Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 0006750 ( Pmc/Corpus ); précédent : 0006749; suivant : 0006751 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Antibodies against MERS Coronavirus in Dromedary Camels, Kenya, 1992–2013</title>
<author>
<name sortKey="Corman, Victor M" sort="Corman, Victor M" uniqKey="Corman V" first="Victor M." last="Corman">Victor M. Corman</name>
</author>
<author>
<name sortKey="Jores, Joerg" sort="Jores, Joerg" uniqKey="Jores J" first="Joerg" last="Jores">Joerg Jores</name>
</author>
<author>
<name sortKey="Meyer, Benjamin" sort="Meyer, Benjamin" uniqKey="Meyer B" first="Benjamin" last="Meyer">Benjamin Meyer</name>
</author>
<author>
<name sortKey="Younan, Mario" sort="Younan, Mario" uniqKey="Younan M" first="Mario" last="Younan">Mario Younan</name>
</author>
<author>
<name sortKey="Liljander, Anne" sort="Liljander, Anne" uniqKey="Liljander A" first="Anne" last="Liljander">Anne Liljander</name>
</author>
<author>
<name sortKey="Said, Mohammed Y" sort="Said, Mohammed Y" uniqKey="Said M" first="Mohammed Y." last="Said">Mohammed Y. Said</name>
</author>
<author>
<name sortKey="Gluecks, Ilona" sort="Gluecks, Ilona" uniqKey="Gluecks I" first="Ilona" last="Gluecks">Ilona Gluecks</name>
</author>
<author>
<name sortKey="Lattwein, Erik" sort="Lattwein, Erik" uniqKey="Lattwein E" first="Erik" last="Lattwein">Erik Lattwein</name>
</author>
<author>
<name sortKey="Bosch, Berend Jan" sort="Bosch, Berend Jan" uniqKey="Bosch B" first="Berend-Jan" last="Bosch">Berend-Jan Bosch</name>
</author>
<author>
<name sortKey="Drexler, Jan Felix" sort="Drexler, Jan Felix" uniqKey="Drexler J" first="Jan Felix" last="Drexler">Jan Felix Drexler</name>
</author>
<author>
<name sortKey="Bornstein, Set" sort="Bornstein, Set" uniqKey="Bornstein S" first="Set" last="Bornstein">Set Bornstein</name>
</author>
<author>
<name sortKey="Drosten, Christian" sort="Drosten, Christian" uniqKey="Drosten C" first="Christian" last="Drosten">Christian Drosten</name>
</author>
<author>
<name sortKey="Muller, Marcel A" sort="Muller, Marcel A" uniqKey="Muller M" first="Marcel A." last="Müller">Marcel A. Müller</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">25075637</idno>
<idno type="pmc">4111164</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4111164</idno>
<idno type="RBID">PMC:4111164</idno>
<idno type="doi">10.3201/eid2008.140596</idno>
<date when="2014">2014</date>
<idno type="wicri:Area/Pmc/Corpus">000675</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000675</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Antibodies against MERS Coronavirus in Dromedary Camels, Kenya, 1992–2013</title>
<author>
<name sortKey="Corman, Victor M" sort="Corman, Victor M" uniqKey="Corman V" first="Victor M." last="Corman">Victor M. Corman</name>
</author>
<author>
<name sortKey="Jores, Joerg" sort="Jores, Joerg" uniqKey="Jores J" first="Joerg" last="Jores">Joerg Jores</name>
</author>
<author>
<name sortKey="Meyer, Benjamin" sort="Meyer, Benjamin" uniqKey="Meyer B" first="Benjamin" last="Meyer">Benjamin Meyer</name>
</author>
<author>
<name sortKey="Younan, Mario" sort="Younan, Mario" uniqKey="Younan M" first="Mario" last="Younan">Mario Younan</name>
</author>
<author>
<name sortKey="Liljander, Anne" sort="Liljander, Anne" uniqKey="Liljander A" first="Anne" last="Liljander">Anne Liljander</name>
</author>
<author>
<name sortKey="Said, Mohammed Y" sort="Said, Mohammed Y" uniqKey="Said M" first="Mohammed Y." last="Said">Mohammed Y. Said</name>
</author>
<author>
<name sortKey="Gluecks, Ilona" sort="Gluecks, Ilona" uniqKey="Gluecks I" first="Ilona" last="Gluecks">Ilona Gluecks</name>
</author>
<author>
<name sortKey="Lattwein, Erik" sort="Lattwein, Erik" uniqKey="Lattwein E" first="Erik" last="Lattwein">Erik Lattwein</name>
</author>
<author>
<name sortKey="Bosch, Berend Jan" sort="Bosch, Berend Jan" uniqKey="Bosch B" first="Berend-Jan" last="Bosch">Berend-Jan Bosch</name>
</author>
<author>
<name sortKey="Drexler, Jan Felix" sort="Drexler, Jan Felix" uniqKey="Drexler J" first="Jan Felix" last="Drexler">Jan Felix Drexler</name>
</author>
<author>
<name sortKey="Bornstein, Set" sort="Bornstein, Set" uniqKey="Bornstein S" first="Set" last="Bornstein">Set Bornstein</name>
</author>
<author>
<name sortKey="Drosten, Christian" sort="Drosten, Christian" uniqKey="Drosten C" first="Christian" last="Drosten">Christian Drosten</name>
</author>
<author>
<name sortKey="Muller, Marcel A" sort="Muller, Marcel A" uniqKey="Muller M" first="Marcel A." last="Müller">Marcel A. Müller</name>
</author>
</analytic>
<series>
<title level="j">Emerging Infectious Diseases</title>
<idno type="ISSN">1080-6040</idno>
<idno type="eISSN">1080-6059</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Dromedary camels are a putative source for human infections with Middle East respiratory syndrome coronavirus. We showed that camels sampled in different regions in Kenya during 1992–2013 have antibodies against this virus. High densities of camel populations correlated with increased seropositivity and might be a factor in predicting long-term virus maintenance.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="brief-report">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Emerg Infect Dis</journal-id>
<journal-id journal-id-type="iso-abbrev">Emerging Infect. Dis</journal-id>
<journal-id journal-id-type="publisher-id">EID</journal-id>
<journal-title-group>
<journal-title>Emerging Infectious Diseases</journal-title>
</journal-title-group>
<issn pub-type="ppub">1080-6040</issn>
<issn pub-type="epub">1080-6059</issn>
<publisher>
<publisher-name>Centers for Disease Control and Prevention</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">25075637</article-id>
<article-id pub-id-type="pmc">4111164</article-id>
<article-id pub-id-type="publisher-id">14-0596</article-id>
<article-id pub-id-type="doi">10.3201/eid2008.140596</article-id>
<article-categories>
<subj-group subj-group-type="second-type">
<subject>Expedited</subject>
</subj-group>
<subj-group subj-group-type="heading">
<subject>Dispatch</subject>
</subj-group>
<subj-group subj-group-type="article-type">
<subject>Dispatch</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Antibodies against MERS Coronavirus in Dromedary Camels, Kenya, 1992–2013</article-title>
<alt-title alt-title-type="running-head">Antibodies against MERS-CoV in Dromedary Camels</alt-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Corman</surname>
<given-names>Victor M.</given-names>
</name>
<xref ref-type="fn" rid="FN1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Jores</surname>
<given-names>Joerg</given-names>
</name>
<xref ref-type="fn" rid="FN1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Meyer</surname>
<given-names>Benjamin</given-names>
</name>
<xref ref-type="fn" rid="FN1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Younan</surname>
<given-names>Mario</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Liljander</surname>
<given-names>Anne</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Said</surname>
<given-names>Mohammed Y.</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Gluecks</surname>
<given-names>Ilona</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Lattwein</surname>
<given-names>Erik</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Bosch</surname>
<given-names>Berend-Jan</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Drexler</surname>
<given-names>Jan Felix</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Bornstein</surname>
<given-names>Set</given-names>
</name>
</contrib>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Drosten</surname>
<given-names>Christian</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Müller</surname>
<given-names>Marcel A.</given-names>
</name>
</contrib>
<aff id="aff1">University of Bonn Medical Centre, Bonn, Germany (V.M. Corman, B. Meyer, J.F. Drexler, C. Drosten, M.A. Müller);</aff>
<aff id="aff2">International Livestock Research Institute, Nairobi, Kenya (J. Jores, A. Liljander, M.Y. Said);</aff>
<aff id="aff3">Vétérinaires Sans Frontières Germany, Nairobi (M. Younan);</aff>
<aff id="aff4">Vétérinaires Sans Frontières Suisse, Nairobi (I. Gluecks);</aff>
<aff id="aff5">EUROIMMUN AG, Lübeck, Germany (E. Lattwein);</aff>
<aff id="aff6"> Utrecht University, Utrecht, the Netherlands (B.-J. Bosch);</aff>
<aff id="aff7">National Veterinary Institute, Uppsala, Sweden (S. Bornstein)</aff>
</contrib-group>
<author-notes>
<corresp id="cor1">Address for correspondence: Christian Drosten, Institute of Virology, University of Bonn Medical Centre, Sigmund Freud Strasse 25, 53105 Bonn, Germany; email:
<email xlink:href="drosten@virology-bonn.de">drosten@virology-bonn.de</email>
</corresp>
</author-notes>
<pub-date pub-type="ppub">
<month>8</month>
<year>2014</year>
</pub-date>
<volume>20</volume>
<issue>8</issue>
<fpage>1319</fpage>
<lpage>1322</lpage>
<abstract>
<p>Dromedary camels are a putative source for human infections with Middle East respiratory syndrome coronavirus. We showed that camels sampled in different regions in Kenya during 1992–2013 have antibodies against this virus. High densities of camel populations correlated with increased seropositivity and might be a factor in predicting long-term virus maintenance.</p>
</abstract>
<kwd-group kwd-group-type="author">
<title>Keywords: </title>
<kwd>Middle East respiratory syndrome coronavirus</kwd>
<kwd>MERS-CoV</kwd>
<kwd>viruses</kwd>
<kwd>coronavirus</kwd>
<kwd>dromedary camels</kwd>
<kwd>reservoir</kwd>
<kwd>antibodies</kwd>
<kwd>seroprevalence</kwd>
<kwd>zoonoses</kwd>
<kwd>Kenya</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<p>Middle East respiratory syndrome coronavirus (MERS-CoV) was discovered in a patient from Saudi Arabia in 2012 and has since caused ≥250 human infections and 93 deaths (
<xref rid="R1" ref-type="bibr">
<italic>1</italic>
</xref>
). The evolutionary origins of MERS-CoV and related viral species belonging to the genus
<italic>Betacoronavirus</italic>
clade C were attributed to insectivorous bats in Europe and Africa (
<xref rid="R2" ref-type="bibr">
<italic>2</italic>
</xref>
<italic></italic>
<xref rid="R4" ref-type="bibr">
<italic>4</italic>
</xref>
). Seroprevalence studies of livestock from diverse species showed that dromedary camels from Oman, Saudi Arabia, the United Arab Emirates, Jordan, Qatar, Spain, and Egypt harbored antibodies against MERS-CoV antigens (
<xref rid="R5" ref-type="bibr">
<italic>5</italic>
</xref>
<italic></italic>
<xref rid="R8" ref-type="bibr">
<italic>8</italic>
</xref>
). Direct evidence for MERS-CoV infection in camels has been found in Qatar, Saudi Arabia, and Egypt. Close similarity of camel-associated and human-associated MERS-CoV sequences suggests that camels are sources of infection for humans and might constitute a zoonotic animal reservoir (
<xref rid="R5" ref-type="bibr">
<italic>5</italic>
</xref>
<italic>,</italic>
<xref rid="R9" ref-type="bibr">
<italic>9</italic>
</xref>
<italic>,</italic>
<xref rid="R10" ref-type="bibr">
<italic>10</italic>
</xref>
). Where and when the putative introduction of MERS-CoV into camel populations took place and how the virus is maintained in camel populations remains obscure.</p>
<p>Most livestock camels slaughtered in the Arabian Peninsula and in Egypt are imported from the Greater Horn of Africa, in particular Ethiopia, Somalia, Sudan, and Kenya (
<xref rid="R11" ref-type="bibr">
<italic>11</italic>
</xref>
<italic>,</italic>
<xref rid="R12" ref-type="bibr">
<italic>12</italic>
</xref>
). We investigated MERS-CoV antibody levels and distribution patterns in farmed and nomadic camels from Kenya.</p>
<sec>
<title>The Study</title>
<p>Samples were obtained from 774 dromedary camels in 3 regions in Kenya (Northeastern, Eastern, and Rift Valley [former administrative provinces]) and 7 counties (Mandera, Wajir, Isiolo, Marsabit, Laikipia, Turkana, and Baringo) during 1992–2013 (
<xref ref-type="fig" rid="F1">Figure</xref>
). Blood samples were obtained from farmed or nomadic camels by jugular vein puncture. Serum samples originated from the archives of the International Livestock and Research Institute (ILRI) (Nairobi, Kenya). Ethical clearance for collection was part of the agreement between the Government of Kenya and ILRI, which provided ILRI with approval to broadly investigate livestock disease in Kenya.</p>
<fig id="F1" fig-type="figure" position="float">
<label>Figure</label>
<caption>
<p>Greater Horn of Africa and Kenya. A) Arabian Peninsula and neighboring countries in the Greater Horn of Africa. B) Detailed map of Kenya showing sampling sites in 7 counties (Turkana, Baringo, Laikipia, Marsabit, Isiolo, Mandera, and Wajir) for Middle East respiratory syndrome coronavirus (MERS-CoV). Counties were assigned to 3 regions named after the former administrative provinces of Rift Valley, Eastern, and Northeastern (left to right). The 3 sampling regions are indicated in shades of green and other counties are indicated in gray. Percentages of camels positive for antibodies against MERS-CoV are shown with the density of camels (individuals/km
<sup>2</sup>
) for the analyzed regions during 2 periods (1991–2000 and 2000–2013). Serosurveys were performed during 1992–2013. Camel population numbers were determined for 1991–2000 and 2000–2013. Maps were created by using data from
<ext-link ext-link-type="uri" xlink:href="http://www.naturalearthdata.com">http://www.naturalearthdata.com</ext-link>
.</p>
</caption>
<graphic xlink:href="14-0596-F"></graphic>
</fig>
<p>All serum samples were tested for MERS-CoV antibodies by using a recombinant MERS-CoV spike protein subunit 1–based ELISA (rELISA) as described (
<xref rid="R13" ref-type="bibr">
<italic>13</italic>
</xref>
). Serum samples were used at a 1:100 dilution, which had been shown to be optimal for screening (
<xref rid="R13" ref-type="bibr">
<italic>13</italic>
</xref>
). A positive serum sample from recent studies (
<xref rid="R6" ref-type="bibr">
<italic>6</italic>
</xref>
<italic>,</italic>
<xref rid="R13" ref-type="bibr">
<italic>13</italic>
</xref>
) was used as a reference in all experiments. We used the assay-specific cutoff (optical density ratio 0.3) that had been validated in a previous study of camel serum samples (
<xref rid="R13" ref-type="bibr">
<italic>13</italic>
</xref>
). A total of 228 (29.5%) of 774 dromedary camels were rated MERS-CoV positive by the rELISA (
<xref ref-type="table" rid="T1">Table 1</xref>
). All 228 rELISA-positive serum samples from these 228 camels were subsequently tested at a 1:40 dilution by using an established recombinant immunofluorescence assay and Vero cells expressing MERS-CoV spike protein (
<xref rid="R6" ref-type="bibr">
<italic>6</italic>
</xref>
). This confirmatory assay showed that 213 (93.4%) of 228 rELISA-positive serum samples had MERS-CoV antibodies (
<xref ref-type="table" rid="T1">Table 1</xref>
).</p>
<table-wrap id="T1" position="float">
<label>Table 1</label>
<caption>
<title>Analysis for MERS-CoV in serum samples of dromedary camel from 3 regions in Kenya, 1992–2013*</title>
</caption>
<table frame="hsides" rules="groups">
<col width="56" span="1"></col>
<col width="76" span="1"></col>
<col width="73" span="1"></col>
<col width="43" span="1"></col>
<col width="45" span="1"></col>
<col width="85" span="1"></col>
<col width="101" span="1"></col>
<thead>
<tr>
<th valign="bottom" align="left" scope="col" rowspan="1" colspan="1">Region</th>
<th valign="bottom" align="center" scope="col" rowspan="1" colspan="1">County†</th>
<th valign="bottom" align="center" scope="col" rowspan="1" colspan="1">Husbandry/ management</th>
<th valign="bottom" align="center" scope="col" rowspan="1" colspan="1">Year</th>
<th valign="bottom" align="center" scope="col" rowspan="1" colspan="1">No. samples</th>
<th valign="bottom" align="center" scope="col" rowspan="1" colspan="1">No. rELISA positive samples (%)</th>
<th valign="bottom" align="center" scope="col" rowspan="1" colspan="1">No. rIFA positive samples/rELISA positive samples (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td valign="top" align="left" scope="row" rowspan="1" colspan="1">Northeastern</td>
<td valign="top" align="center" rowspan="1" colspan="1">Mandera/ Wajir‡</td>
<td valign="top" align="center" rowspan="1" colspan="1">Nomadic§</td>
<td valign="top" align="center" rowspan="1" colspan="1">2008</td>
<td valign="top" align="center" rowspan="1" colspan="1">162</td>
<td valign="top" align="center" rowspan="1" colspan="1">91 (56.2)</td>
<td valign="top" align="center" rowspan="1" colspan="1">86/91 (94.5)</td>
</tr>
<tr>
<td valign="top" align="left" scope="row" rowspan="1" colspan="1">Eastern</td>
<td valign="top" align="center" rowspan="1" colspan="1">Isiolo</td>
<td valign="top" align="center" rowspan="1" colspan="1">Nomadic§</td>
<td valign="top" align="center" rowspan="1" colspan="1">1998</td>
<td valign="top" align="center" rowspan="1" colspan="1">12</td>
<td valign="top" align="center" rowspan="1" colspan="1">2 (16.7)</td>
<td valign="top" align="center" rowspan="1" colspan="1">1/2 (50.0)</td>
</tr>
<tr>
<td valign="top" align="left" scope="row" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1">Marsabit</td>
<td valign="top" align="center" rowspan="1" colspan="1">Nomadic§</td>
<td valign="top" align="center" rowspan="1" colspan="1">1999</td>
<td valign="top" align="center" rowspan="1" colspan="1">41</td>
<td valign="top" align="center" rowspan="1" colspan="1">32 (78.0)</td>
<td valign="top" align="center" rowspan="1" colspan="1">28/32 (87.5)</td>
</tr>
<tr>
<td valign="top" align="left" scope="row" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1">Variable</td>
<td valign="top" align="center" rowspan="1" colspan="1">Nomadic§</td>
<td valign="top" align="center" rowspan="1" colspan="1">2000</td>
<td valign="top" align="center" rowspan="1" colspan="1">73</td>
<td valign="top" align="center" rowspan="1" colspan="1">39 (53.4)</td>
<td valign="top" align="center" rowspan="1" colspan="1">38/39 (97.4)</td>
</tr>
<tr>
<td valign="top" align="left" scope="row" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1">Marsabit</td>
<td valign="top" align="center" rowspan="1" colspan="1">Nomadic§</td>
<td valign="top" align="center" rowspan="1" colspan="1">2008</td>
<td valign="top" align="center" rowspan="1" colspan="1">21</td>
<td valign="top" align="center" rowspan="1" colspan="1">12 (57.1)</td>
<td valign="top" align="center" rowspan="1" colspan="1">12/12 (100.0)</td>
</tr>
<tr>
<td valign="top" align="left" scope="row" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1">Marsabit</td>
<td valign="top" align="center" rowspan="1" colspan="1">Nomadic§</td>
<td valign="top" align="center" rowspan="1" colspan="1">2013</td>
<td valign="top" align="center" rowspan="1" colspan="1">7</td>
<td valign="top" align="center" rowspan="1" colspan="1">7 (100.0)</td>
<td valign="top" align="center" rowspan="1" colspan="1">7/7 (100.0)</td>
</tr>
<tr>
<td valign="top" align="left" scope="row" rowspan="1" colspan="1">Rift Valley</td>
<td valign="top" align="center" rowspan="1" colspan="1">Laikipia¶</td>
<td valign="top" align="center" rowspan="1" colspan="1">Ranch#</td>
<td valign="top" align="center" rowspan="1" colspan="1">1992</td>
<td valign="top" align="center" rowspan="1" colspan="1">22</td>
<td valign="top" align="center" rowspan="1" colspan="1">1 (4.5)</td>
<td valign="top" align="center" rowspan="1" colspan="1">0/1 (0.0)</td>
</tr>
<tr>
<td valign="top" align="left" scope="row" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1">Laikipia</td>
<td valign="top" align="center" rowspan="1" colspan="1">Ranch#</td>
<td valign="top" align="center" rowspan="1" colspan="1">1996</td>
<td valign="top" align="center" rowspan="1" colspan="1">37</td>
<td valign="top" align="center" rowspan="1" colspan="1">2 (5.4)</td>
<td valign="top" align="center" rowspan="1" colspan="1">2/2 (100.0)</td>
</tr>
<tr>
<td valign="top" align="left" scope="row" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1">Laikipia</td>
<td valign="top" align="center" rowspan="1" colspan="1">Ranch#</td>
<td valign="top" align="center" rowspan="1" colspan="1">1998</td>
<td valign="top" align="center" rowspan="1" colspan="1">50</td>
<td valign="top" align="center" rowspan="1" colspan="1">0 (0.0)</td>
<td valign="top" align="center" rowspan="1" colspan="1">ND</td>
</tr>
<tr>
<td valign="top" align="left" scope="row" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1">Laikipia</td>
<td valign="top" align="center" rowspan="1" colspan="1">Ranch#</td>
<td valign="top" align="center" rowspan="1" colspan="1">1999</td>
<td valign="top" align="center" rowspan="1" colspan="1">175</td>
<td valign="top" align="center" rowspan="1" colspan="1">32 (18.3)</td>
<td valign="top" align="center" rowspan="1" colspan="1">30/32 (93.8)</td>
</tr>
<tr>
<td valign="top" align="left" scope="row" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1">Turkana</td>
<td valign="top" align="center" rowspan="1" colspan="1">Nomadic**</td>
<td valign="top" align="center" rowspan="1" colspan="1">1999</td>
<td valign="top" align="center" rowspan="1" colspan="1">50</td>
<td valign="top" align="center" rowspan="1" colspan="1">7 (14.0)</td>
<td valign="top" align="center" rowspan="1" colspan="1">6/7 (85.7)</td>
</tr>
<tr>
<td valign="top" align="left" scope="row" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1">Laikipia</td>
<td valign="top" align="center" rowspan="1" colspan="1">Ranch#</td>
<td valign="top" align="center" rowspan="1" colspan="1">2000</td>
<td valign="top" align="center" rowspan="1" colspan="1">56</td>
<td valign="top" align="center" rowspan="1" colspan="1">2 (3.6)</td>
<td valign="top" align="center" rowspan="1" colspan="1">2/2 (100.0)</td>
</tr>
<tr>
<td valign="top" align="left" scope="row" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1">Baringo</td>
<td valign="top" align="center" rowspan="1" colspan="1">Research center††</td>
<td valign="top" align="center" rowspan="1" colspan="1">2007</td>
<td valign="top" align="center" rowspan="1" colspan="1">28</td>
<td valign="top" align="center" rowspan="1" colspan="1">0 (0.0)</td>
<td valign="top" align="center" rowspan="1" colspan="1">ND</td>
</tr>
<tr>
<td valign="top" align="left" scope="row" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1">Laikipia</td>
<td valign="top" align="center" rowspan="1" colspan="1">Ranch</td>
<td valign="top" align="center" rowspan="1" colspan="1">2013</td>
<td valign="top" align="center" rowspan="1" colspan="1">40</td>
<td valign="top" align="center" rowspan="1" colspan="1">1 (2.5)</td>
<td valign="top" align="center" rowspan="1" colspan="1">1/1 (100.0)</td>
</tr>
<tr>
<td valign="top" align="left" scope="row" rowspan="1" colspan="1">Total</td>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1">774</td>
<td valign="top" align="center" rowspan="1" colspan="1">228 (29.5)</td>
<td valign="top" align="center" rowspan="1" colspan="1">213/228 (93.4)</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>*MERS-CoV, Middle East respiratory syndrome coronavirus; rELISA, recombinant ELISA for MERS-CoV subunit 1 spike protein (serum samples were tested at a dilution of 1:100); rIFA, recombinant immunofluorescence assay for MERS-CoV spike protein expression in Vero cells (serum samples were tested at a dilution of 1:40; ND, not done.
†Designated county refers to place of sampling or location in which camels were primarily located.
‡Data was merged because both counties had comparable antibody levels.
§High density of camels and regular contact between herds, including exchange of animals between herds in relation to lactation and reproduction status.
¶Formerly from Pakistan.
#Low density of camels and only sporadic contact between herds, with introduction of new animals only by purchase or livestock raiding, or restocking of camels.
**Low density of camels but more frequent contact between herds than on ranches This includes encounters at waterholes and night enclosures, as well as sharing of pastures with daily to weekly contact between herds.
††Isolated herd that originated in Wajir but was kept under quarantine-like isolation conditions for experimental work since 1998.</p>
</table-wrap-foot>
</table-wrap>
<p>As a final step, antibody specificity was confirmed by using a highly specific MERS-CoV microneutralization assay as described (
<xref rid="R6" ref-type="bibr">
<italic>6</italic>
</xref>
). All 228 rELISA-positive serum samples were tested at a starting dilution of 1:80 and an ending dilution of 1:800 to identify animals with high neutralization titers. A total of 119 (52.2%) 228 rELISA-positive serum samples had MERS-CoV neutralizing antibody titers (range 1:80–1:800) and 14 (6.1%) of 228 had high (>1:800) titers. The highly reactive camel serum samples originated from 3 counties (Wajir, Mandera, and Marsabit) in 2 regions (Northeastern and Eastern). The highest determined endpoint titer was 1:5,120.</p>
<p>Dromedary camels that had MERS-CoV antibodies were present at all sampling sites and during the 20-year sampling period (
<xref ref-type="table" rid="T1">Table 1</xref>
;
<xref ref-type="fig" rid="F1">Figure</xref>
). With the exception of 1 county, seroprevalence was generally higher in the Northeastern and Eastern regions (range 53.4%–100%) than in the northern Rift Valley region (range 0%–17.5%). </p>
<p>Serum samples from 28 dromedary camels from Wajir County that had been held at a research center in isolation conditions since 1998 were negative for MERV-CoV antibodies. To further confirm the observed seropositivity gradient, we compared those 129 camel serum samples with those that were obtained in the same year (2000) but at 2 locations (Eastern and northwestern Rift Valley regions). Antibody levels of nomadic dromedary camels from the Eastern region were significantly higher than those for farmed animals from the Rift Valley (corrected χ
<sup>2</sup>
34.1, p<0.005) (
<xref ref-type="table" rid="T2">Table 2</xref>
). Adult animals in both regions had a 7%–10% higher seroprevalence than juvenile animals, which is consistent with results of a previous study (
<xref rid="R6" ref-type="bibr">
<italic>6</italic>
</xref>
).</p>
<table-wrap id="T2" position="float">
<label>Table 2</label>
<caption>
<title>Antibodies against MERS-CoV in dromedary camels in 2 regions of Kenya, 2000*</title>
</caption>
<table frame="hsides" rules="groups">
<col width="56" span="1"></col>
<col width="67" span="1"></col>
<col width="72" span="1"></col>
<col width="54" span="1"></col>
<col width="90" span="1"></col>
<col width="142" span="1"></col>
<thead>
<tr>
<th valign="bottom" align="left" scope="col" rowspan="1" colspan="1">Region</th>
<th valign="bottom" align="center" scope="col" rowspan="1" colspan="1">County†</th>
<th valign="bottom" align="center" scope="col" rowspan="1" colspan="1">Husbandry</th>
<th valign="bottom" align="center" scope="col" rowspan="1" colspan="1">Sex</th>
<th valign="bottom" align="center" scope="col" rowspan="1" colspan="1">Age</th>
<th valign="bottom" align="center" scope="col" rowspan="1" colspan="1">No. samples positive by rELISA/no. tested (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td valign="top" align="left" scope="row" rowspan="1" colspan="1">Eastern</td>
<td valign="top" align="center" rowspan="1" colspan="1">Marsabit</td>
<td valign="top" align="center" rowspan="1" colspan="1">Nomadic‡</td>
<td valign="top" align="center" rowspan="1" colspan="1">F/M</td>
<td valign="top" align="center" rowspan="1" colspan="1">A</td>
<td valign="top" align="center" rowspan="1" colspan="1">24/42 (57.1)</td>
</tr>
<tr>
<td valign="top" align="left" scope="row" rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1">F/M</td>
<td valign="top" align="center" rowspan="1" colspan="1">J</td>
<td valign="top" align="center" rowspan="1" colspan="1">15/31 (48.4)</td>
</tr>
<tr>
<td valign="top" align="left" scope="row" rowspan="1" colspan="1">Subtotal</td>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1">39/73 (53.4)</td>
</tr>
<tr>
<td valign="top" align="left" scope="row" rowspan="1" colspan="1">Rift Valley</td>
<td valign="top" align="center" rowspan="1" colspan="1">Laikipia</td>
<td valign="top" align="center" rowspan="1" colspan="1">Ranch§</td>
<td valign="top" align="center" rowspan="1" colspan="1">F/M</td>
<td valign="top" align="center" rowspan="1" colspan="1">A</td>
<td valign="top" align="center" rowspan="1" colspan="1">2/28 (7.1)</td>
</tr>
<tr>
<td valign="top" align="left" scope="row" rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1">F/M</td>
<td valign="top" align="center" rowspan="1" colspan="1">J</td>
<td valign="top" align="center" rowspan="1" colspan="1">0/28 (0)</td>
</tr>
<tr>
<td valign="top" align="left" scope="row" rowspan="1" colspan="1">Subtotal</td>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1">2/56 (3.6)</td>
</tr>
<tr>
<td valign="top" align="left" scope="row" rowspan="1" colspan="1">Total</td>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1">41/129 (31.8)</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>*MERS-CoV, Middle East respiratory syndrome coronavirus; rELISA, recombinant ELISA; A, adult; J, juvenile.
†Designated county refers to place of sampling or location in which camels were primarily located.
‡Frequent herd contacts.
§Sporadic herd contacts.</p>
</table-wrap-foot>
</table-wrap>
<p>Because virus transmission might be influenced by population density, we attempted to correlate seroprevalence with dromedary camel population density across different regions. Data for dromedary camel density (
<xref ref-type="local-data" rid="SD1">Technical Appendix</xref>
) were calculated on the basis of livestock counts conducted by the Department of Resource Surveys and Remote Sensing as part of an ongoing Kenya-wide rangeland monitoring program (
<xref rid="R14" ref-type="bibr">
<italic>14</italic>
</xref>
). Increased seroprevalence showed a significant correlation (Spearman rank correlation coefficient 0.715, p<0.005) with higher densities of dromedary camel populations in the Northeastern region and the northern part of the Eastern region (range 0.73–2.9 animals/km
<sup>2</sup>
) than in the Rift Valley region (0.58–0.6 animals/km
<sup>2</sup>
) (
<xref ref-type="fig" rid="F1">Figure</xref>
;
<xref ref-type="local-data" rid="SD1">Technical Appendix</xref>
).</p>
</sec>
<sec sec-type="conclusions">
<title>Conclusions</title>
<p>The present study showed that dromedary camels from Kenya have antibodies against MERS-CoV, which complements the current finding that MERS-CoV is a common pathogen in dromedary camel populations (
<xref rid="R5" ref-type="bibr">
<italic>5</italic>
</xref>
<italic>,</italic>
<xref rid="R6" ref-type="bibr">
<italic>6</italic>
</xref>
<italic>,</italic>
<xref rid="R8" ref-type="bibr">
<italic>8</italic>
</xref>
<italic>,</italic>
<xref rid="R9" ref-type="bibr">
<italic>9</italic>
</xref>
<italic>,</italic>
<xref rid="R13" ref-type="bibr">
<italic>13</italic>
</xref>
). Our finding of MERS-CoV antibodies in dromedary camels as early as 1992 is consistent with findings of a recent report from Saudi Arabia, which suggested that MERS-CoV has been circulating in dromedary camels for ≥20 years (
<xref rid="R5" ref-type="bibr">
<italic>5</italic>
</xref>
).</p>
<p>To project and potentially control virus spread, the public health community must understand factors determining virus maintenance. Our group and others have demonstrated that young dromedary camels have lower seroprevalences and are more likely to carry infectious virus (
<xref rid="R5" ref-type="bibr">
<italic>5</italic>
</xref>
<italic>,</italic>
<xref rid="R6" ref-type="bibr">
<italic>6</italic>
</xref>
). Similar observations have been made for coronaviruses in their original chiropteran hosts wherein strong virus amplification occurred soon after the time of parturition (
<xref rid="R15" ref-type="bibr">
<italic>15</italic>
</xref>
). Young, immunologically naive animals may thus facilitate virus amplification in dromedary camel populations.</p>
<p>We also demonstrated that dromedary camel population density shows a positive correlation with MERS-CoV seropositivity, which suggests efficient MERS-CoV maintenance or spread if herd density is high. Different types of animal husbandry in the Northeastern and Eastern regions of Kenya might be better predictors of virus transmission among camels. Dromedary camels in this area are often nomadic following rainfall patterns, and are taken across borders into neighboring countries, such as Ethiopia, for trade purposes (
<xref rid="R13" ref-type="bibr">
<italic>13</italic>
</xref>
). The observed increase in seropositivity from the Western region to the Northeastern and Eastern regions could be attributed to increased animal-to-animal contact in cross-border dromedary camel metapopulations.</p>
<p>Conversely, dromedary camels that originated in the Northeastern region but had been held in isolation since 1998 were negative for MERS-CoV antibodies, which is consistent with absence of antibodies in dromedary camels bred in isolation in Dubai (
<xref rid="R6" ref-type="bibr">
<italic>6</italic>
</xref>
). The combination of nomadic husbandry for a large population and presence of young virus-susceptible animals might facilitate virus maintenance. However, our retrospective study with archived samples could not assess hypotheses for each of the individual variables to determine their relative and absolute degrees of influence on virus circulation.</p>
<p>Because exportation of dromedary camels is largely unidirectional from eastern Africa into the Arabian Peninsula (
<xref rid="R11" ref-type="bibr">
<italic>11</italic>
</xref>
), our findings might facilitate the search for more ancestral MERS-CoV variants to clarify the natural history of acquisition of MERS-CoV by dromedary camels and its putative transmission to humans. Our recent finding of a MERS-CoV ancestor in bats from South Africa (
<xref rid="R3" ref-type="bibr">
<italic>3</italic>
</xref>
) highlights the need for wider investigations of viral reservoirs. The fact that no human MERS cases have been observed in eastern Africa could indicate less transmissibility of viruses in regional lineages or lack of detection and reporting of cases. Serosurveys of persons handling dromedary camels in this region could help to determine whether silent or unrecognized infections are being maintained in humans.</p>
</sec>
<sec sec-type="supplementary-material">
<title></title>
<supplementary-material content-type="local-data" id="SD1">
<caption>
<title>Technical Appendix</title>
<p>Dromedary camel population densities in 3 regions in Kenya during 2 periods and average numbers of dromedary camels in Kenya, 1992–2013.</p>
</caption>
<media mimetype="application" mime-subtype="pdf" xlink:href="14-0596-Techapp-s1.pdf" xlink:type="simple" id="d35e771" position="anchor"></media>
</supplementary-material>
</sec>
</body>
<back>
<fn-group>
<fn fn-type="citation">
<p>
<italic>Suggested citation for this article</italic>
: Corman VM, Jores J, Meyer B, Younan M, Liljander A, Said MY, et al. Antibodies against MERS coronavirus in dromedary camels, Kenya, 1992–2013. Emerg Infect Dis [Internet]. 2014 Aug [
<italic>date cited</italic>
].
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.3201/eid2008.140596">http://dx.doi.org/10.3201/eid2008.140596</ext-link>
</p>
</fn>
<fn id="FN1">
<label>1</label>
<p>These authors contributed equally to this article.</p>
</fn>
</fn-group>
<ack>
<title>Acknowledgments</title>
<p>We thank Stephan Kallies, Monika Eschbach-Bludau, Sebastian Brünink, Tobias Bleicker, and Andrea Sieberg for providing excellent technical assistance; Chris Field, the late Jasper Evans, Martin Evans, Gilfrid Powys, and all camel owners and herdsmen for providing help during field work in Kenya; the Kenyan Department of Veterinary Services for providing support during field work; and the Director of the Department of Resource Surveys and Remote Sensing for providing data on camel populations in Kenya.</p>
<p>This study was supported by the European Commission (FP7-EMPERIE no. 223498 and FP7-ANTIGONE no. 278976) and the German Research Foundation (DFG grant DR772/3-1 to C.D.) and the Consultative Group for International Agricultural Research Program on Agriculture for Nutrition and Health. A.L. was supported by the Centrum of International Migration. C.D. received infrastructural support from the German Center for Infection Research.</p>
</ack>
<bio id="d35e796">
<p>Dr Corman is a physician and virologist at the Institute of Virology in Bonn, Germany. His research interests include characterization of novel human and zoonotic viruses and development of molecular diagnostic assays.</p>
</bio>
<ref-list>
<title>References</title>
<ref id="R1">
<label>1. </label>
<mixed-citation publication-type="webpage">
<collab>World Health Organization</collab>
. Middle East respiratory syndrome coronavirus—update. April 20,
<year>2014</year>
[cited 2014 Apr 26].
<ext-link ext-link-type="uri" xlink:href="http://www.who.int/csr/don/2014_04_20_mers/en/">http://www.who.int/csr/don/2014_04_20_mers/en/</ext-link>
</mixed-citation>
</ref>
<ref id="R2">
<label>2. </label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Reusken</surname>
<given-names>CB</given-names>
</string-name>
,
<string-name>
<surname>Lina</surname>
<given-names>PH</given-names>
</string-name>
,
<string-name>
<surname>Pielaat</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>de Vries</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Dam-Deisz</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Adema</surname>
<given-names>J</given-names>
</string-name>
,
<etal></etal>
<article-title>Circulation of group 2 coronaviruses in a bat species common to urban areas in western Europe.</article-title>
<source>Vector Borne Zoonotic Dis</source>
.
<year>2010</year>
;
<volume>10</volume>
:
<fpage>785</fpage>
<lpage>91</lpage>
<pub-id pub-id-type="doi">10.1089/vbz.2009.0173</pub-id>
<pub-id pub-id-type="pmid">20055576</pub-id>
</mixed-citation>
</ref>
<ref id="R3">
<label>3. </label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Ithete</surname>
<given-names>NL</given-names>
</string-name>
,
<string-name>
<surname>Stoffberg</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Corman</surname>
<given-names>VM</given-names>
</string-name>
,
<string-name>
<surname>Cottontail</surname>
<given-names>VM</given-names>
</string-name>
,
<string-name>
<surname>Richards</surname>
<given-names>LR</given-names>
</string-name>
,
<string-name>
<surname>Schoeman</surname>
<given-names>MC</given-names>
</string-name>
,
<etal></etal>
<article-title>Close relative of human middle East respiratory syndrome coronavirus in bat, South Africa.</article-title>
<source>Emerg Infect Dis</source>
.
<year>2013</year>
;
<volume>19</volume>
:
<fpage>1697</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.3201/eid1910.130946</pub-id>
<pub-id pub-id-type="pmid">24050621</pub-id>
</mixed-citation>
</ref>
<ref id="R4">
<label>4. </label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Annan</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Baldwin</surname>
<given-names>HJ</given-names>
</string-name>
,
<string-name>
<surname>Corman</surname>
<given-names>VM</given-names>
</string-name>
,
<string-name>
<surname>Klose</surname>
<given-names>SM</given-names>
</string-name>
,
<string-name>
<surname>Owusu</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Nkrumah</surname>
<given-names>EE</given-names>
</string-name>
,
<etal></etal>
<article-title>Human betacoronavirus 2c EMC/2012-related viruses in bats, Ghana and Europe.</article-title>
<source>Emerg Infect Dis</source>
.
<year>2013</year>
;
<volume>19</volume>
:
<fpage>456</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.3201/eid1903.121503</pub-id>
<pub-id pub-id-type="pmid">23622767</pub-id>
</mixed-citation>
</ref>
<ref id="R5">
<label>5. </label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Alagaili</surname>
<given-names>AN</given-names>
</string-name>
,
<string-name>
<surname>Briese</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Mishra</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Kapoor</surname>
<given-names>V</given-names>
</string-name>
,
<string-name>
<surname>Sameroff</surname>
<given-names>SC</given-names>
</string-name>
,
<string-name>
<surname>de Wit</surname>
<given-names>E</given-names>
</string-name>
,
<etal></etal>
<article-title>Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia.</article-title>
<source>MBio</source>
.
<year>2014</year>
;
<volume>5</volume>
:
<fpage>e00884</fpage>
<lpage>14</lpage>
<pub-id pub-id-type="doi">10.1128/mBio.01002-14</pub-id>
<pub-id pub-id-type="pmid">24570370</pub-id>
</mixed-citation>
</ref>
<ref id="R6">
<label>6. </label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Meyer</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Muller</surname>
<given-names>MA</given-names>
</string-name>
,
<string-name>
<surname>Corman</surname>
<given-names>VM</given-names>
</string-name>
,
<string-name>
<surname>Reusken</surname>
<given-names>CB</given-names>
</string-name>
,
<string-name>
<surname>Ritz</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Godecke</surname>
<given-names>GJ</given-names>
</string-name>
,
<etal></etal>
<article-title>Antibodies against MERS coronavirus in dromedaries, United Arab Emirates, 2003 and 2013.</article-title>
<source>Emerg Infect Dis</source>
.
<year>2014</year>
;
<volume>20</volume>
:
<fpage>552</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.3201/eid2004.131746</pub-id>
<pub-id pub-id-type="pmid">24655412</pub-id>
</mixed-citation>
</ref>
<ref id="R7">
<label>7. </label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Perera</surname>
<given-names>RA</given-names>
</string-name>
,
<string-name>
<surname>Wang</surname>
<given-names>P</given-names>
</string-name>
,
<string-name>
<surname>Gomaa</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>El-Shesheny</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Kandeil</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Bagato</surname>
<given-names>O</given-names>
</string-name>
,
<etal></etal>
<article-title>Seroepidemiology for MERS coronavirus using microneutralisation and pseudoparticle virus neutralisation assays reveal a high prevalence of antibody in dromedary camels in Egypt, June 2013.</article-title>
<source>Euro Surveill</source>
.
<year>2013</year>
;
<volume>18</volume>
:
<fpage>20574</fpage>
.
<pub-id pub-id-type="pmid">24079378</pub-id>
</mixed-citation>
</ref>
<ref id="R8">
<label>8. </label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Reusken</surname>
<given-names>CB</given-names>
</string-name>
,
<string-name>
<surname>Haagmans</surname>
<given-names>BL</given-names>
</string-name>
,
<string-name>
<surname>Muller</surname>
<given-names>MA</given-names>
</string-name>
,
<string-name>
<surname>Gutierrez</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Godeke</surname>
<given-names>GJ</given-names>
</string-name>
,
<string-name>
<surname>Meyer</surname>
<given-names>B</given-names>
</string-name>
,
<etal></etal>
<article-title>Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological study.</article-title>
<source>Lancet Infect Dis</source>
.
<year>2013</year>
;
<volume>13</volume>
:
<fpage>859</fpage>
<lpage>66</lpage>
<pub-id pub-id-type="doi">10.1016/S1473-3099(13)70164-6</pub-id>
<pub-id pub-id-type="pmid">23933067</pub-id>
</mixed-citation>
</ref>
<ref id="R9">
<label>9. </label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Haagmans</surname>
<given-names>BL</given-names>
</string-name>
,
<string-name>
<surname>Al Dhahiry</surname>
<given-names>SH</given-names>
</string-name>
,
<string-name>
<surname>Reusken</surname>
<given-names>CB</given-names>
</string-name>
,
<string-name>
<surname>Raj</surname>
<given-names>VS</given-names>
</string-name>
,
<string-name>
<surname>Galiano</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Myers</surname>
<given-names>R</given-names>
</string-name>
,
<etal></etal>
<article-title>Middle East respiratory syndrome coronavirus in dromedary camels: an outbreak investigation.</article-title>
<source>Lancet Infect Dis</source>
.
<year>2014</year>
;
<volume>14</volume>
:
<fpage>140</fpage>
<lpage>5</lpage>
<pub-id pub-id-type="doi">10.1016/S1473-3099(13)70690-X</pub-id>
<pub-id pub-id-type="pmid">24355866</pub-id>
</mixed-citation>
</ref>
<ref id="R10">
<label>10. </label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Chu</surname>
<given-names>DK</given-names>
</string-name>
,
<string-name>
<surname>Poon</surname>
<given-names>LM</given-names>
</string-name>
,
<string-name>
<surname>Gomaa</surname>
<given-names>MM</given-names>
</string-name>
,
<string-name>
<surname>Shehata</surname>
<given-names>MM</given-names>
</string-name>
,
<string-name>
<surname>Perera</surname>
<given-names>RA</given-names>
</string-name>
,
<string-name>
<surname>Abu Zeid</surname>
<given-names>D</given-names>
</string-name>
,
<etal></etal>
<article-title>MERS coronaviruses in dromedary camels, Egypt.</article-title>
<source>Emerg Infect Dis</source>
.
<year>2014</year>
;
<volume>20</volume>
:
<fpage>1050</fpage>
<lpage>4</lpage>
<pub-id pub-id-type="doi">10.3201/eid2006.140299</pub-id>
</mixed-citation>
</ref>
<ref id="R11">
<label>11. </label>
<mixed-citation publication-type="book">
<string-name>
<surname>Aklilu</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Catley</surname>
<given-names>A</given-names>
</string-name>
. Livestock exports from the Horn of Africa: an analysis of benefits by pastoralist wealth group and policy implications. Medford (MA): Feinstein International Center, Tufts University;
<year>2009</year>
</mixed-citation>
</ref>
<ref id="R12">
<label>12. </label>
<mixed-citation publication-type="webpage">
<string-name>
<surname>Mahmoud</surname>
<given-names>HA</given-names>
</string-name>
. Camel marketing in the northern Kenya/southern Ethiopia borderlands. FAC Research Update 005 DFID,
<year>2010</year>
[cited 2014 Apr 11].
<ext-link ext-link-type="uri" xlink:href="http://www.future-agricultures.org">http://www.future-agricultures.org</ext-link>
</mixed-citation>
</ref>
<ref id="R13">
<label>13. </label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Memish</surname>
<given-names>ZA</given-names>
</string-name>
,
<string-name>
<surname>Cotten</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Meyer</surname>
<given-names>B</given-names>
</string-name>
,
<string-name>
<surname>Watson</surname>
<given-names>SJ</given-names>
</string-name>
,
<string-name>
<surname>Alsahafi</surname>
<given-names>AJ</given-names>
</string-name>
,
<string-name>
<surname>Al Rabeeah</surname>
<given-names>AA</given-names>
</string-name>
,
<etal></etal>
<article-title>Human infection with MERS coronavirus after exposure to infected camels, Saudi Arabia, 2013.</article-title>
<source>Emerg Infect Dis</source>
.
<year>2014</year>
;
<volume>20</volume>
:
<fpage>1016</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.3201/eid2006.140402</pub-id>
<pub-id pub-id-type="pmid">24857806</pub-id>
</mixed-citation>
</ref>
<ref id="R14">
<label>14. </label>
<mixed-citation publication-type="book">
<string-name>
<surname>Ottichilo</surname>
<given-names>W</given-names>
</string-name>
,
<string-name>
<surname>Grunblatt</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Said</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Wargute</surname>
<given-names>P</given-names>
</string-name>
. Wildlife and livestock population trends in the Kenya rangeland. In: Prins HT, Grootenhuis J, Dolan T, editors. Wildlife conservation by sustainable use. Amsterdam: Springer;
<year>2000</year>
p. 203–18.</mixed-citation>
</ref>
<ref id="R15">
<label>15. </label>
<mixed-citation publication-type="journal">
<string-name>
<surname>Drexler</surname>
<given-names>JF</given-names>
</string-name>
,
<string-name>
<surname>Corman</surname>
<given-names>VM</given-names>
</string-name>
,
<string-name>
<surname>Wegner</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Tateno</surname>
<given-names>AF</given-names>
</string-name>
,
<string-name>
<surname>Zerbinati</surname>
<given-names>RM</given-names>
</string-name>
,
<string-name>
<surname>Gloza-Rausch</surname>
<given-names>F</given-names>
</string-name>
,
<etal></etal>
<article-title>Amplification of emerging viruses in a bat colony.</article-title>
<source>Emerg Infect Dis</source>
.
<year>2011</year>
;
<volume>17</volume>
:
<fpage>449</fpage>
<lpage>56</lpage>
and .
<pub-id pub-id-type="doi">10.3201/eid1703.100526</pub-id>
<pub-id pub-id-type="pmid">21392436</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 0006750 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 0006750 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021