to neutralize MERS‐CoV suggests that the presence of BCoV‐specific antibodies did not appear to impact the ability to specifically detect MERS‐CoV‐specific by Mnt. The circulation of MERS‐CoV or a closely related virus in dromedary camels in Israel in the absence of any reported clinical cases of MERS‐CoV in the Israeli population suggests that there may be other factors involved in the dynamics of camel‐to‐human transmission of MERS‐CoV beyond circulation within camel herds.</p>
</sec>
<sec sec-type="COI-statement" id="zph12482-sec-0010">
<title>CONFLICT OF INTEREST</title>
<p>The authors have no conflict of interests to declare.</p>
</sec>
</body>
<back>
<ack id="zph12482-sec-0011">
<title>ACKNOWLEDGEMENTS</title>
<p>We would like to acknowledge Jessica Rudd and Aaron Curns, at the Centers for Disease Control and Prevention, for performing the statistical analyses for this study. The authors thank Dr. Kathleen Tatti and Dr. Aron Hall for review of the manuscript and for providing critical comments. The following reagent was obtained through the NIH Biodenfense and Emerging Infections Research Resources Repository, NIAID, NIH: Polyclonal anti‐Bovine Coronavirus, Mebus (antiserum, Guinea Pig), NR‐455.</p>
</ack>
<ref-list content-type="cited-references" id="zph12482-bibl-0001">
<title>REFERENCES</title>
<ref id="zph12482-bib-0001">
<mixed-citation publication-type="journal" id="zph12482-cit-0001">
<string-name>
<surname>Alagaili</surname>
,
<given-names>A. N.</given-names>
</string-name>
,
<string-name>
<surname>Briese</surname>
,
<given-names>T.</given-names>
</string-name>
,
<string-name>
<surname>Mishra</surname>
,
<given-names>N.</given-names>
</string-name>
,
<string-name>
<surname>Kapoor</surname>
,
<given-names>V.</given-names>
</string-name>
,
<string-name>
<surname>Sameroff</surname>
,
<given-names>S. C.</given-names>
</string-name>
,
<string-name>
<surname>Burbelo</surname>
,
<given-names>P. D.</given-names>
</string-name>
, …
<string-name>
<surname>Lipkin</surname>
,
<given-names>W. I.</given-names>
</string-name>
(
<year>2014</year>
)
<article-title>Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia</article-title>
.
<source xml:lang="en">mBio</source>
,
<volume>5</volume>
,
<fpage>e00884–00814</fpage>
<pub-id pub-id-type="doi">10.1128/mBio.00884-14</pub-id>
<pub-id pub-id-type="pmid">24570370</pub-id>
</mixed-citation>
</ref>
<ref id="zph12482-bib-0002">
<mixed-citation publication-type="journal" id="zph12482-cit-0002">
<string-name>
<surname>Azhar</surname>
,
<given-names>E. I.</given-names>
</string-name>
,
<string-name>
<surname>Hashem</surname>
,
<given-names>A. M.</given-names>
</string-name>
,
<string-name>
<surname>El‐Kafrawy</surname>
,
<given-names>S. A.</given-names>
</string-name>
,
<string-name>
<surname>Sohrab</surname>
,
<given-names>S. S.</given-names>
</string-name>
,
<string-name>
<surname>Aburizaiza</surname>
,
<given-names>A. S.</given-names>
</string-name>
,
<string-name>
<surname>Farraj</surname>
,
<given-names>S. A.</given-names>
</string-name>
, …
<string-name>
<surname>Madani</surname>
,
<given-names>T. A.</given-names>
</string-name>
(
<year>2014</year>
)
<article-title>Detection of the Middle East respiratory syndrome coronavirus genome in an air sample originating from a camel barn owned by an infected patient</article-title>
.
<source xml:lang="en">mBio</source>
,
<volume>5</volume>
,
<fpage>e01450–01414</fpage>
<pub-id pub-id-type="doi">10.1128/mBio.01450-14</pub-id>
<pub-id pub-id-type="pmid">25053787</pub-id>
</mixed-citation>
</ref>
<ref id="zph12482-bib-0003">
<mixed-citation publication-type="journal" id="zph12482-cit-0003">
<string-name>
<surname>Chu</surname>
,
<given-names>D. K.</given-names>
</string-name>
,
<string-name>
<surname>Oladipo</surname>
,
<given-names>J. O.</given-names>
</string-name>
,
<string-name>
<surname>Perera</surname>
,
<given-names>R. A.</given-names>
</string-name>
,
<string-name>
<surname>Kuranga</surname>
,
<given-names>S. A.</given-names>
</string-name>
,
<string-name>
<surname>Chan</surname>
,
<given-names>S. M.</given-names>
</string-name>
,
<string-name>
<surname>Poon</surname>
,
<given-names>L. L.</given-names>
</string-name>
, &
<string-name>
<surname>Peiris</surname>
,
<given-names>M.</given-names>
</string-name>
(
<year>2015</year>
).
<article-title>Middle East respiratory syndrome coronavirus (MERS‐CoV) in dromedary camels in Nigeria, 2015</article-title>
.
<source xml:lang="en">Euro Surveillance</source>
,
<volume>20</volume>
(
<issue>49</issue>
), pii: 30086.
<pub-id pub-id-type="doi">10.2807/1560-7917.ES.2015.20.49.30086</pub-id>
</mixed-citation>
</ref>
<ref id="zph12482-bib-0004">
<mixed-citation publication-type="journal" id="zph12482-cit-0004">
<string-name>
<surname>Corman</surname>
,
<given-names>V. M.</given-names>
</string-name>
,
<string-name>
<surname>Jores</surname>
,
<given-names>J.</given-names>
</string-name>
,
<string-name>
<surname>Meyer</surname>
,
<given-names>B.</given-names>
</string-name>
,
<string-name>
<surname>Younan</surname>
,
<given-names>M.</given-names>
</string-name>
,
<string-name>
<surname>Liljander</surname>
,
<given-names>A.</given-names>
</string-name>
,
<string-name>
<surname>Said</surname>
,
<given-names>M. Y.</given-names>
</string-name>
, …
<string-name>
<surname>Muller</surname>
,
<given-names>M. A.</given-names>
</string-name>
(
<year>2014</year>
).
<article-title>Antibodies against MERS coronavirus in dromedary camels, Kenya, 1992–2013</article-title>
.
<source xml:lang="en">Emerging Infectious Diseases</source>
,
<volume>20</volume>
,
<fpage>1319</fpage>
<lpage>1322</lpage>
.
<pub-id pub-id-type="doi">10.3201/eid2008.140596</pub-id>
<pub-id pub-id-type="pmid">25075637</pub-id>
</mixed-citation>
</ref>
<ref id="zph12482-bib-0005">
<mixed-citation publication-type="journal" id="zph12482-cit-0005">
<string-name>
<surname>Corman</surname>
,
<given-names>V. M.</given-names>
</string-name>
,
<string-name>
<surname>Muller</surname>
,
<given-names>M. A.</given-names>
</string-name>
,
<string-name>
<surname>Costabel</surname>
,
<given-names>U.</given-names>
</string-name>
,
<string-name>
<surname>Timm</surname>
,
<given-names>J.</given-names>
</string-name>
,
<string-name>
<surname>Binger</surname>
,
<given-names>T.</given-names>
</string-name>
,
<string-name>
<surname>Meyer</surname>
,
<given-names>B.</given-names>
</string-name>
, …
<string-name>
<surname>Drosten</surname>
,
<given-names>C.</given-names>
</string-name>
(
<year>2012</year>
).
<article-title>Assays for laboratory confirmation of novel human coronavirus (hCoV‐EMC) infections.</article-title>
<source xml:lang="en">Euro Surveillance</source>
,
<fpage>17</fpage>
, pii: 20334.</mixed-citation>
</ref>
<ref id="zph12482-bib-0006">
<mixed-citation publication-type="journal" id="zph12482-cit-0006">
<string-name>
<surname>Haagmans</surname>
,
<given-names>B. L.</given-names>
</string-name>
,
<string-name>
<surname>Al Dhahiry</surname>
,
<given-names>S. H.</given-names>
</string-name>
,
<string-name>
<surname>Reusken</surname>
,
<given-names>C. B.</given-names>
</string-name>
,
<string-name>
<surname>Raj</surname>
,
<given-names>V. S.</given-names>
</string-name>
,
<string-name>
<surname>Galiano</surname>
,
<given-names>M.</given-names>
</string-name>
,
<string-name>
<surname>Myers</surname>
,
<given-names>R.</given-names>
</string-name>
, …
<string-name>
<surname>Koopmans</surname>
,
<given-names>M. P.</given-names>
</string-name>
(
<year>2014</year>
).
<article-title>Middle East respiratory syndrome coronavirus in dromedary camels: An outbreak investigation</article-title>
.
<source xml:lang="en">The Lancet. Infectious Diseases</source>
,
<volume>14</volume>
,
<fpage>140</fpage>
<lpage>145</lpage>
.
<pub-id pub-id-type="doi">10.1016/S1473-3099(13)70690-X</pub-id>
<pub-id pub-id-type="pmid">24355866</pub-id>
</mixed-citation>
</ref>
<ref id="zph12482-bib-0007">
<mixed-citation publication-type="journal" id="zph12482-cit-0007">
<string-name>
<surname>Hemida</surname>
,
<given-names>M. G.</given-names>
</string-name>
,
<string-name>
<surname>Perera</surname>
,
<given-names>R. A.</given-names>
</string-name>
,
<string-name>
<surname>Al Jassim</surname>
,
<given-names>R. A.</given-names>
</string-name>
,
<string-name>
<surname>Kayali</surname>
,
<given-names>G.</given-names>
</string-name>
,
<string-name>
<surname>Siu</surname>
,
<given-names>L. Y.</given-names>
</string-name>
,
<string-name>
<surname>Wang</surname>
,
<given-names>P.</given-names>
</string-name>
, …
<string-name>
<surname>Peiris</surname>
,
<given-names>M.</given-names>
</string-name>
(
<year>2014</year>
).
<article-title>Seroepidemiology of Middle East respiratory syndrome (MERS) coronavirus in Saudi Arabia (1993) and Australia (2014) and characterisation of assay specificity</article-title>
.
<source xml:lang="en">Euro Surveillance</source>
,
<volume>19</volume>
(
<issue>23</issue>
), pii: 20828.</mixed-citation>
</ref>
<ref id="zph12482-bib-0008">
<mixed-citation publication-type="journal" id="zph12482-cit-0008">
<string-name>
<surname>Hemida</surname>
,
<given-names>M. G.</given-names>
</string-name>
,
<string-name>
<surname>Perera</surname>
,
<given-names>R. A.</given-names>
</string-name>
,
<string-name>
<surname>Wang</surname>
,
<given-names>P.</given-names>
</string-name>
,
<string-name>
<surname>Alhammadi</surname>
,
<given-names>M. A.</given-names>
</string-name>
,
<string-name>
<surname>Siu</surname>
,
<given-names>L. Y.</given-names>
</string-name>
,
<string-name>
<surname>Li</surname>
,
<given-names>M.</given-names>
</string-name>
, …
<string-name>
<surname>Peiris</surname>
,
<given-names>M.</given-names>
</string-name>
(
<year>2013</year>
).
<article-title>Middle East Respiratory Syndrome (MERS) coronavirus seroprevalence in domestic livestock in Saudi Arabia, 2010 to 2013</article-title>
.
<source xml:lang="en">Euro Surveillance</source>
,
<volume>18</volume>
,
<fpage>20659</fpage>
.
<pub-id pub-id-type="pmid">24342517</pub-id>
</mixed-citation>
</ref>
<ref id="zph12482-bib-0009">
<mixed-citation publication-type="journal" id="zph12482-cit-0009">
<string-name>
<surname>Kasem</surname>
,
<given-names>S.</given-names>
</string-name>
,
<string-name>
<surname>Qasim</surname>
,
<given-names>I.</given-names>
</string-name>
,
<string-name>
<surname>Al‐Hufofi</surname>
,
<given-names>A.</given-names>
</string-name>
,
<string-name>
<surname>Hashim</surname>
,
<given-names>O.</given-names>
</string-name>
,
<string-name>
<surname>Alkarar</surname>
,
<given-names>A.</given-names>
</string-name>
,
<string-name>
<surname>Abu‐Obeida</surname>
,
<given-names>A.</given-names>
</string-name>
, …
<string-name>
<surname>Peiris</surname>
,
<given-names>M.</given-names>
</string-name>
(
<year>2017</year>
).
<article-title>Cross‐sectional study of MERS‐CoV‐specific RNA and antibodies in animals that have had contact with MERS patients in Saudi Arabia</article-title>
.
<source xml:lang="en">Journal of Infection and Public Health</source>
,
<volume>11</volume>
(
<issue>3</issue>
),
<fpage>331</fpage>
<lpage>338</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.jiph.2017.09.022</pub-id>
<pub-id pub-id-type="pmid">28993171</pub-id>
</mixed-citation>
</ref>
<ref id="zph12482-bib-0010">
<mixed-citation publication-type="journal" id="zph12482-cit-0010">
<string-name>
<surname>Meyer</surname>
,
<given-names>B.</given-names>
</string-name>
,
<string-name>
<surname>Muller</surname>
,
<given-names>M. A.</given-names>
</string-name>
,
<string-name>
<surname>Corman</surname>
,
<given-names>V. M.</given-names>
</string-name>
,
<string-name>
<surname>Reusken</surname>
,
<given-names>C. B.</given-names>
</string-name>
,
<string-name>
<surname>Ritz</surname>
,
<given-names>D.</given-names>
</string-name>
,
<string-name>
<surname>Godeke</surname>
,
<given-names>G. J.</given-names>
</string-name>
, …
<string-name>
<surname>Drosten</surname>
,
<given-names>C.</given-names>
</string-name>
(
<year>2014</year>
).
<article-title>Antibodies against MERS coronavirus in dromedary camels, United Arab Emirates, 2003 and 2013</article-title>
.
<source xml:lang="en">Emerging Infectious Diseases</source>
,
<volume>20</volume>
,
<fpage>552</fpage>
<lpage>559</lpage>
.
<pub-id pub-id-type="doi">10.3201/eid2004.131746</pub-id>
<pub-id pub-id-type="pmid">24655412</pub-id>
</mixed-citation>
</ref>
<ref id="zph12482-bib-0011">
<mixed-citation publication-type="journal" id="zph12482-cit-0011">
<string-name>
<surname>Muhairi</surname>
,
<given-names>S. A.</given-names>
</string-name>
,
<string-name>
<surname>Hosani</surname>
,
<given-names>F. A.</given-names>
</string-name>
,
<string-name>
<surname>Eltahir</surname>
,
<given-names>Y. M.</given-names>
</string-name>
,
<string-name>
<surname>Mulla</surname>
,
<given-names>M. A.</given-names>
</string-name>
,
<string-name>
<surname>Yusof</surname>
,
<given-names>M. F.</given-names>
</string-name>
,
<string-name>
<surname>Serhan</surname>
,
<given-names>W. S.</given-names>
</string-name>
, …
<string-name>
<surname>Abdelazim</surname>
,
<given-names>A. S.</given-names>
</string-name>
(
<year>2016</year>
).
<article-title>Epidemiological investigation of Middle East respiratory syndrome coronavirus in dromedary camel farms linked with human infection in Abu Dhabi Emirate, United Arab Emirates</article-title>
.
<source xml:lang="en">Virus Genes</source>
,
<volume>52</volume>
,
<fpage>848</fpage>
<lpage>854</lpage>
.
<pub-id pub-id-type="doi">10.1007/s11262-016-1367-1</pub-id>
<pub-id pub-id-type="pmid">27357298</pub-id>
</mixed-citation>
</ref>
<ref id="zph12482-bib-0012">
<mixed-citation publication-type="journal" id="zph12482-cit-0012">
<string-name>
<surname>Muller</surname>
,
<given-names>M. A.</given-names>
</string-name>
,
<string-name>
<surname>Corman</surname>
,
<given-names>V. M.</given-names>
</string-name>
,
<string-name>
<surname>Jores</surname>
,
<given-names>J.</given-names>
</string-name>
,
<string-name>
<surname>Meyer</surname>
,
<given-names>B.</given-names>
</string-name>
,
<string-name>
<surname>Younan</surname>
,
<given-names>M.</given-names>
</string-name>
,
<string-name>
<surname>Liljander</surname>
,
<given-names>A.</given-names>
</string-name>
, …
<string-name>
<surname>Drosten</surname>
,
<given-names>C.</given-names>
</string-name>
(
<year>2014</year>
).
<article-title>MERS Coronavirus Neutralizing Antibodies in Camels, Eastern Africa, 1983–1997</article-title>
.
<source xml:lang="en">Emerging Infectious Diseases</source>
,
<volume>20</volume>
,
<fpage>1983</fpage>
<lpage>1997.</lpage>
<pub-id pub-id-type="doi">10.3201/eid2012.141026</pub-id>
</mixed-citation>
</ref>
<ref id="zph12482-bib-0013">
<mixed-citation publication-type="journal" id="zph12482-cit-0013">
<string-name>
<surname>Paden</surname>
,
<given-names>C. R.</given-names>
</string-name>
,
<string-name>
<surname>Yusof</surname>
,
<given-names>M.</given-names>
</string-name>
,
<string-name>
<surname>Al Hammadi</surname>
,
<given-names>Z. M.</given-names>
</string-name>
,
<string-name>
<surname>Queen</surname>
,
<given-names>K.</given-names>
</string-name>
,
<string-name>
<surname>Tao</surname>
,
<given-names>Y.</given-names>
</string-name>
,
<string-name>
<surname>Eltahir</surname>
,
<given-names>Y. M.</given-names>
</string-name>
, …
<string-name>
<surname>Al Muhairi</surname>
,
<given-names>S. S. M.</given-names>
</string-name>
(
<year>2017</year>
).
<article-title>Zoonotic origin and transmission of Middle East respiratory syndrome coronavirus in the UAE</article-title>
.
<source xml:lang="en">Zoonoses Public Health</source>
,
<volume>65</volume>
(
<issue>3</issue>
),
<fpage>322</fpage>
<lpage>333</lpage>
.
<pub-id pub-id-type="doi">10.1111/zph.12435</pub-id>
<pub-id pub-id-type="pmid">29239118</pub-id>
</mixed-citation>
</ref>
<ref id="zph12482-bib-0014">
<mixed-citation publication-type="journal" id="zph12482-cit-0014">
<string-name>
<surname>Perera</surname>
,
<given-names>R. A.</given-names>
</string-name>
,
<string-name>
<surname>Wang</surname>
,
<given-names>P.</given-names>
</string-name>
,
<string-name>
<surname>Gomaa</surname>
,
<given-names>M. R.</given-names>
</string-name>
,
<string-name>
<surname>El‐Shesheny</surname>
,
<given-names>R.</given-names>
</string-name>
,
<string-name>
<surname>Kandeil</surname>
,
<given-names>A.</given-names>
</string-name>
,
<string-name>
<surname>Bagato</surname>
,
<given-names>O.</given-names>
</string-name>
, & …
<string-name>
<surname>Kayali, G</surname>
.</string-name>
(
<year>2013</year>
)
<article-title>Seroepidemiology for MERS coronavirus using microneutralisation and pseudoparticle virus neutralisation assays reveal a high prevalence of antibody in dromedary camels in Egypt, June 2013</article-title>
.
<source xml:lang="en">Euro Surveillance</source>
,
<volume>18</volume>
,
<fpage>pii=20574</fpage>
.
<pub-id pub-id-type="pmid">24079378</pub-id>
</mixed-citation>
</ref>
<ref id="zph12482-bib-0015">
<mixed-citation publication-type="journal" id="zph12482-cit-0015">
<string-name>
<surname>Raj</surname>
,
<given-names>V. S.</given-names>
</string-name>
,
<string-name>
<surname>Farag</surname>
,
<given-names>E. A.</given-names>
</string-name>
,
<string-name>
<surname>Reusken</surname>
,
<given-names>C. B.</given-names>
</string-name>
,
<string-name>
<surname>Lamers</surname>
,
<given-names>M. M.</given-names>
</string-name>
,
<string-name>
<surname>Pas</surname>
,
<given-names>S. D.</given-names>
</string-name>
,
<string-name>
<surname>Voermans</surname>
,
<given-names>J.</given-names>
</string-name>
, …
<string-name>
<surname>Haagmans</surname>
,
<given-names>B. L.</given-names>
</string-name>
(
<year>2014</year>
).
<article-title>Isolation of MERS coronavirus from a dromedary camel, Qatar, 2014</article-title>
.
<source xml:lang="en">Emerging Infectious Diseases</source>
,
<volume>20</volume>
,
<fpage>1339</fpage>
<lpage>1342</lpage>
.
<pub-id pub-id-type="doi">10.3201/eid2008.140663</pub-id>
<pub-id pub-id-type="pmid">25075761</pub-id>
</mixed-citation>
</ref>
<ref id="zph12482-bib-0016">
<mixed-citation publication-type="journal" id="zph12482-cit-0016">
<string-name>
<surname>Rasis</surname>
,
<given-names>M.</given-names>
</string-name>
,
<string-name>
<surname>Rudoler</surname>
,
<given-names>N.</given-names>
</string-name>
,
<string-name>
<surname>Schwartz</surname>
,
<given-names>D.</given-names>
</string-name>
, &
<string-name>
<surname>Giladi</surname>
,
<given-names>M.</given-names>
</string-name>
(
<year>2014</year>
).
<article-title>Bartonella dromedarii sp. nov. isolated from domesticated camels (Camelus dromedarius) in Israel</article-title>
.
<source xml:lang="en">Vector Borne and Zoonotic Diseases</source>
,
<volume>14</volume>
,
<fpage>775</fpage>
<lpage>782</lpage>
.
<pub-id pub-id-type="doi">10.1089/vbz.2014.1663</pub-id>
<pub-id pub-id-type="pmid">25409267</pub-id>
</mixed-citation>
</ref>
<ref id="zph12482-bib-0017">
<mixed-citation publication-type="journal" id="zph12482-cit-0017">
<string-name>
<surname>Sui</surname>
,
<given-names>J.</given-names>
</string-name>
,
<string-name>
<surname>Li</surname>
,
<given-names>W.</given-names>
</string-name>
,
<string-name>
<surname>Murakami</surname>
,
<given-names>A.</given-names>
</string-name>
,
<string-name>
<surname>Tamin</surname>
,
<given-names>A.</given-names>
</string-name>
,
<string-name>
<surname>Matthews</surname>
,
<given-names>L. J.</given-names>
</string-name>
,
<string-name>
<surname>Wong</surname>
,
<given-names>S. K.</given-names>
</string-name>
, …
<string-name>
<surname>Marasco</surname>
,
<given-names>W. A.</given-names>
</string-name>
(
<year>2004</year>
).
<article-title>Potent neutralization of severe acute respiratory syndrome (SARS) coronavirus by a human mAb to S1 protein that blocks receptor association</article-title>
.
<source xml:lang="en">Proceedings of the National Academy of Sciences of the United States of America</source>
,
<volume>101</volume>
,
<fpage>2536</fpage>
<lpage>2541</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.0307140101</pub-id>
<pub-id pub-id-type="pmid">14983044</pub-id>
</mixed-citation>
</ref>
<ref id="zph12482-bib-0018">
<mixed-citation publication-type="miscellaneous" id="zph12482-cit-0018">
<collab collab-type="authors">WHO</collab>
(
<year>2018</year>
).
<article-title>Middle East Respiratory Syndrome Coronavirus (MERS‐CoV)</article-title>
. Retrieved from
<ext-link ext-link-type="uri" xlink:href="http://www.who.int/emergencies/mers-cov/en/">http://www.who.int/emergencies/mers-cov/en/</ext-link>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000753 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000753 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:6274617
   |texte=   The prevalence of Middle East respiratory syndrome coronavirus (MERS‐CoV) antibodies in dromedary camels in Israel
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:29855166" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021